Your message dated Mon, 04 May 2020 08:49:56 +0000
with message-id <e1jvwnu-0007bx...@fasolo.debian.org>
and subject line Bug#959139: fixed in scikit-learn 0.22.2.post1+dfsg-6
has caused the Debian Bug report #959139,
regarding numpy breaks scikit-learn arm64 autopkgtest: assert_uniform_grid(Y, 
try_name)
to be marked as done.

This means that you claim that the problem has been dealt with.
If this is not the case it is now your responsibility to reopen the
Bug report if necessary, and/or fix the problem forthwith.

(NB: If you are a system administrator and have no idea what this
message is talking about, this may indicate a serious mail system
misconfiguration somewhere. Please contact ow...@bugs.debian.org
immediately.)


-- 
959139: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=959139
Debian Bug Tracking System
Contact ow...@bugs.debian.org with problems
--- Begin Message ---
Source: numpy, scikit-learn
Control: found -1 numpy/1:1.18.3-1
Control: found -1 scikit-learn/0.22.2.post1+dfsg-5
Severity: serious
Tags: sid bullseye
X-Debbugs-CC: debian...@lists.debian.org
User: debian...@lists.debian.org
Usertags: breaks needs-update

Dear maintainer(s),

With a recent upload of numpy the autopkgtest of scikit-learn fails in
testing on arm64 when that autopkgtest is run with the binary packages
of numpy from unstable. It passes when run with only packages from
testing. In tabular form:

                       pass            fail
numpy                  from testing    1:1.18.3-1
scikit-learn           from testing    0.22.2.post1+dfsg-5
all others             from testing    from testing

I copied some of the output at the bottom of this report.

Currently this regression is blocking the migration of numpy to testing
[1]. Due to the nature of this issue, I filed this bug report against
both packages. Can you please investigate the situation and reassign the
bug to the right package?

More information about this bug and the reason for filing it can be found on
https://wiki.debian.org/ContinuousIntegration/RegressionEmailInformation

Paul

[1] https://qa.debian.org/excuses.php?package=numpy

https://ci.debian.net/data/autopkgtest/testing/arm64/s/scikit-learn/5194679/log.gz

=================================== FAILURES
===================================
________________________ test_uniform_grid[barnes_hut]
_________________________

method = 'barnes_hut'

    @pytest.mark.parametrize('method', ['barnes_hut', 'exact'])
    def test_uniform_grid(method):
        """Make sure that TSNE can approximately recover a uniform 2D grid

        Due to ties in distances between point in X_2d_grid, this test
is platform
        dependent for ``method='barnes_hut'`` due to numerical imprecision.

        Also, t-SNE is not assured to converge to the right solution
because bad
        initialization can lead to convergence to bad local minimum (the
        optimization problem is non-convex). To avoid breaking the test
too often,
        we re-run t-SNE from the final point when the convergence is not
good
        enough.
        """
        seeds = [0, 1, 2]
        n_iter = 500
        for seed in seeds:
            tsne = TSNE(n_components=2, init='random', random_state=seed,
                        perplexity=20, n_iter=n_iter, method=method)
            Y = tsne.fit_transform(X_2d_grid)

            try_name = "{}_{}".format(method, seed)
            try:
>               assert_uniform_grid(Y, try_name)

/usr/lib/python3/dist-packages/sklearn/manifold/tests/test_t_sne.py:784:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _

Y = array([[ 52.326397  , -15.92225   ],
       [ 46.679527  , -20.175953  ],
       [ 40.870537  , -24.181147  ],
       ...[-35.291374  ,  22.122814  ],
       [-42.2738    ,  18.793724  ],
       [-48.922283  ,  15.606232  ]], dtype=float32)
try_name = 'barnes_hut_1'

    def assert_uniform_grid(Y, try_name=None):
        # Ensure that the resulting embedding leads to approximately
        # uniformly spaced points: the distance to the closest neighbors
        # should be non-zero and approximately constant.
        nn = NearestNeighbors(n_neighbors=1).fit(Y)
        dist_to_nn = nn.kneighbors(return_distance=True)[0].ravel()
        assert dist_to_nn.min() > 0.1

        smallest_to_mean = dist_to_nn.min() / np.mean(dist_to_nn)
        largest_to_mean = dist_to_nn.max() / np.mean(dist_to_nn)

        assert smallest_to_mean > .5, try_name
>       assert largest_to_mean < 2, try_name
E       AssertionError: barnes_hut_1
E       assert 6.67359409617653 < 2

/usr/lib/python3/dist-packages/sklearn/manifold/tests/test_t_sne.py:807:
AssertionError

During handling of the above exception, another exception occurred:

method = 'barnes_hut'

    @pytest.mark.parametrize('method', ['barnes_hut', 'exact'])
    def test_uniform_grid(method):
        """Make sure that TSNE can approximately recover a uniform 2D grid

        Due to ties in distances between point in X_2d_grid, this test
is platform
        dependent for ``method='barnes_hut'`` due to numerical imprecision.

        Also, t-SNE is not assured to converge to the right solution
because bad
        initialization can lead to convergence to bad local minimum (the
        optimization problem is non-convex). To avoid breaking the test
too often,
        we re-run t-SNE from the final point when the convergence is not
good
        enough.
        """
        seeds = [0, 1, 2]
        n_iter = 500
        for seed in seeds:
            tsne = TSNE(n_components=2, init='random', random_state=seed,
                        perplexity=20, n_iter=n_iter, method=method)
            Y = tsne.fit_transform(X_2d_grid)

            try_name = "{}_{}".format(method, seed)
            try:
                assert_uniform_grid(Y, try_name)
            except AssertionError:
                # If the test fails a first time, re-run with init=Y to
see if
                # this was caused by a bad initialization. Note that
this will
                # also run an early_exaggeration step.
                try_name += ":rerun"
                tsne.init = Y
                Y = tsne.fit_transform(X_2d_grid)
>               assert_uniform_grid(Y, try_name)

/usr/lib/python3/dist-packages/sklearn/manifold/tests/test_t_sne.py:792:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _

Y = array([[-18.169476  ,   6.0802336 ],
       [-18.278513  ,   2.8822129 ],
       [-18.671782  ,  -0.4646889 ],
       ...[ 22.550077  ,  19.698557  ],
       [ 21.399723  ,  22.933178  ],
       [ 16.22136   ,  28.22955   ]], dtype=float32)
try_name = 'barnes_hut_1:rerun'

    def assert_uniform_grid(Y, try_name=None):
        # Ensure that the resulting embedding leads to approximately
        # uniformly spaced points: the distance to the closest neighbors
        # should be non-zero and approximately constant.
        nn = NearestNeighbors(n_neighbors=1).fit(Y)
        dist_to_nn = nn.kneighbors(return_distance=True)[0].ravel()
        assert dist_to_nn.min() > 0.1

        smallest_to_mean = dist_to_nn.min() / np.mean(dist_to_nn)
        largest_to_mean = dist_to_nn.max() / np.mean(dist_to_nn)

        assert smallest_to_mean > .5, try_name
>       assert largest_to_mean < 2, try_name
E       AssertionError: barnes_hut_1:rerun
E       assert 2.145051767903112 < 2

/usr/lib/python3/dist-packages/sklearn/manifold/tests/test_t_sne.py:807:
AssertionError

Attachment: signature.asc
Description: OpenPGP digital signature


--- End Message ---
--- Begin Message ---
Source: scikit-learn
Source-Version: 0.22.2.post1+dfsg-6
Done: Christian Kastner <c...@debian.org>

We believe that the bug you reported is fixed in the latest version of
scikit-learn, which is due to be installed in the Debian FTP archive.

A summary of the changes between this version and the previous one is
attached.

Thank you for reporting the bug, which will now be closed.  If you
have further comments please address them to 959...@bugs.debian.org,
and the maintainer will reopen the bug report if appropriate.

Debian distribution maintenance software
pp.
Christian Kastner <c...@debian.org> (supplier of updated scikit-learn package)

(This message was generated automatically at their request; if you
believe that there is a problem with it please contact the archive
administrators by mailing ftpmas...@ftp-master.debian.org)


-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

Format: 1.8
Date: Mon, 04 May 2020 08:36:38 +0200
Source: scikit-learn
Architecture: source
Version: 0.22.2.post1+dfsg-6
Distribution: unstable
Urgency: medium
Maintainer: Debian Science Team 
<debian-science-maintain...@lists.alioth.debian.org>
Changed-By: Christian Kastner <c...@debian.org>
Closes: 959139
Changes:
 scikit-learn (0.22.2.post1+dfsg-6) unstable; urgency=medium
 .
   * Team upload.
 .
   * Add Fix-for-test_uniform_grid.patch
     Cherry-picked from upstream. (Closes: #959139)
   * Bump debhelper to 12 and switch to debhelper-compat
   * Mark python3-sklearn-lib as Multi-Arch: same
   * Re-enable build of documentation, which the following updates needed for
     the new scikit-learn-modern theme:
     - Update update python-sklearn-doc.{doc-base, links)
     - Bump Depends from libjs-bootstrap to libjs-bootstrap4
     - Add Use-local-MathJax.patch
     - Add Disable-BinderHub-links.patch
   * debian/rules refactoring and minor improvements
Checksums-Sha1:
 908954bae8e779aefc2e464f33b6c4b1ba3d4ccc 2930 
scikit-learn_0.22.2.post1+dfsg-6.dsc
 eed538c2def6b6f22eb2912b6d752b6bf250253b 24612 
scikit-learn_0.22.2.post1+dfsg-6.debian.tar.xz
 6956fb0a73df15777bcc5038ef027ff04e62133a 7542 
scikit-learn_0.22.2.post1+dfsg-6_source.buildinfo
Checksums-Sha256:
 fa613fdb7fedc9499595188a9b185ae159d7dbd1ed1253e3229bc07412af7c41 2930 
scikit-learn_0.22.2.post1+dfsg-6.dsc
 ebadde3549f84b3b2e4f9e80fa41fce6186d80c8d79fb07b884b881d7cbfc92c 24612 
scikit-learn_0.22.2.post1+dfsg-6.debian.tar.xz
 f169ec1a0b0de2c0b959c50b31e535dcc5225e5e5abfc41c153130b5bec42102 7542 
scikit-learn_0.22.2.post1+dfsg-6_source.buildinfo
Files:
 e86878d09ebb07019dfbf6c3c5bae116 2930 python optional 
scikit-learn_0.22.2.post1+dfsg-6.dsc
 6619443f94107e63930e3d99666ca864 24612 python optional 
scikit-learn_0.22.2.post1+dfsg-6.debian.tar.xz
 94d5c757ba7b67a39539537904f42216 7542 python optional 
scikit-learn_0.22.2.post1+dfsg-6_source.buildinfo

-----BEGIN PGP SIGNATURE-----

iQIzBAEBCgAdFiEEQZ9+mkfDq5UZ8bCjOZU6N95Os2sFAl6v0VoACgkQOZU6N95O
s2szhRAAtKy+oWbrEQqiiIRpcKWMXMcmI+FYrJ3nqorV8vYSZGzYMpb8zjAgjakZ
imERDildgvxnhirm1vG9PdQE3t4G8EddS1UduSk6BdyuIjqx8XeOQLJxB7ELa8nr
bpugJP29haocjujT8/ydNhGSBd64LVwcFCOAqkHn5dicoHSVEE7wMLTyZt2f+rO+
2CFuYJ1r/Tcm+nxBF1cvptvHcvzAnM8meHfd1NOkql/cfKfrxFkC7AdE2D2lAdc1
5uh8+pTGJsfEqTd/g9F8+IizCxq7SvoxnkTw4XBL6LYVTrclZ8J4kLX4LCZcRv3y
AalZ7h7+Rxb4jA55HcndZDC+YhTGASW4Q1A3Lk65XgTWgSf0a9BRde9X9Boaugbg
jpShaYY9k8fi58zdNB1AfEduRjAYVHzjE4gvBfux459vCmCMFGodCCdMsc59bqro
Y15TTmkxVoE9ntQ46EkhfFjkKSBod7Gk3ZXtFmcQEVg9Gvjd5SnwvGPS3EG0xVwb
CIcsWWdOyRSxs9onND10blYYEf7LUgMBn9TMh6Z7OaxX95ETrU2mLnzxbFNwQiZf
yecoov7ibbXNeHBuCsRsK6p63OikQ6hm41cSlenFZieyqIeuewQlHDUJSoLKcKXo
N6oS323LvGQap00JEY8NUEFta/eDHMLjVKbWAI5x7rVS3U7viyM=
=Bshd
-----END PGP SIGNATURE-----

--- End Message ---

Reply via email to