Your message dated Sun, 28 Nov 2021 19:22:40 +0000
with message-id <e1mrpl2-0000ii...@fasolo.debian.org>
and subject line Bug#997081: fixed in statsmodels 0.13.1+dfsg-1
has caused the Debian Bug report #997081,
regarding statsmodels: FTBFS: tests fail
to be marked as done.

This means that you claim that the problem has been dealt with.
If this is not the case it is now your responsibility to reopen the
Bug report if necessary, and/or fix the problem forthwith.

(NB: If you are a system administrator and have no idea what this
message is talking about, this may indicate a serious mail system
misconfiguration somewhere. Please contact ow...@bugs.debian.org
immediately.)


-- 
997081: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=997081
Debian Bug Tracking System
Contact ow...@bugs.debian.org with problems
--- Begin Message ---
Source: statsmodels
Version: 0.12.2-2
Severity: serious
Justification: FTBFS
Tags: bookworm sid ftbfs
User: lu...@debian.org
Usertags: ftbfs-20211023 ftbfs-bullseye

Hi,

During a rebuild of all packages in sid, your package failed to build
on amd64.


Relevant part (hopefully):
> =================================== FAILURES 
> ===================================
> ____________________________ TestMICE.test_combine 
> _____________________________
> 
> self = <statsmodels.imputation.tests.test_mice.TestMICE object at 
> 0x7f18160740d0>
> 
>     @pytest.mark.slow
>     def test_combine(self):
>     
>         np.random.seed(3897)
>         x1 = np.random.normal(size=300)
>         x2 = np.random.normal(size=300)
>         y = x1 + x2 + np.random.normal(size=300)
>         x1[0:100] = np.nan
>         x2[250:] = np.nan
>         df = pd.DataFrame({"x1": x1, "x2": x2, "y": y})
>         idata = mice.MICEData(df)
>         mi = mice.MICE("y ~ x1 + x2", sm.OLS, idata, n_skip=20)
>         result = mi.fit(10, 20)
>     
>         fmi = np.asarray([0.1778143, 0.11057262, 0.29626521])
> >       assert_allclose(result.frac_miss_info, fmi, atol=1e-5)
> E       AssertionError: 
> E       Not equal to tolerance rtol=1e-07, atol=1e-05
> E       
> E       Mismatched elements: 3 / 3 (100%)
> E       Max absolute difference: 0.17686937
> E       Max relative difference: 1.59957657
> E        x: array([0.230217, 0.287442, 0.322124])
> E        y: array([0.177814, 0.110573, 0.296265])
> 
> ../.pybuild/cpython3_3.9_statsmodels/build/statsmodels/imputation/tests/test_mice.py:366:
>  AssertionError
> __________________________ test_corrpsd_threshold[0] 
> ___________________________
> 
> threshold = 0
> 
>     @pytest.mark.parametrize('threshold', [0, 1e-15, 1e-10, 1e-6])
>     def test_corrpsd_threshold(threshold):
>         x = np.array([[1, -0.9, -0.9], [-0.9, 1, -0.9], [-0.9, -0.9, 1]])
>     
>         y = corr_nearest(x, n_fact=100, threshold=threshold)
>         evals = np.linalg.eigvalsh(y)
> >       assert_allclose(evals[0], threshold, rtol=1e-6, atol=1e-15)
> E       AssertionError: 
> E       Not equal to tolerance rtol=1e-06, atol=1e-15
> E       
> E       Mismatched elements: 1 / 1 (100%)
> E       Max absolute difference: 1.05471187e-15
> E       Max relative difference: inf
> E        x: array(1.054712e-15)
> E        y: array(0)
> 
> ../.pybuild/cpython3_3.9_statsmodels/build/statsmodels/stats/tests/test_corrpsd.py:196:
>  AssertionError
> _________________________________ test_mixedlm 
> _________________________________
> 
>     def test_mixedlm():
>     
>         np.random.seed(3424)
>     
>         n = 200
>     
>         # The exposure (not time varying)
>         x = np.random.normal(size=n)
>         xv = np.outer(x, np.ones(3))
>     
>         # The mediator (with random intercept)
>         mx = np.asarray([4., 4, 1])
>         mx /= np.sqrt(np.sum(mx**2))
>         med = mx[0] * np.outer(x, np.ones(3))
>         med += mx[1] * np.outer(np.random.normal(size=n), np.ones(3))
>         med += mx[2] * np.random.normal(size=(n, 3))
>     
>         # The outcome (exposure and mediator effects)
>         ey = np.outer(x, np.r_[0, 0.5, 1]) + med
>     
>         # Random structure of the outcome (random intercept and slope)
>         ex = np.asarray([5., 2, 2])
>         ex /= np.sqrt(np.sum(ex**2))
>         e = ex[0] * np.outer(np.random.normal(size=n), np.ones(3))
>         e += ex[1] * np.outer(np.random.normal(size=n), np.r_[-1, 0, 1])
>         e += ex[2] * np.random.normal(size=(n, 3))
>         y = ey + e
>     
>         # Group membership
>         idx = np.outer(np.arange(n), np.ones(3))
>     
>         # Time
>         tim = np.outer(np.ones(n), np.r_[-1, 0, 1])
>     
>         df = pd.DataFrame({"y": y.flatten(), "x": xv.flatten(),
>                            "id": idx.flatten(), "time": tim.flatten(),
>                            "med": med.flatten()})
>     
>         mediator_model = sm.MixedLM.from_formula("med ~ x", groups="id", 
> data=df)
>         outcome_model = sm.MixedLM.from_formula("y ~ med + x", groups="id", 
> data=df)
>         me = Mediation(outcome_model, mediator_model, "x", "med")
>         mr = me.fit(n_rep=2)
>         st = mr.summary()
>         pm = st.loc["Prop. mediated (average)", "Estimate"]
> >       assert_allclose(pm, 0.52, rtol=1e-2, atol=1e-2)
> E       AssertionError: 
> E       Not equal to tolerance rtol=0.01, atol=0.01
> E       
> E       Mismatched elements: 1 / 1 (100%)
> E       Max absolute difference: 0.01958632
> E       Max relative difference: 0.03766599
> E        x: array(0.539586)
> E        y: array(0.52)
> 
> ../.pybuild/cpython3_3.9_statsmodels/build/statsmodels/stats/tests/test_mediation.py:214:
>  AssertionError
> =============================== warnings summary 
> ===============================
> ../../../../usr/lib/python3/dist-packages/_pytest/config/__init__.py:1183
>   /usr/lib/python3/dist-packages/_pytest/config/__init__.py:1183: 
> PytestDeprecationWarning: The --strict option is deprecated, use 
> --strict-markers instead.
>     self.issue_config_time_warning(
> 
> base/tests/test_penalized.py: 4 warnings
> base/tests/test_shrink_pickle.py: 3 warnings
> discrete/tests/test_count_model.py: 6 warnings
> discrete/tests/test_discrete.py: 6 warnings
> genmod/tests/test_glm.py: 1 warning
> tsa/arima/estimators/tests/test_innovations.py: 1 warning
> tsa/statespace/tests/test_exponential_smoothing.py: 1 warning
> tsa/statespace/tests/test_fixed_params.py: 1 warning
> tsa/tests/test_arima.py: 1 warning
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/base/model.py:566:
>  ConvergenceWarning: Maximum Likelihood optimization failed to converge. 
> Check mle_retvals
>     warnings.warn("Maximum Likelihood optimization failed to "
> 
> discrete/tests/test_count_model.py::TestZeroInflatedModel_logit::test_fit_regularized
> discrete/tests/test_count_model.py::TestZeroInflatedModel_probit::test_fit_regularized
> discrete/tests/test_count_model.py::TestZeroInflatedModel_offset::test_fit_regularized
> discrete/tests/test_count_model.py::TestZeroInflatedModelPandas::test_fit_regularized
> discrete/tests/test_count_model.py::TestZeroInflatedGeneralizedPoisson::test_fit_regularized
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/base/l1_solvers_common.py:71:
>  ConvergenceWarning: QC check did not pass for 4 out of 4 parameters
>   Try increasing solver accuracy or number of iterations, decreasing alpha, 
> or switch solvers
>     warnings.warn(message, ConvergenceWarning)
> 
> discrete/tests/test_count_model.py: 8 warnings
> discrete/tests/test_discrete.py: 2 warnings
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/base/l1_solvers_common.py:144:
>  ConvergenceWarning: Could not trim params automatically due to failed QC 
> check. Trimming using trim_mode == 'size' will still work.
>     warnings.warn(msg, ConvergenceWarning)
> 
> discrete/tests/test_count_model.py::TestZeroInflatedModel_logit::test_fit_regularized
> discrete/tests/test_count_model.py::TestZeroInflatedModel_offset::test_fit_regularized
> discrete/tests/test_count_model.py::TestZeroInflatedModelPandas::test_fit_regularized
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/base/l1_solvers_common.py:71:
>  ConvergenceWarning: QC check did not pass for 3 out of 6 parameters
>   Try increasing solver accuracy or number of iterations, decreasing alpha, 
> or switch solvers
>     warnings.warn(message, ConvergenceWarning)
> 
> discrete/tests/test_count_model.py::TestZeroInflatedModel_probit::test_fit_regularized
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/base/l1_solvers_common.py:71:
>  ConvergenceWarning: QC check did not pass for 4 out of 6 parameters
>   Try increasing solver accuracy or number of iterations, decreasing alpha, 
> or switch solvers
>     warnings.warn(message, ConvergenceWarning)
> 
> discrete/tests/test_count_model.py::TestZeroInflatedGeneralizedPoisson::test_fit_regularized
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/base/l1_solvers_common.py:71:
>  ConvergenceWarning: QC check did not pass for 1 out of 5 parameters
>   Try increasing solver accuracy or number of iterations, decreasing alpha, 
> or switch solvers
>     warnings.warn(message, ConvergenceWarning)
> 
> discrete/tests/test_count_model.py::TestZeroInflatedGeneralizedPoisson::test_fit_regularized
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/base/l1_solvers_common.py:71:
>  ConvergenceWarning: QC check did not pass for 3 out of 7 parameters
>   Try increasing solver accuracy or number of iterations, decreasing alpha, 
> or switch solvers
>     warnings.warn(message, ConvergenceWarning)
> 
> discrete/tests/test_count_model.py::TestZeroInflatedNegativeBinomialP::test_null
> discrete/tests/test_count_model.py::TestZeroInflatedNegativeBinomialP_predict2::test_mean
> tsa/tests/test_arima.py::test_predict_exog_missing
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/base/model.py:547:
>  HessianInversionWarning: Inverting hessian failed, no bse or cov_params 
> available
>     warnings.warn('Inverting hessian failed, no bse or cov_params '
> 
> discrete/tests/test_count_model.py::TestZeroInflatedNegativeBinomialP::test_fit_regularized
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/base/l1_solvers_common.py:71:
>  ConvergenceWarning: QC check did not pass for 1 out of 2 parameters
>   Try increasing solver accuracy or number of iterations, decreasing alpha, 
> or switch solvers
>     warnings.warn(message, ConvergenceWarning)
> 
> discrete/tests/test_count_model.py::TestZeroInflatedNegativeBinomialP::test_fit_regularized
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/base/l1_solvers_common.py:71:
>  ConvergenceWarning: QC check did not pass for 1 out of 3 parameters
>   Try increasing solver accuracy or number of iterations, decreasing alpha, 
> or switch solvers
>     warnings.warn(message, ConvergenceWarning)
> 
> discrete/tests/test_count_model.py::TestZeroInflatedNegativeBinomialP::test_fit_regularized
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/base/l1_solvers_common.py:71:
>  ConvergenceWarning: QC check did not pass for 2 out of 5 parameters
>   Try increasing solver accuracy or number of iterations, decreasing alpha, 
> or switch solvers
>     warnings.warn(message, ConvergenceWarning)
> 
> discrete/tests/test_discrete.py::TestPoissonL1Compatability::test_params
> discrete/tests/test_discrete.py::TestNegativeBinomialGeoL1Compatability::test_params
> discrete/tests/test_discrete.py::TestGeneralizedPoisson_p1::test_fit_regularized
> discrete/tests/test_discrete.py::TestGeneralizedPoisson_p1::test_fit_regularized
> discrete/tests/test_discrete.py::TestGeneralizedPoisson_p1::test_fit_regularized
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/discrete/discrete_model.py:1062:
>  RuntimeWarning: overflow encountered in exp
>     return np.sum(-np.exp(XB) +  endog*XB - gammaln(endog+1))
> 
> discrete/tests/test_discrete.py::TestGeneralizedPoisson_p1::test_fit_regularized
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/base/l1_solvers_common.py:71:
>  ConvergenceWarning: QC check did not pass for 8 out of 10 parameters
>   Try increasing solver accuracy or number of iterations, decreasing alpha, 
> or switch solvers
>     warnings.warn(message, ConvergenceWarning)
> 
> discrete/tests/test_discrete.py::TestGeneralizedPoisson_p1::test_fit_regularized
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/base/l1_solvers_common.py:71:
>  ConvergenceWarning: QC check did not pass for 2 out of 11 parameters
>   Try increasing solver accuracy or number of iterations, decreasing alpha, 
> or switch solvers
>     warnings.warn(message, ConvergenceWarning)
> 
> genmod/tests/test_glm.py::TestGlmGamma::test_null_deviance
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/genmod/generalized_linear_model.py:293:
>  DomainWarning: The inverse_power link function does not respect the domain 
> of the Gamma family.
>     warnings.warn((f"The {type(family.link).__name__} link function "
> 
> genmod/tests/test_glm.py::TestGlmGammaIdentity::test_null_deviance
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/genmod/generalized_linear_model.py:293:
>  DomainWarning: The identity link function does not respect the domain of the 
> Gamma family.
>     warnings.warn((f"The {type(family.link).__name__} link function "
> 
> genmod/tests/test_glm.py::TestGlmInvgaussIdentity::test_null_deviance
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/genmod/generalized_linear_model.py:293:
>  DomainWarning: The identity link function does not respect the domain of the 
> InverseGaussian family.
>     warnings.warn((f"The {type(family.link).__name__} link function "
> 
> genmod/tests/test_glm.py::TestWtdGlmNegativeBinomial::test_null_deviance
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/genmod/generalized_linear_model.py:293:
>  DomainWarning: The nbinom link function does not respect the domain of the 
> NegativeBinomial family.
>     warnings.warn((f"The {type(family.link).__name__} link function "
> 
> graphics/tests/test_tsaplots.py::test_plot_pacf
> graphics/tests/test_tsaplots.py::test_plot_pacf
> graphics/tests/test_tsaplots.py::test_plot_pacf_kwargs
> graphics/tests/test_tsaplots.py::test_plot_pacf_kwargs
> graphics/tests/test_tsaplots.py::test_plot_pacf_kwargs
> graphics/tests/test_tsaplots.py::test_plot_pacf_irregular
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/regression/linear_model.py:1434:
>  RuntimeWarning: invalid value encountered in sqrt
>     return rho, np.sqrt(sigmasq)
> 
> nonparametric/tests/test_kernel_density.py::TestKDEMultivariateConditional::test_unordered_CV_LS
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/nonparametric/kernel_density.py:679:
>  RuntimeWarning: invalid value encountered in double_scalars
>     CV += (G / m_x ** 2) - 2 * (f_X_Y / m_x)
> 
> nonparametric/tests/test_kernel_regression.py::TestKernelReg::test_continuousdata_lc_cvls
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/nonparametric/kernel_regression.py:251:
>  RuntimeWarning: invalid value encountered in true_divide
>     B_x = (G_numer * d_fx - G_denom * d_mx) / (G_denom**2)
> 
> regression/tests/test_dimred.py::test_covreduce
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/regression/dimred.py:694:
>  ConvergenceWarning: CovReduce optimization did not converge, |g|=1.287955
>     warnings.warn(msg, ConvergenceWarning)
> 
> regression/tests/test_processreg.py::test_formulas
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/regression/process_regression.py:632:
>  UserWarning: Fitting did not converge, |gradient|=0.000053
>     warnings.warn(msg)
> 
> robust/tests/test_scale.py::TestMad::test_mad_empty
>   /usr/lib/python3/dist-packages/numpy/core/fromnumeric.py:3372: 
> RuntimeWarning: Mean of empty slice.
>     return _methods._mean(a, axis=axis, dtype=dtype,
> 
> robust/tests/test_scale.py::TestMad::test_mad_empty
>   /usr/lib/python3/dist-packages/numpy/core/_methods.py:170: RuntimeWarning: 
> invalid value encountered in double_scalars
>     ret = ret.dtype.type(ret / rcount)
> 
> robust/tests/test_scale.py::TestHuberAxes::test_axis1
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/robust/scale.py:298:
>  RuntimeWarning: divide by zero encountered in true_divide
>     subset = np.less_equal(np.abs((a - mu) / scale), self.c)
> 
> sandbox/distributions/tests/test_extras.py::test_skewt
>   /usr/lib/python3/dist-packages/scipy/stats/_continuous_distns.py:6315: 
> RuntimeWarning: overflow encountered in double_scalars
>     / (np.sqrt(r*np.pi)*(1+(x**2)/r)**((r+1)/2)))
> 
> sandbox/tests/test_gam.py::TestGAMGaussianLogLink::test_predict
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/sandbox/gam.py:327:
>  IterationLimitWarning: 
>   Maximum iteration reached.
>   
>     warnings.warn(iteration_limit_doc, IterationLimitWarning)
> 
> stats/tests/test_corrpsd.py::TestCovPSD::test_cov_nearest
> stats/tests/test_corrpsd.py::TestCorrPSD1::test_nearest
> stats/tests/test_corrpsd.py::test_corrpsd_threshold[0]
> stats/tests/test_corrpsd.py::test_corrpsd_threshold[1e-15]
> stats/tests/test_corrpsd.py::test_corrpsd_threshold[1e-10]
> stats/tests/test_corrpsd.py::test_corrpsd_threshold[1e-06]
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/stats/correlation_tools.py:90:
>  IterationLimitWarning: 
>   Maximum iteration reached.
>   
>     warnings.warn(iteration_limit_doc, IterationLimitWarning)
> 
> stats/tests/test_descriptivestats.py::test_empty_columns
> stats/tests/test_descriptivestats.py::test_empty_columns
>   /usr/lib/python3/dist-packages/numpy/lib/nanfunctions.py:1113: 
> RuntimeWarning: All-NaN slice encountered
>     r, k = function_base._ureduce(a, func=_nanmedian, axis=axis, out=out,
> 
> stats/tests/test_diagnostic.py::TestDiagnosticG::test_normality
> stats/tests/test_diagnostic.py::TestDiagnosticGPandas::test_normality
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/stats/_adnorm.py:70:
>  RuntimeWarning: divide by zero encountered in log1p
>     s = np.sum((2 * i[sl1] - 1.0) / nobs * (np.log(z) + np.log1p(-z[sl2])),
> 
> stats/tests/test_pairwise.py::TestTuckeyHSD2::test_plot_simultaneous_ci
> stats/tests/test_pairwise.py::TestTuckeyHSD2Pandas::test_plot_simultaneous_ci
> stats/tests/test_pairwise.py::TestTuckeyHSD2s::test_plot_simultaneous_ci
> stats/tests/test_pairwise.py::TestTuckeyHSD3::test_plot_simultaneous_ci
> stats/tests/test_pairwise.py::TestTuckeyHSD4::test_plot_simultaneous_ci
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/sandbox/stats/multicomp.py:775:
>  UserWarning: FixedFormatter should only be used together with FixedLocator
>     ax1.set_yticklabels(np.insert(self.groupsunique.astype(str), 0, ''))
> 
> stats/tests/test_power.py::test_power_solver_warn
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/stats/power.py:106:
>  RuntimeWarning: invalid value encountered in sqrt
>     pow_ = stats.norm.sf(crit - d*np.sqrt(nobs)/sigma)
> 
> stats/tests/test_tost.py::test_tost_asym
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/stats/weightstats.py:1477:
>  RuntimeWarning: invalid value encountered in log
>     low = transform(low)
> 
> tsa/holtwinters/tests/test_holtwinters.py::test_start_params[add-mul]
> tsa/holtwinters/tests/test_holtwinters.py::test_start_params[mul-mul]
> tsa/holtwinters/tests/test_holtwinters.py::test_start_params[None-mul]
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/tsa/holtwinters/model.py:80:
>  RuntimeWarning: overflow encountered in matmul
>     return err.T @ err
> 
> tsa/holtwinters/tests/test_holtwinters.py::test_start_params[add-mul]
> tsa/holtwinters/tests/test_holtwinters.py::test_alternative_minimizers[TNC]
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/tsa/holtwinters/model.py:920:
>  ConvergenceWarning: Optimization failed to converge. Check mle_retvals.
>     warnings.warn(
> 
> tsa/holtwinters/tests/test_holtwinters.py::test_alternative_minimizers[trust-constr]
>   
> /usr/lib/python3/dist-packages/scipy/optimize/_hessian_update_strategy.py:182:
>  UserWarning: delta_grad == 0.0. Check if the approximated function is 
> linear. If the function is linear better results can be obtained by defining 
> the Hessian as zero instead of using quasi-Newton approximations.
>     warn('delta_grad == 0.0. Check if the approximated '
> 
> tsa/statespace/tests/test_mlemodel.py::test_integer_params
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/tsa/statespace/kalman_filter.py:1768:
>  RuntimeWarning: invalid value encountered in double_scalars
>     self.scale = np.sum(scale_obs[d:]) / nobs_k_endog
> 
> tsa/statespace/tests/test_sarimax.py::test_plot_too_few_obs
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/tsa/statespace/sarimax.py:866:
>  UserWarning: Too few observations to estimate starting parameters for ARMA 
> and trend. All parameters except for variances will be set to zeros.
>     warn('Too few observations to estimate starting parameters%s.'
> 
> tsa/statespace/tests/test_sarimax.py::test_plot_too_few_obs
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/tsa/statespace/mlemodel.py:1220:
>  RuntimeWarning: invalid value encountered in true_divide
>     np.inner(score_obs, score_obs) /
> 
> tsa/statespace/tests/test_sarimax.py::test_plot_too_few_obs
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/tsa/statespace/sarimax.py:866:
>  UserWarning: Too few observations to estimate starting parameters for 
> seasonal ARMA. All parameters except for variances will be set to zeros.
>     warn('Too few observations to estimate starting parameters%s.'
> 
> tsa/statespace/tests/test_sarimax.py::test_plot_too_few_obs
>   /usr/lib/python3/dist-packages/numpy/core/fromnumeric.py:3621: 
> RuntimeWarning: Degrees of freedom <= 0 for slice
>     return _methods._var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
> 
> tsa/statespace/tests/test_sarimax.py::test_plot_too_few_obs
>   /usr/lib/python3/dist-packages/numpy/core/_methods.py:194: RuntimeWarning: 
> invalid value encountered in true_divide
>     arrmean = um.true_divide(
> 
> tsa/statespace/tests/test_sarimax.py::test_plot_too_few_obs
>   /usr/lib/python3/dist-packages/numpy/core/_methods.py:226: RuntimeWarning: 
> invalid value encountered in double_scalars
>     ret = ret.dtype.type(ret / rcount)
> 
> tsa/statespace/tests/test_varmax.py::TestVAR_exog::test_predict
> tsa/statespace/tests/test_varmax.py::TestVAR_exog2::test_predict
> tsa/statespace/tests/test_varmax.py::test_misc_exog
> tsa/statespace/tests/test_varmax.py::test_misc_exog
> tsa/statespace/tests/test_varmax.py::test_misc_exog
> tsa/statespace/tests/test_varmax.py::test_misc_exog
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/tsa/statespace/mlemodel.py:1766:
>  ValueWarning: Exogenous array provided, but additional data is not required. 
> `exog` argument ignored.
>     warnings.warn('Exogenous array provided, but additional data'
> 
> tsa/tests/test_exponential_smoothing.py::test_hessian
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/tsa/exponential_smoothing/base.py:262:
>  PrecisionWarning: Calculation of the Hessian using finite differences is 
> usually subject to substantial approximation errors.
>     warnings.warn('Calculation of the Hessian using finite differences'
> 
> tsa/vector_ar/tests/test_var.py::TestVARResults::test_plot_irf
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/tsa/vector_ar/plotting.py:208:
>  RuntimeWarning: More than 20 figures have been opened. Figures created 
> through the pyplot interface (`matplotlib.pyplot.figure`) are retained until 
> explicitly closed and may consume too much memory. (To control this warning, 
> see the rcParam `figure.max_open_warning`).
>     fig, axes = plt.subplots(nrows=nrows, ncols=ncols, sharex=True,
> 
> tsa/vector_ar/tests/test_var.py::test_correct_nobs
>   
> /<<PKGBUILDDIR>>/.pybuild/cpython3_3.9_statsmodels/build/statsmodels/tsa/base/tsa_model.py:524:
>  ValueWarning: No frequency information was provided, so inferred frequency 
> Q-DEC will be used.
>     warnings.warn('No frequency information was'
> 
> -- Docs: https://docs.pytest.org/en/stable/warnings.html
> =========================== short test summary info 
> ============================
> FAILED 
> ../.pybuild/cpython3_3.9_statsmodels/build/statsmodels/imputation/tests/test_mice.py::TestMICE::test_combine
> FAILED 
> ../.pybuild/cpython3_3.9_statsmodels/build/statsmodels/stats/tests/test_corrpsd.py::test_corrpsd_threshold[0]
> FAILED 
> ../.pybuild/cpython3_3.9_statsmodels/build/statsmodels/stats/tests/test_mediation.py::test_mixedlm
> = 3 failed, 15025 passed, 289 skipped, 140 xfailed, 10 xpassed, 117 warnings 
> in 1081.34s (0:18:01) =
> make[1]: *** [debian/rules:117: override_dh_auto_test] Error 1


The full build log is available from:
http://qa-logs.debian.net/2021/10/23/statsmodels_0.12.2-2_unstable.log

A list of current common problems and possible solutions is available at
http://wiki.debian.org/qa.debian.org/FTBFS . You're welcome to contribute!

If you reassign this bug to another package, please marking it as 'affects'-ing
this package. See https://www.debian.org/Bugs/server-control#affects

If you fail to reproduce this, please provide a build log and diff it with mine
so that we can identify if something relevant changed in the meantime.

--- End Message ---
--- Begin Message ---
Source: statsmodels
Source-Version: 0.13.1+dfsg-1
Done: Rebecca N. Palmer <rebecca_pal...@zoho.com>

We believe that the bug you reported is fixed in the latest version of
statsmodels, which is due to be installed in the Debian FTP archive.

A summary of the changes between this version and the previous one is
attached.

Thank you for reporting the bug, which will now be closed.  If you
have further comments please address them to 997...@bugs.debian.org,
and the maintainer will reopen the bug report if appropriate.

Debian distribution maintenance software
pp.
Rebecca N. Palmer <rebecca_pal...@zoho.com> (supplier of updated statsmodels 
package)

(This message was generated automatically at their request; if you
believe that there is a problem with it please contact the archive
administrators by mailing ftpmas...@ftp-master.debian.org)


-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

Format: 1.8
Date: Sun, 28 Nov 2021 16:30:27 +0000
Source: statsmodels
Architecture: source
Version: 0.13.1+dfsg-1
Distribution: unstable
Urgency: medium
Maintainer: Debian Science Maintainers 
<debian-science-maintain...@lists.alioth.debian.org>
Changed-By: Rebecca N. Palmer <rebecca_pal...@zoho.com>
Closes: 997081
Changes:
 statsmodels (0.13.1+dfsg-1) unstable; urgency=medium
 .
   * New upstream release.  Drop / refresh patches.
   * Update watch file.
   * Update d/copyright, exclude possibly illegal data file.
   * Xfail some probable rounding issues.  Closes: #997081.
   * Docs: update MathJax URL replacement.
Checksums-Sha1:
 8e7a7bf37803fc759ffdc57d4217b4ecbb5cb2fa 3611 statsmodels_0.13.1+dfsg-1.dsc
 fc4ee5f10c0676b30af009d186f0140511fc79f7 11166432 
statsmodels_0.13.1+dfsg.orig.tar.xz
 f3c882023a88575872f7a592897cbb54cf9c72e0 34168 
statsmodels_0.13.1+dfsg-1.debian.tar.xz
 aa1d6a5a2bde218bc8958c761da62e2c40257c81 6177 
statsmodels_0.13.1+dfsg-1_source.buildinfo
Checksums-Sha256:
 ef7a6aa1b3fe6aa6c936523ebacbe60fbf7c29ae9b98aaf6eac8851c39026d5d 3611 
statsmodels_0.13.1+dfsg-1.dsc
 5c286816d9a1dd1e098b31af2285cffeee9b3d1ead3aaee2c5591edb9b6d7eca 11166432 
statsmodels_0.13.1+dfsg.orig.tar.xz
 774093b58cf324205dbd0a41152423d91d77e981a2a93427b435de303646cf81 34168 
statsmodels_0.13.1+dfsg-1.debian.tar.xz
 15e3600a7c8f26733abc82e652679d1850ae3946a73e3e5f6ba7874eeb621325 6177 
statsmodels_0.13.1+dfsg-1_source.buildinfo
Files:
 f9190fe11794d385e396cdef14e39319 3611 python optional 
statsmodels_0.13.1+dfsg-1.dsc
 75d9ff3d6a988ae1ece8a0267ce2fec8 11166432 python optional 
statsmodels_0.13.1+dfsg.orig.tar.xz
 af9010ebd6debd49f8d4b8cf151e2345 34168 python optional 
statsmodels_0.13.1+dfsg-1.debian.tar.xz
 62ab55589ecd663367bd7dad689cb2a3 6177 python optional 
statsmodels_0.13.1+dfsg-1_source.buildinfo

-----BEGIN PGP SIGNATURE-----

iQJMBAEBCgA2FiEEZ8sxEAXE7b4yF1MI3uUNDVZ+omYFAmGjziIYHHJlYmVjY2Ff
cGFsbWVyQHpvaG8uY29tAAoJEN7lDQ1WfqJmv/YP+wRBESbqpghq83KwpyAawVAG
DYEbRirGsyyNZ4M7Lb4HfOD0zW+7ngCWWePjMzsgM3+AOJqme6gWW93Uqtp26tYG
tI4wvGVdKSn1d5kSafnWnYvp7nJZlzZxwlVAuDiS4XM4RuVnEoIWCYJjsXmGoNKI
lsKmzmT7i31fA0T09QbSj0h9tLKol7Vw0rduMipvhmOkRf4dHtzLkhNY3yxWmQqz
iRYEr2DT7l4PgbG1MrE1kPSqc5Xvgzs8HAgKj/q6EOm//zM0mXiF1qp62nP2Bn9D
KXvHF4n+UCOJw+bViqa2wpcAgrg4Vo6k1UnY0IjU+VqQ37nM1aNdOTelTv5oq0fE
/w7GUH75/rUHo4AvyivwMAvZ4FNKUSiwxsaz9tgspKzjGGhhMzAVo7LMImGVi62n
AkiRJD2ZrQAEa1OtfX9Vk5UuKqav27j9bzipe61+le00dDfPxpCTC/zS4tWYwj1G
AvHpm//iLUCfQRaD6s/WACz0ciIIZRBA8v52pg88T2fxkIM4FvL8YJ8lE+d53IMR
8q9J5YNtMRE2RdqhHkW30PO4dSvYGVVXpL8Uo5QQT726R864hC9XY5tVeUNpeNWC
igFigncgNOueaLptc3n3qAJ86jDTetUaRIn8L/3OtOQtisPmWWF/8rpGtGIVIgUD
pO531voRHQ5CS5IEpzCj
=gOlY
-----END PGP SIGNATURE-----

--- End Message ---

Reply via email to