Your message dated Wed, 25 Jan 2023 16:38:07 +0000
with message-id <e1pkiml-00539y...@fasolo.debian.org>
and subject line Bug#1029452: fixed in python-skbio 0.5.8-2
has caused the Debian Bug report #1029452,
regarding python-skbio: (autopkgtest) needs update for NumPy 1.24
to be marked as done.

This means that you claim that the problem has been dealt with.
If this is not the case it is now your responsibility to reopen the
Bug report if necessary, and/or fix the problem forthwith.

(NB: If you are a system administrator and have no idea what this
message is talking about, this may indicate a serious mail system
misconfiguration somewhere. Please contact ow...@bugs.debian.org
immediately.)


-- 
1029452: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1029452
Debian Bug Tracking System
Contact ow...@bugs.debian.org with problems
--- Begin Message ---
Source: python-skbio
Version: 0.5.8-1
Severity: serious
User: debian...@lists.debian.org
Usertags: needs-update

Hi Maintainer

The autopkgtests of python-skbio fail with NumPy 1.24 [1].  I've
copied what I hope is the relevant part of the log below.

Regards
Graham


[1] https://ci.debian.net/packages/p/python-skbio/testing/amd64/


=================================== FAILURES ===================================
___________________ TestLoc.test_multiindex_complicated_axis ___________________

self = <skbio.alignment.tests.test_tabular_msa.TestLoc
testMethod=test_multiindex_complicated_axis>

    def test_multiindex_complicated_axis(self):
        a = RNA("UUAG", metadata={0: 0}, positional_metadata={0: [1, 2, 3, 4]})
        b = RNA("UAAG", metadata={1: 0}, positional_metadata={1: [1, 2, 3, 4]})
        c = RNA("UAA-", metadata={2: 0}, positional_metadata={2: [1, 2, 3, 4]})
        d = RNA("UA-G", metadata={3: 0}, positional_metadata={3: [1, 2, 3, 4]})
        msa = TabularMSA([a, b, c, d], metadata={'x': 'y'},
                         positional_metadata={'c': ['a', 'b', 'c', 'd']},
                         index=[('a', 'x', 0), ('a', 'x', 1), ('a', 'y', 2),
                                ('b', 'x', 0)])

>       self.assertEqual(self.get(msa, (([False, True, False, True],
                                         'x', 0), Ellipsis)),
                         TabularMSA([d], metadata={'x': 'y'},
                                    positional_metadata={'c': ['a', 'b', 'c',
                                                               'd']},
                                    index=[('b', 'x', 0)]))

skbio/alignment/tests/test_tabular_msa.py:1373:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
skbio/alignment/tests/test_tabular_msa.py:1271: in get
    return obj.loc[indexable]
skbio/alignment/_indexing.py:39: in __getitem__
    return self._handle_both_axes(*indexable)
skbio/alignment/_indexing.py:53: in _handle_both_axes
    r = self._slice_on_first_axis(self._obj, seq_index)
skbio/alignment/_indexing.py:77: in _slice_on_first_axis
    return self._slice_sequences(obj, indexable)
skbio/alignment/_indexing.py:202: in _slice_sequences
    self._assert_bool_vector_right_size(indexable, axis=0)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <skbio.alignment._indexing.TabularMSALoc object at 0x7f9cc59ece80>
indexable = ([False, True, False, True], 'x', 0), axis = 0

    def _assert_bool_vector_right_size(self, indexable, axis):
        if isinstance(indexable, np.ndarray):
            pass
        elif hasattr(indexable, '__iter__'):
>           indexable = np.asarray(list(indexable))
E           ValueError: setting an array element with a sequence. The
requested array has an inhomogeneous shape after 1 dimensions. The
detected shape was (3,) + inhomogeneous part.

skbio/alignment/_indexing.py:116: ValueError
___________ TestLoc.test_multiindex_complicated_axis_empty_selection ___________

self = <skbio.alignment.tests.test_tabular_msa.TestLoc
testMethod=test_multiindex_complicated_axis_empty_selection>

    @unittest.skipIf(tuple(map(int, pd.__version__.split('.'))) < (1, 2, 5),
                     "Old pandas will return empty frame")
    def test_multiindex_complicated_axis_empty_selection(self):
        a = RNA("UUAG", metadata={0: 0}, positional_metadata={0: [1, 2, 3, 4]})
        b = RNA("UAAG", metadata={1: 0}, positional_metadata={1: [1, 2, 3, 4]})
        c = RNA("UAA-", metadata={2: 0}, positional_metadata={2: [1, 2, 3, 4]})
        d = RNA("UA-G", metadata={3: 0}, positional_metadata={3: [1, 2, 3, 4]})
        msa = TabularMSA([a, b, c, d], metadata={'x': 'y'},
                         positional_metadata={'c': ['a', 'b', 'c', 'd']},
                         index=[('a', 'x', 0), ('a', 'x', 1), ('a', 'y', 2),
                                ('b', 'x', 0)])
        # Pandas will KeyError when the intersection is empty
        # change appears to have happened in:
        # https://github.com/pandas-dev/pandas/pull/42245
        # but this was not bisected to confirm
        with self.assertRaises(KeyError):
>           self.get(msa, (([False, True, False, True], 'x', 2), Ellipsis))

skbio/alignment/tests/test_tabular_msa.py:1396:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
skbio/alignment/tests/test_tabular_msa.py:1271: in get
    return obj.loc[indexable]
skbio/alignment/_indexing.py:39: in __getitem__
    return self._handle_both_axes(*indexable)
skbio/alignment/_indexing.py:53: in _handle_both_axes
    r = self._slice_on_first_axis(self._obj, seq_index)
skbio/alignment/_indexing.py:77: in _slice_on_first_axis
    return self._slice_sequences(obj, indexable)
skbio/alignment/_indexing.py:202: in _slice_sequences
    self._assert_bool_vector_right_size(indexable, axis=0)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

    def _assert_bool_vector_right_size(self, indexable, axis):
        if isinstance(indexable, np.ndarray):
            pass
        elif hasattr(indexable, '__iter__'):
>           indexable = np.asarray(list(indexable))
E           ValueError: setting an array element with a sequence. The
requested array has an inhomogeneous shape after 1 dimensions. The
detected shape was (3,) + inhomogeneous part.

skbio/alignment/_indexing.py:116: ValueError
___________________ TestSequence.test_init_invalid_sequence ____________________

self = <skbio.sequence.tests.test_sequence.TestSequence
testMethod=test_init_invalid_sequence>

    def test_init_invalid_sequence(self):
        # invalid dtype (numpy.ndarray input)
        with self.assertRaises(TypeError):
            # int64
            Sequence(np.array([1, 2, 3]))
        with self.assertRaises(TypeError):
            # |S21
            Sequence(np.array([1, "23", 3]))
        with self.assertRaises(TypeError):
            # object
>           Sequence(np.array([1, {}, ()]))
E           ValueError: setting an array element with a sequence. The
requested array has an inhomogeneous shape after 1 dimensions. The
detected shape was (3,) + inhomogeneous part.

skbio/sequence/tests/test_sequence.py:462: ValueError
____________ TestSequence.test_munge_to_index_array_valid_iterable _____________

self = <skbio.sequence.tests.test_sequence.TestSequence
testMethod=test_munge_to_index_array_valid_iterable>

    def test_munge_to_index_array_valid_iterable(self):
        s = Sequence('')

        def slices_only():
            return (slice(i, i+1) for i in range(0, 10, 2))

        def mixed():
            return (slice(i, i+1) if i % 2 == 0 else i for i in range(10))

        def unthinkable():
            for i in range(10):
                if i % 3 == 0:
                    yield slice(i, i+1)
                elif i % 3 == 1:
                    yield i
                else:
                    yield np.array([i], dtype=int)
        for c in (lambda x: x, list, tuple, lambda x: np.array(tuple(x)),
                  lambda x: pd.Series(tuple(x))):
            exp = np.arange(10, dtype=int)
            obs = s._munge_to_index_array(c(mixed()))
            npt.assert_equal(obs, exp)

            exp = np.arange(10, dtype=int)
>           obs = s._munge_to_index_array(c(unthinkable()))

skbio/sequence/tests/test_sequence.py:2222:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

x = <generator object
TestSequence.test_munge_to_index_array_valid_iterable.<locals>.unthinkable
at 0x7f9cb7346420>

>   for c in (lambda x: x, list, tuple, lambda x: np.array(tuple(x)),
              lambda x: pd.Series(tuple(x))):
E             ValueError: setting an array element with a sequence.
The requested array has an inhomogeneous shape after 1 dimensions. The
detected shape was (10,) + inhomogeneous part.

skbio/sequence/tests/test_sequence.py:2215: ValueError

--- End Message ---
--- Begin Message ---
Source: python-skbio
Source-Version: 0.5.8-2
Done: Andreas Tille <ti...@debian.org>

We believe that the bug you reported is fixed in the latest version of
python-skbio, which is due to be installed in the Debian FTP archive.

A summary of the changes between this version and the previous one is
attached.

Thank you for reporting the bug, which will now be closed.  If you
have further comments please address them to 1029...@bugs.debian.org,
and the maintainer will reopen the bug report if appropriate.

Debian distribution maintenance software
pp.
Andreas Tille <ti...@debian.org> (supplier of updated python-skbio package)

(This message was generated automatically at their request; if you
believe that there is a problem with it please contact the archive
administrators by mailing ftpmas...@ftp-master.debian.org)


-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

Format: 1.8
Date: Wed, 25 Jan 2023 16:31:24 +0100
Source: python-skbio
Architecture: source
Version: 0.5.8-2
Distribution: unstable
Urgency: medium
Maintainer: Debian Med Packaging Team 
<debian-med-packag...@lists.alioth.debian.org>
Changed-By: Andreas Tille <ti...@debian.org>
Closes: 1029452
Changes:
 python-skbio (0.5.8-2) unstable; urgency=medium
 .
   [ Michael R. Crusoe ]
   * d/control,d/patches/local_inventory: python-numpy-doc is no longer built,
     so remove the build-dep and reference
 .
   [ Nilesh Patra ]
   * Adapt to numpy 1.24
     Closes: #1029452
Checksums-Sha1:
 9aba0b4fbaef5db0d5e5f2de0b8ad4b5f0ad276d 2742 python-skbio_0.5.8-2.dsc
 009916c4f617002bfcce2642427578fb35b5574d 10024 
python-skbio_0.5.8-2.debian.tar.xz
 b80c075581730ceb1b2cc16a8d20108a24dc1e9b 21190 
python-skbio_0.5.8-2_source.buildinfo
Checksums-Sha256:
 603781c38f1993a68945785b239b4fd8eef6082fa087fe45ec4cf85ef7de99ae 2742 
python-skbio_0.5.8-2.dsc
 753a1253c110a2801f8f2da6820cb30d0e660efe36ab3f4dff068934504d09a2 10024 
python-skbio_0.5.8-2.debian.tar.xz
 3e98990b45ec1d57c7628a927bf96007950bbd03492b57e9dd0d65018b58928c 21190 
python-skbio_0.5.8-2_source.buildinfo
Files:
 14aaae24e3d2dd09b5e187626b0e6cdf 2742 python optional python-skbio_0.5.8-2.dsc
 4488353c1a9f22f0151cb0e64f6daa86 10024 python optional 
python-skbio_0.5.8-2.debian.tar.xz
 fb57435559a5adb3e58bc0503797c159 21190 python optional 
python-skbio_0.5.8-2_source.buildinfo

-----BEGIN PGP SIGNATURE-----

iQJCBAEBCgAsFiEE8fAHMgoDVUHwpmPKV4oElNHGRtEFAmPRUwAOHHRpbGxlYUBy
a2kuZGUACgkQV4oElNHGRtHvwxAAgST3OLz38shvl9pUpGlxFjBfL/2+xWY7Sj5k
3pdBm9MLS31o+GZaMbJO+Ji+RsAPY18WwL3uMT5Iexf8/2iwhMlvysnts4s5Wz8o
UH7R+je3XU7EYP7Ws3B4fnmjuYNNn3NT0to88rnHrkBS0h+wnn2/8TWLoFNah9Py
WWnDRhmDyDbjDJJwWzvps/8kYCzNIG7/CANN6IEXlpkbrqfM3pT5EAM4G5aYykcr
c8Q3ZNopk3cBU1IQFknnJU82EYPQBlghS4YdEpu1NXT2qGJQI0VO37eI07+edPm+
26feCyPmTGx92ofByV1lRx/Is983Pw2KHAk+HkJuS4HukYKXu/D6RlbTRMbh1xzd
ACtm4dwXc6dE2InDwJVTjzF5cjQQe48ceLm4JHpTby0txKrz+Ey7A3KoEfajILD5
ox+I5CK5PgP/G520F79+ExG+jOWuSl2o3ChIXzjKIHz8g9/3hQKhSyNs3WUDTyTW
OV0WZ9bNsfLgVD67OaIC+0R4veYxGF6q4KSzbz0YJSNrukukE5PTtx2o5la1md2j
YMyHHj4/1n0bol7n4j5kH/KCfi0bkYz/vKiRMe8HpYOwmmmbmay7fAsfi49THVh8
hXO8UBVWQUpfKBRgdaTRkS1J+NQRgdeYyp6zGjuUjCz6qLc1UhdrQVfLpwdCjewn
SznIA+Y=
=uwOT
-----END PGP SIGNATURE-----

--- End Message ---

Reply via email to