Your message dated Tue, 30 Nov 2021 22:09:38 +0100
with message-id <yaatenfwxywdw...@ramacher.at>
and subject line Re: Bug#1000777: numpy breaks python-xarray autopkgtest on 
i386: numerical deltas
has caused the Debian Bug report #1000777,
regarding numpy breaks python-xarray autopkgtest on i386: numerical deltas
to be marked as done.

This means that you claim that the problem has been dealt with.
If this is not the case it is now your responsibility to reopen the
Bug report if necessary, and/or fix the problem forthwith.

(NB: If you are a system administrator and have no idea what this
message is talking about, this may indicate a serious mail system
misconfiguration somewhere. Please contact ow...@bugs.debian.org
immediately.)


-- 
1000777: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1000777
Debian Bug Tracking System
Contact ow...@bugs.debian.org with problems
--- Begin Message ---
Source: numpy, python-xarray
Control: found -1 numpy/1:1.21.4-2
Control: found -1 python-xarray/0.19.0-6
Severity: serious
Tags: sid bookworm
X-Debbugs-CC: debian...@lists.debian.org
User: debian...@lists.debian.org
Usertags: breaks needs-update

Dear maintainer(s),

With a recent upload of numpy the autopkgtest of python-xarray fails in testing when that autopkgtest is run with the binary packages of numpy from unstable on i386. It passes when run with only packages from testing. In tabular form:

                       pass            fail
numpy                  from testing    1:1.21.4-2
python-xarray          from testing    0.19.0-6
versioned deps [0]     from testing    from unstable
all others             from testing    from testing

I copied some of the output at the bottom of this report.

Currently this regression is blocking the migration of numpy to testing [1]. Due to the nature of this issue, I filed this bug report against both packages. Can you please investigate the situation and reassign the bug to the right package?

More information about this bug and the reason for filing it can be found on
https://wiki.debian.org/ContinuousIntegration/RegressionEmailInformation

Paul

[0] You can see what packages were added from the second line of the log file quoted below. The migration software adds source package from unstable to the list if they are needed to install packages from numpy/1:1.21.4-2. I.e. due to versioned dependencies or breaks/conflicts.
[1] https://qa.debian.org/excuses.php?package=numpy

https://ci.debian.net/data/autopkgtest/testing/i386/p/python-xarray/17095751/log.gz


=================================== FAILURES =================================== ___________________ test_interpolate_chunk_advanced[linear] ____________________

method = 'linear'

    @requires_scipy
    @requires_dask
    @pytest.mark.parametrize("method", ["linear", "nearest"])
    @pytest.mark.filterwarnings("ignore:Increasing number of chunks")
    def test_interpolate_chunk_advanced(method):
        """Interpolate nd array with an nd indexer sharing coordinates."""
        # Create original array
        x = np.linspace(-1, 1, 5)
        y = np.linspace(-1, 1, 7)
        z = np.linspace(-1, 1, 11)
        t = np.linspace(0, 1, 13)
        q = np.linspace(0, 1, 17)
        da = xr.DataArray(
data=np.sin(x[:, np.newaxis, np.newaxis, np.newaxis, np.newaxis])
            * np.cos(y[:, np.newaxis, np.newaxis, np.newaxis])
            * np.exp(z[:, np.newaxis, np.newaxis])
            * t[:, np.newaxis]
            + q,
            dims=("x", "y", "z", "t", "q"),
coords={"x": x, "y": y, "z": z, "t": t, "q": q, "label": "dummy_attr"},
        )
# Create indexer into `da` with shared coordinate ("full-twist" Möbius strip)
        theta = np.linspace(0, 2 * np.pi, 5)
        w = np.linspace(-0.25, 0.25, 7)
        r = xr.DataArray(
            data=1 + w[:, np.newaxis] * np.cos(theta),
            coords=[("w", w), ("theta", theta)],
        )
            x = r * np.cos(theta)
        y = r * np.sin(theta)
        z = xr.DataArray(
            data=w[:, np.newaxis] * np.sin(theta),
            coords=[("w", w), ("theta", theta)],
        )
            kwargs = {"fill_value": None}
expected = da.interp(t=0.5, x=x, y=y, z=z, kwargs=kwargs, method=method)
            da = da.chunk(2)
        x = x.chunk(1)
        z = z.chunk(3)
actual = da.interp(t=0.5, x=x, y=y, z=z, kwargs=kwargs, method=method)
      assert_identical(actual, expected)
E       AssertionError: Left and right DataArray objects are not identical
E       E       Differing values:
E       L
E array([[[ 3.302241e-01, 3.927241e-01, ..., 1.267724e+00, 1.330224e+00], E [ 1.239764e-17, 6.250000e-02, ..., 9.375000e-01, 1.000000e+00],
E                   ...,
E [-5.560517e-17, 6.250000e-02, ..., 9.375000e-01, 1.000000e+00], E [ 3.302241e-01, 3.927241e-01, ..., 1.267724e+00, 1.330224e+00]], E E [[ 3.603946e-01, 4.228946e-01, ..., 1.297895e+00, 1.360395e+00], E [ 1.346533e-17, 6.250000e-02, ..., 9.375000e-01, 1.000000e+00],
E                   ...,
E [-5.109700e-17, 6.250000e-02, ..., 9.375000e-01, 1.000000e+00], E [ 3.603946e-01, 4.228946e-01, ..., 1.297895e+00, 1.360395e+00]],
E           E                  ...,
E E [[ 4.810764e-01, 5.435764e-01, ..., 1.418576e+00, 1.481076e+00], E [ 1.878775e-17, 6.250000e-02, ..., 9.375000e-01, 1.000000e+00],
E                   ...,
E [-3.662163e-17, 6.250000e-02, ..., 9.375000e-01, 1.000000e+00], E [ 4.810764e-01, 5.435764e-01, ..., 1.418576e+00, 1.481076e+00]], E E [[ 5.112469e-01, 5.737469e-01, ..., 1.448747e+00, 1.511247e+00], E [ 2.044535e-17, 6.250000e-02, ..., 9.375000e-01, 1.000000e+00],
E                   ...,
E [-3.371783e-17, 6.250000e-02, ..., 9.375000e-01, 1.000000e+00], E [ 5.112469e-01, 5.737469e-01, ..., 1.448747e+00, 1.511247e+00]]])
E       R
E array([[[ 3.302241e-01, 3.927241e-01, ..., 1.267724e+00, 1.330224e+00], E [ 1.239764e-17, 6.250000e-02, ..., 9.375000e-01, 1.000000e+00],
E                   ...,
E [-5.560517e-17, 6.250000e-02, ..., 9.375000e-01, 1.000000e+00], E [ 3.302241e-01, 3.927241e-01, ..., 1.267724e+00, 1.330224e+00]], E E [[ 3.603946e-01, 4.228946e-01, ..., 1.297895e+00, 1.360395e+00], E [ 1.346533e-17, 6.250000e-02, ..., 9.375000e-01, 1.000000e+00],
E                   ...,
E [-5.109700e-17, 6.250000e-02, ..., 9.375000e-01, 1.000000e+00], E [ 3.603946e-01, 4.228946e-01, ..., 1.297895e+00, 1.360395e+00]],
E           E                  ...,
E E [[ 4.810764e-01, 5.435764e-01, ..., 1.418576e+00, 1.481076e+00], E [ 1.878775e-17, 6.250000e-02, ..., 9.375000e-01, 1.000000e+00],
E                   ...,
E [-3.662163e-17, 6.250000e-02, ..., 9.375000e-01, 1.000000e+00], E [ 4.810764e-01, 5.435764e-01, ..., 1.418576e+00, 1.481076e+00]], E E [[ 5.112469e-01, 5.737469e-01, ..., 1.448747e+00, 1.511247e+00], E [ 2.044535e-17, 6.250000e-02, ..., 9.375000e-01, 1.000000e+00],
E                   ...,
E [-3.371783e-17, 6.250000e-02, ..., 9.375000e-01, 1.000000e+00], E [ 5.112469e-01, 5.737469e-01, ..., 1.448747e+00, 1.511247e+00]]])

/usr/lib/python3/dist-packages/xarray/tests/test_interp.py:874: AssertionError _____________________ TestVariable.test_broadcasting_math ______________________

self = <xarray.tests.test_variable.TestVariable object at 0xe234be20>

    def test_broadcasting_math(self):
        x = np.random.randn(2, 3)
        v = Variable(["a", "b"], x)
        # 1d to 2d broadcasting
assert_identical(v * v, Variable(["a", "b"], np.einsum("ab,ab->ab", x, x))) assert_identical(v * v[0], Variable(["a", "b"], np.einsum("ab,b->ab", x, x[0]))) assert_identical(v[0] * v, Variable(["b", "a"], np.einsum("b,ab->ba", x[0], x)))
        assert_identical(
v[0] * v[:, 0], Variable(["b", "a"], np.einsum("b,a->ba", x[0], x[:, 0]))
        )
        # higher dim broadcasting
        y = np.random.randn(3, 4, 5)
        w = Variable(["b", "c", "d"], y)
        assert_identical(
v * w, Variable(["a", "b", "c", "d"], np.einsum("ab,bcd->abcd", x, y))
        )
      assert_identical(
w * v, Variable(["b", "c", "d", "a"], np.einsum("bcd,ab->bcda", y, x))
        )
E       AssertionError: Left and right Variable objects are not identical
E       E       Differing values:
E       L
E           array([[[[ 2.599162e+00,  4.203630e-01],
E                    [-1.535482e-01, -2.483337e-02],
E                    [-7.007329e-01, -1.133297e-01],
E                    [-1.407709e+00, -2.276690e-01],
E                    [ 1.824711e-01,  2.951107e-02]],
E           E                   [[ 2.608622e+00,  4.218929e-01],
E                    [ 2.547940e+00,  4.120787e-01],
E                    [-7.653887e-01, -1.237864e-01],
E                    [-6.070710e-01, -9.818170e-02],
E                    [-2.362519e+00, -3.820905e-01]],
E           E                   [[ 1.020907e-01,  1.651115e-02],
E                    [ 2.661684e+00,  4.304746e-01],
E                    [ 1.208155e-02,  1.953951e-03],
E                    [-1.328791e+00, -2.149056e-01],
E                    [-1.154634e+00, -1.867391e-01]],
E           E                   [[ 1.191513e+00,  1.927036e-01],
E                    [-6.021055e-01, -9.737862e-02],
E                    [ 2.746716e+00,  4.442268e-01],
E                    [-2.387384e+00, -3.861119e-01],
E                    [-2.078187e+00, -3.361055e-01]]],
E           E           E                  [[[ 5.300545e-01, -2.128138e-02],
E                    [-2.946731e-01,  1.183095e-02],
E                    [ 3.155062e-01, -1.266739e-02],
E                    [ 3.608821e-01, -1.448921e-02],
E                    [ 8.299963e-01, -3.332387e-02]],
E           E                   [[ 4.979020e-02, -1.999048e-03],
E                    [-6.336254e-01,  2.543969e-02],
E                    [-3.603347e-01,  1.446723e-02],
E                    [-1.130619e+00,  4.539369e-02],
E                    [ 7.058588e-01, -2.833983e-02]],
E           E                   [[-9.765136e-01,  3.920646e-02],
E                    [-7.034547e-01,  2.824330e-02],
E                    [-8.960225e-01,  3.597479e-02],
E                    [ 2.066461e-01, -8.296722e-03],
E                    [-3.142470e-01,  1.261684e-02]],
E           E                   [[-5.447846e-01,  2.187279e-02],
E                    [-1.475410e+00,  5.923686e-02],
E                    [ 5.763690e-01, -2.314088e-02],
E                    [-1.794467e+00,  7.204682e-02],
E                    [-6.822498e-01,  2.739194e-02]]],
E           E           E                  [[[ 3.483035e-02,  5.116863e-02],
E                    [ 1.578827e-01,  2.319426e-01],
E                    [-2.378342e-01, -3.493979e-01],
E                    [ 3.567859e-01,  5.241477e-01],
E                    [ 1.027949e-01,  1.510142e-01]],
E           E                   [[ 8.731014e-02,  1.282657e-01],
E                    [ 1.240318e-01,  1.822129e-01],
E                    [-3.130521e-01, -4.598992e-01],
E                    [-2.779140e-01, -4.082784e-01],
E                    [ 3.416170e-01,  5.018633e-01]],
E           E                   [[ 1.688552e-01,  2.480621e-01],
E                    [ 1.079842e-01,  1.586376e-01],
E                    [ 3.249067e-01,  4.773145e-01],
E                    [ 7.240457e-01,  1.063682e+00],
E                    [-3.346429e-02, -4.916178e-02]],
E           E                   [[ 3.792953e-01,  5.572158e-01],
E                    [-5.941004e-02, -8.727821e-02],
E                    [ 2.575056e-01,  3.782968e-01],
E                    [-4.886430e-01, -7.178566e-01],
E                    [-3.724292e-01, -5.471290e-01]]]])
E       R
E           array([[[[ 2.599162e+00,  4.203630e-01],
E                    [-1.535482e-01, -2.483337e-02],
E                    [-7.007329e-01, -1.133297e-01],
E                    [-1.407709e+00, -2.276690e-01],
E                    [ 1.824711e-01,  2.951107e-02]],
E           E                   [[ 2.608622e+00,  4.218929e-01],
E                    [ 2.547940e+00,  4.120787e-01],
E                    [-7.653887e-01, -1.237864e-01],
E                    [-6.070710e-01, -9.818170e-02],
E                    [-2.362519e+00, -3.820905e-01]],
E           E                   [[ 1.020907e-01,  1.651115e-02],
E                    [ 2.661684e+00,  4.304746e-01],
E                    [ 1.208155e-02,  1.953951e-03],
E                    [-1.328791e+00, -2.149056e-01],
E                    [-1.154634e+00, -1.867391e-01]],
E           E                   [[ 1.191513e+00,  1.927036e-01],
E                    [-6.021055e-01, -9.737862e-02],
E                    [ 2.746716e+00,  4.442268e-01],
E                    [-2.387384e+00, -3.861119e-01],
E                    [-2.078187e+00, -3.361055e-01]]],
E           E           E                  [[[ 5.300545e-01, -2.128138e-02],
E                    [-2.946731e-01,  1.183095e-02],
E                    [ 3.155062e-01, -1.266739e-02],
E                    [ 3.608821e-01, -1.448921e-02],
E                    [ 8.299963e-01, -3.332387e-02]],
E           E                   [[ 4.979020e-02, -1.999048e-03],
E                    [-6.336254e-01,  2.543969e-02],
E                    [-3.603347e-01,  1.446723e-02],
E                    [-1.130619e+00,  4.539369e-02],
E                    [ 7.058588e-01, -2.833983e-02]],
E           E                   [[-9.765136e-01,  3.920646e-02],
E                    [-7.034547e-01,  2.824330e-02],
E                    [-8.960225e-01,  3.597479e-02],
E                    [ 2.066461e-01, -8.296722e-03],
E                    [-3.142470e-01,  1.261684e-02]],
E           E                   [[-5.447846e-01,  2.187279e-02],
E                    [-1.475410e+00,  5.923686e-02],
E                    [ 5.763690e-01, -2.314088e-02],
E                    [-1.794467e+00,  7.204682e-02],
E                    [-6.822498e-01,  2.739194e-02]]],
E           E           E                  [[[ 3.483035e-02,  5.116863e-02],
E                    [ 1.578827e-01,  2.319426e-01],
E                    [-2.378342e-01, -3.493979e-01],
E                    [ 3.567859e-01,  5.241477e-01],
E                    [ 1.027949e-01,  1.510142e-01]],
E           E                   [[ 8.731014e-02,  1.282657e-01],
E                    [ 1.240318e-01,  1.822129e-01],
E                    [-3.130521e-01, -4.598992e-01],
E                    [-2.779140e-01, -4.082784e-01],
E                    [ 3.416170e-01,  5.018633e-01]],
E           E                   [[ 1.688552e-01,  2.480621e-01],
E                    [ 1.079842e-01,  1.586376e-01],
E                    [ 3.249067e-01,  4.773145e-01],
E                    [ 7.240457e-01,  1.063682e+00],
E                    [-3.346429e-02, -4.916178e-02]],
E           E                   [[ 3.792953e-01,  5.572158e-01],
E                    [-5.941004e-02, -8.727821e-02],
E                    [ 2.575056e-01,  3.782968e-01],
E                    [-4.886430e-01, -7.178566e-01],
E                    [-3.724292e-01, -5.471290e-01]]]])

/usr/lib/python3/dist-packages/xarray/tests/test_variable.py:1630: AssertionError

Attachment: OpenPGP_signature
Description: OpenPGP digital signature


--- End Message ---
--- Begin Message ---
Version: 0.20.1-1

On 2021-11-28 21:14:35, Paul Gevers wrote:
> Source: numpy, python-xarray
> Control: found -1 numpy/1:1.21.4-2
> Control: found -1 python-xarray/0.19.0-6
> Severity: serious
> Tags: sid bookworm
> X-Debbugs-CC: debian...@lists.debian.org
> User: debian...@lists.debian.org
> Usertags: breaks needs-update
> 
> Dear maintainer(s),
> 
> With a recent upload of numpy the autopkgtest of python-xarray fails in
> testing when that autopkgtest is run with the binary packages of numpy from
> unstable on i386. It passes when run with only packages from testing. In
> tabular form:
> 
>                        pass            fail
> numpy                  from testing    1:1.21.4-2
> python-xarray          from testing    0.19.0-6
> versioned deps [0]     from testing    from unstable
> all others             from testing    from testing

This issue is fixed by python-xarray 0.20.1-1 currently in unstable.

Cheers

> 
> I copied some of the output at the bottom of this report.
> 
> Currently this regression is blocking the migration of numpy to testing [1].
> Due to the nature of this issue, I filed this bug report against both
> packages. Can you please investigate the situation and reassign the bug to
> the right package?
> 
> More information about this bug and the reason for filing it can be found on
> https://wiki.debian.org/ContinuousIntegration/RegressionEmailInformation
> 
> Paul
> 
> [0] You can see what packages were added from the second line of the log
> file quoted below. The migration software adds source package from unstable
> to the list if they are needed to install packages from numpy/1:1.21.4-2.
> I.e. due to versioned dependencies or breaks/conflicts.
> [1] https://qa.debian.org/excuses.php?package=numpy
> 
> https://ci.debian.net/data/autopkgtest/testing/i386/p/python-xarray/17095751/log.gz
> 
> 
> =================================== FAILURES
> ===================================
> ___________________ test_interpolate_chunk_advanced[linear]
> ____________________
> 
> method = 'linear'
> 
>     @requires_scipy
>     @requires_dask
>     @pytest.mark.parametrize("method", ["linear", "nearest"])
>     @pytest.mark.filterwarnings("ignore:Increasing number of chunks")
>     def test_interpolate_chunk_advanced(method):
>         """Interpolate nd array with an nd indexer sharing coordinates."""
>         # Create original array
>         x = np.linspace(-1, 1, 5)
>         y = np.linspace(-1, 1, 7)
>         z = np.linspace(-1, 1, 11)
>         t = np.linspace(0, 1, 13)
>         q = np.linspace(0, 1, 17)
>         da = xr.DataArray(
>             data=np.sin(x[:, np.newaxis, np.newaxis, np.newaxis,
> np.newaxis])
>             * np.cos(y[:, np.newaxis, np.newaxis, np.newaxis])
>             * np.exp(z[:, np.newaxis, np.newaxis])
>             * t[:, np.newaxis]
>             + q,
>             dims=("x", "y", "z", "t", "q"),
>             coords={"x": x, "y": y, "z": z, "t": t, "q": q, "label":
> "dummy_attr"},
>         )
>             # Create indexer into `da` with shared coordinate ("full-twist"
> Möbius strip)
>         theta = np.linspace(0, 2 * np.pi, 5)
>         w = np.linspace(-0.25, 0.25, 7)
>         r = xr.DataArray(
>             data=1 + w[:, np.newaxis] * np.cos(theta),
>             coords=[("w", w), ("theta", theta)],
>         )
>             x = r * np.cos(theta)
>         y = r * np.sin(theta)
>         z = xr.DataArray(
>             data=w[:, np.newaxis] * np.sin(theta),
>             coords=[("w", w), ("theta", theta)],
>         )
>             kwargs = {"fill_value": None}
>         expected = da.interp(t=0.5, x=x, y=y, z=z, kwargs=kwargs,
> method=method)
>             da = da.chunk(2)
>         x = x.chunk(1)
>         z = z.chunk(3)
>         actual = da.interp(t=0.5, x=x, y=y, z=z, kwargs=kwargs,
> method=method)
> >       assert_identical(actual, expected)
> E       AssertionError: Left and right DataArray objects are not identical
> E       E       Differing values:
> E       L
> E           array([[[ 3.302241e-01,  3.927241e-01, ...,  1.267724e+00,
> 1.330224e+00],
> E                   [ 1.239764e-17,  6.250000e-02, ...,  9.375000e-01,
> 1.000000e+00],
> E                   ...,
> E                   [-5.560517e-17,  6.250000e-02, ...,  9.375000e-01,
> 1.000000e+00],
> E                   [ 3.302241e-01,  3.927241e-01, ...,  1.267724e+00,
> 1.330224e+00]],
> E           E                  [[ 3.603946e-01,  4.228946e-01, ...,
> 1.297895e+00,  1.360395e+00],
> E                   [ 1.346533e-17,  6.250000e-02, ...,  9.375000e-01,
> 1.000000e+00],
> E                   ...,
> E                   [-5.109700e-17,  6.250000e-02, ...,  9.375000e-01,
> 1.000000e+00],
> E                   [ 3.603946e-01,  4.228946e-01, ...,  1.297895e+00,
> 1.360395e+00]],
> E           E                  ...,
> E           E                  [[ 4.810764e-01,  5.435764e-01, ...,
> 1.418576e+00,  1.481076e+00],
> E                   [ 1.878775e-17,  6.250000e-02, ...,  9.375000e-01,
> 1.000000e+00],
> E                   ...,
> E                   [-3.662163e-17,  6.250000e-02, ...,  9.375000e-01,
> 1.000000e+00],
> E                   [ 4.810764e-01,  5.435764e-01, ...,  1.418576e+00,
> 1.481076e+00]],
> E           E                  [[ 5.112469e-01,  5.737469e-01, ...,
> 1.448747e+00,  1.511247e+00],
> E                   [ 2.044535e-17,  6.250000e-02, ...,  9.375000e-01,
> 1.000000e+00],
> E                   ...,
> E                   [-3.371783e-17,  6.250000e-02, ...,  9.375000e-01,
> 1.000000e+00],
> E                   [ 5.112469e-01,  5.737469e-01, ...,  1.448747e+00,
> 1.511247e+00]]])
> E       R
> E           array([[[ 3.302241e-01,  3.927241e-01, ...,  1.267724e+00,
> 1.330224e+00],
> E                   [ 1.239764e-17,  6.250000e-02, ...,  9.375000e-01,
> 1.000000e+00],
> E                   ...,
> E                   [-5.560517e-17,  6.250000e-02, ...,  9.375000e-01,
> 1.000000e+00],
> E                   [ 3.302241e-01,  3.927241e-01, ...,  1.267724e+00,
> 1.330224e+00]],
> E           E                  [[ 3.603946e-01,  4.228946e-01, ...,
> 1.297895e+00,  1.360395e+00],
> E                   [ 1.346533e-17,  6.250000e-02, ...,  9.375000e-01,
> 1.000000e+00],
> E                   ...,
> E                   [-5.109700e-17,  6.250000e-02, ...,  9.375000e-01,
> 1.000000e+00],
> E                   [ 3.603946e-01,  4.228946e-01, ...,  1.297895e+00,
> 1.360395e+00]],
> E           E                  ...,
> E           E                  [[ 4.810764e-01,  5.435764e-01, ...,
> 1.418576e+00,  1.481076e+00],
> E                   [ 1.878775e-17,  6.250000e-02, ...,  9.375000e-01,
> 1.000000e+00],
> E                   ...,
> E                   [-3.662163e-17,  6.250000e-02, ...,  9.375000e-01,
> 1.000000e+00],
> E                   [ 4.810764e-01,  5.435764e-01, ...,  1.418576e+00,
> 1.481076e+00]],
> E           E                  [[ 5.112469e-01,  5.737469e-01, ...,
> 1.448747e+00,  1.511247e+00],
> E                   [ 2.044535e-17,  6.250000e-02, ...,  9.375000e-01,
> 1.000000e+00],
> E                   ...,
> E                   [-3.371783e-17,  6.250000e-02, ...,  9.375000e-01,
> 1.000000e+00],
> E                   [ 5.112469e-01,  5.737469e-01, ...,  1.448747e+00,
> 1.511247e+00]]])
> 
> /usr/lib/python3/dist-packages/xarray/tests/test_interp.py:874:
> AssertionError
> _____________________ TestVariable.test_broadcasting_math
> ______________________
> 
> self = <xarray.tests.test_variable.TestVariable object at 0xe234be20>
> 
>     def test_broadcasting_math(self):
>         x = np.random.randn(2, 3)
>         v = Variable(["a", "b"], x)
>         # 1d to 2d broadcasting
>         assert_identical(v * v, Variable(["a", "b"], np.einsum("ab,ab->ab",
> x, x)))
>         assert_identical(v * v[0], Variable(["a", "b"],
> np.einsum("ab,b->ab", x, x[0])))
>         assert_identical(v[0] * v, Variable(["b", "a"],
> np.einsum("b,ab->ba", x[0], x)))
>         assert_identical(
>             v[0] * v[:, 0], Variable(["b", "a"], np.einsum("b,a->ba", x[0],
> x[:, 0]))
>         )
>         # higher dim broadcasting
>         y = np.random.randn(3, 4, 5)
>         w = Variable(["b", "c", "d"], y)
>         assert_identical(
>             v * w, Variable(["a", "b", "c", "d"], np.einsum("ab,bcd->abcd",
> x, y))
>         )
> >       assert_identical(
>             w * v, Variable(["b", "c", "d", "a"], np.einsum("bcd,ab->bcda",
> y, x))
>         )
> E       AssertionError: Left and right Variable objects are not identical
> E       E       Differing values:
> E       L
> E           array([[[[ 2.599162e+00,  4.203630e-01],
> E                    [-1.535482e-01, -2.483337e-02],
> E                    [-7.007329e-01, -1.133297e-01],
> E                    [-1.407709e+00, -2.276690e-01],
> E                    [ 1.824711e-01,  2.951107e-02]],
> E           E                   [[ 2.608622e+00,  4.218929e-01],
> E                    [ 2.547940e+00,  4.120787e-01],
> E                    [-7.653887e-01, -1.237864e-01],
> E                    [-6.070710e-01, -9.818170e-02],
> E                    [-2.362519e+00, -3.820905e-01]],
> E           E                   [[ 1.020907e-01,  1.651115e-02],
> E                    [ 2.661684e+00,  4.304746e-01],
> E                    [ 1.208155e-02,  1.953951e-03],
> E                    [-1.328791e+00, -2.149056e-01],
> E                    [-1.154634e+00, -1.867391e-01]],
> E           E                   [[ 1.191513e+00,  1.927036e-01],
> E                    [-6.021055e-01, -9.737862e-02],
> E                    [ 2.746716e+00,  4.442268e-01],
> E                    [-2.387384e+00, -3.861119e-01],
> E                    [-2.078187e+00, -3.361055e-01]]],
> E           E           E                  [[[ 5.300545e-01, -2.128138e-02],
> E                    [-2.946731e-01,  1.183095e-02],
> E                    [ 3.155062e-01, -1.266739e-02],
> E                    [ 3.608821e-01, -1.448921e-02],
> E                    [ 8.299963e-01, -3.332387e-02]],
> E           E                   [[ 4.979020e-02, -1.999048e-03],
> E                    [-6.336254e-01,  2.543969e-02],
> E                    [-3.603347e-01,  1.446723e-02],
> E                    [-1.130619e+00,  4.539369e-02],
> E                    [ 7.058588e-01, -2.833983e-02]],
> E           E                   [[-9.765136e-01,  3.920646e-02],
> E                    [-7.034547e-01,  2.824330e-02],
> E                    [-8.960225e-01,  3.597479e-02],
> E                    [ 2.066461e-01, -8.296722e-03],
> E                    [-3.142470e-01,  1.261684e-02]],
> E           E                   [[-5.447846e-01,  2.187279e-02],
> E                    [-1.475410e+00,  5.923686e-02],
> E                    [ 5.763690e-01, -2.314088e-02],
> E                    [-1.794467e+00,  7.204682e-02],
> E                    [-6.822498e-01,  2.739194e-02]]],
> E           E           E                  [[[ 3.483035e-02,  5.116863e-02],
> E                    [ 1.578827e-01,  2.319426e-01],
> E                    [-2.378342e-01, -3.493979e-01],
> E                    [ 3.567859e-01,  5.241477e-01],
> E                    [ 1.027949e-01,  1.510142e-01]],
> E           E                   [[ 8.731014e-02,  1.282657e-01],
> E                    [ 1.240318e-01,  1.822129e-01],
> E                    [-3.130521e-01, -4.598992e-01],
> E                    [-2.779140e-01, -4.082784e-01],
> E                    [ 3.416170e-01,  5.018633e-01]],
> E           E                   [[ 1.688552e-01,  2.480621e-01],
> E                    [ 1.079842e-01,  1.586376e-01],
> E                    [ 3.249067e-01,  4.773145e-01],
> E                    [ 7.240457e-01,  1.063682e+00],
> E                    [-3.346429e-02, -4.916178e-02]],
> E           E                   [[ 3.792953e-01,  5.572158e-01],
> E                    [-5.941004e-02, -8.727821e-02],
> E                    [ 2.575056e-01,  3.782968e-01],
> E                    [-4.886430e-01, -7.178566e-01],
> E                    [-3.724292e-01, -5.471290e-01]]]])
> E       R
> E           array([[[[ 2.599162e+00,  4.203630e-01],
> E                    [-1.535482e-01, -2.483337e-02],
> E                    [-7.007329e-01, -1.133297e-01],
> E                    [-1.407709e+00, -2.276690e-01],
> E                    [ 1.824711e-01,  2.951107e-02]],
> E           E                   [[ 2.608622e+00,  4.218929e-01],
> E                    [ 2.547940e+00,  4.120787e-01],
> E                    [-7.653887e-01, -1.237864e-01],
> E                    [-6.070710e-01, -9.818170e-02],
> E                    [-2.362519e+00, -3.820905e-01]],
> E           E                   [[ 1.020907e-01,  1.651115e-02],
> E                    [ 2.661684e+00,  4.304746e-01],
> E                    [ 1.208155e-02,  1.953951e-03],
> E                    [-1.328791e+00, -2.149056e-01],
> E                    [-1.154634e+00, -1.867391e-01]],
> E           E                   [[ 1.191513e+00,  1.927036e-01],
> E                    [-6.021055e-01, -9.737862e-02],
> E                    [ 2.746716e+00,  4.442268e-01],
> E                    [-2.387384e+00, -3.861119e-01],
> E                    [-2.078187e+00, -3.361055e-01]]],
> E           E           E                  [[[ 5.300545e-01, -2.128138e-02],
> E                    [-2.946731e-01,  1.183095e-02],
> E                    [ 3.155062e-01, -1.266739e-02],
> E                    [ 3.608821e-01, -1.448921e-02],
> E                    [ 8.299963e-01, -3.332387e-02]],
> E           E                   [[ 4.979020e-02, -1.999048e-03],
> E                    [-6.336254e-01,  2.543969e-02],
> E                    [-3.603347e-01,  1.446723e-02],
> E                    [-1.130619e+00,  4.539369e-02],
> E                    [ 7.058588e-01, -2.833983e-02]],
> E           E                   [[-9.765136e-01,  3.920646e-02],
> E                    [-7.034547e-01,  2.824330e-02],
> E                    [-8.960225e-01,  3.597479e-02],
> E                    [ 2.066461e-01, -8.296722e-03],
> E                    [-3.142470e-01,  1.261684e-02]],
> E           E                   [[-5.447846e-01,  2.187279e-02],
> E                    [-1.475410e+00,  5.923686e-02],
> E                    [ 5.763690e-01, -2.314088e-02],
> E                    [-1.794467e+00,  7.204682e-02],
> E                    [-6.822498e-01,  2.739194e-02]]],
> E           E           E                  [[[ 3.483035e-02,  5.116863e-02],
> E                    [ 1.578827e-01,  2.319426e-01],
> E                    [-2.378342e-01, -3.493979e-01],
> E                    [ 3.567859e-01,  5.241477e-01],
> E                    [ 1.027949e-01,  1.510142e-01]],
> E           E                   [[ 8.731014e-02,  1.282657e-01],
> E                    [ 1.240318e-01,  1.822129e-01],
> E                    [-3.130521e-01, -4.598992e-01],
> E                    [-2.779140e-01, -4.082784e-01],
> E                    [ 3.416170e-01,  5.018633e-01]],
> E           E                   [[ 1.688552e-01,  2.480621e-01],
> E                    [ 1.079842e-01,  1.586376e-01],
> E                    [ 3.249067e-01,  4.773145e-01],
> E                    [ 7.240457e-01,  1.063682e+00],
> E                    [-3.346429e-02, -4.916178e-02]],
> E           E                   [[ 3.792953e-01,  5.572158e-01],
> E                    [-5.941004e-02, -8.727821e-02],
> E                    [ 2.575056e-01,  3.782968e-01],
> E                    [-4.886430e-01, -7.178566e-01],
> E                    [-3.724292e-01, -5.471290e-01]]]])
> 
> /usr/lib/python3/dist-packages/xarray/tests/test_variable.py:1630:
> AssertionError
> 




-- 
Sebastian Ramacher

--- End Message ---

Reply via email to