Your message dated Sat, 18 Jan 2014 23:21:48 +0000
with message-id <e1w4fd2-0000ct...@franck.debian.org>
and subject line Bug#735811: fixed in python-mne 0.7.3-1
has caused the Debian Bug report #735811,
regarding python-mne: FTBFS: Tests failed trying to write outside buildir
to be marked as done.

This means that you claim that the problem has been dealt with.
If this is not the case it is now your responsibility to reopen the
Bug report if necessary, and/or fix the problem forthwith.

(NB: If you are a system administrator and have no idea what this
message is talking about, this may indicate a serious mail system
misconfiguration somewhere. Please contact ow...@bugs.debian.org
immediately.)


-- 
735811: http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=735811
Debian Bug Tracking System
Contact ow...@bugs.debian.org with problems
--- Begin Message ---
Source: python-mne
Version: 0.7.1-1
Severity: serious
Tags: jessie sid
User: debian...@lists.debian.org
Usertags: qa-ftbfs-20140114 qa-ftbfs
Justification: FTBFS on amd64

Hi,

During a rebuild of all packages in sid, your package failed to build on
amd64.

Relevant part (hopefully):
> ======================================================================
> ERROR: Test mne-python config file support
> ----------------------------------------------------------------------
> Traceback (most recent call last):
>   File "/usr/lib/python2.7/dist-packages/nose/case.py", line 197, in runTest
>     self.test(*self.arg)
>   File "/«PKGBUILDDIR»/mne/tests/test_utils.py", line 125, in test_config
>     set_config(key, None)
>   File "/«PKGBUILDDIR»/mne/utils.py", line 880, in set_config
>     os.mkdir(directory)
> OSError: [Errno 2] No such file or directory: '/sbuild-nonexistent/.mne'
> 
> Name                                Stmts   Miss  Cover   Missing
> -----------------------------------------------------------------
> mne                                    41      1    98%   80
> mne.baseline                           37      9    76%   52, 70, 74-75, 
> 79-81, 83-84
> mne.beamformer                          2      0   100%   
> mne.beamformer._dics                  179    158    12%   66-139, 188-194, 
> 247-261, 310-403, 484-587
> mne.beamformer._lcmv                  213    187    12%   67-182, 192-235, 
> 288-295, 351-365, 425-437, 490-544, 613-712
> mne.commands                            0      0   100%   
> mne.commands.utils                     18     13    28%   18-39
> mne.connectivity                        3      0   100%   
> mne.connectivity.effective             35      0   100%   
> mne.connectivity.spectral             472     29    94%   31, 34, 37, 40, 
> 307, 328-330, 382-384, 403, 410, 469, 476, 482, 492, 498, 733, 743, 750-751, 
> 811, 816, 830, 892-894, 917, 929, 1017, 1021
> mne.connectivity.utils                 14      2    86%   11, 14
> mne.coreg                             482    269    44%   89-156, 301-303, 
> 346-348, 359, 366, 370-372, 403-405, 531-534, 572-574, 581, 585-587, 610-624, 
> 644-699, 717-728, 746-768, 785-802, 831-862, 887-954, 981-1046
> mne.cov                               318     34    89%   28, 31, 79-81, 
> 104-114, 117-119, 173, 237, 267, 351, 363, 371, 373, 444, 476-479, 502, 531, 
> 619, 632-633, 684
> mne.cuda                              163    112    31%   9-10, 43-102, 
> 154-188, 215-222, 278-314, 359-384
> mne.data                                0      0   100%   
> mne.datasets                            3      0   100%   
> mne.datasets.megsim                     1      0   100%   
> mne.datasets.megsim.megsim             64     56    13%   64-126, 178-189
> mne.datasets.megsim.urls               25      9    64%   150-160
> mne.datasets.sample                     1      0   100%   
> mne.datasets.sample.sample             10      0   100%   
> mne.datasets.spm_face                   1      0   100%   
> mne.datasets.spm_face.spm_data         12      1    92%   16
> mne.datasets.utils                     93     57    39%   51-61, 79, 82, 97, 
> 105-176, 184
> mne.decoding                            4      0   100%   
> mne.decoding.classifier               115      5    96%   349, 351, 385, 394, 
> 416
> mne.decoding.csp                       87     11    87%   89, 95-96, 99, 
> 110-111, 119-120, 126-129, 195
> mne.decoding.mixin                      5      1    80%   27
> mne.dipole                             17     13    24%   34-46
> mne.epochs                            823    147    82%   61-63, 71, 73, 76, 
> 78, 103, 107, 145-169, 175, 179, 183-186, 199, 273, 278, 280, 298, 308, 359, 
> 396, 636, 663, 706, 718, 725, 903, 912, 917, 949, 970, 975-987, 1019, 1047, 
> 1052, 1054-1056, 1059, 1061-1063, 1108, 1216-1274, 1303-1329, 1382, 1384, 
> 1436, 1439, 1441, 1444, 1491, 1507, 1633-1634, 1638-1639, 1658-1659, 1684, 
> 1687-1688, 1743
> mne.event                             281     31    89%   48, 57, 101, 
> 116-118, 130, 141-142, 154, 216, 226, 355, 358-360, 379-381, 410-411, 425, 
> 537, 599-602, 635, 671, 674, 696, 699, 710
> mne.fiff                               10      0   100%   
> mne.fiff.brainvision                    1      0   100%   
> mne.fiff.brainvision.brainvision      270     25    91%   137, 159, 174-175, 
> 228, 338, 344-349, 363-366, 389, 392, 396-399, 403, 406, 410-415
> mne.fiff.bti                            1      0   100%   
> mne.fiff.bti.constants                 74      0   100%   
> mne.fiff.bti.raw                      599     92    85%   78, 260, 319, 340, 
> 363-369, 405-412, 441-459, 634-642, 647-648, 663-669, 675-691, 696-704, 
> 710-755, 773, 850, 913, 969, 1014, 1017-1018, 1112-1127
> mne.fiff.bti.read                      59      4    93%   49, 54, 59, 84
> mne.fiff.bti.transforms                40      0   100%   
> mne.fiff.channels                      12      0   100%   
> mne.fiff.compensator                   57      7    88%   17, 45, 48, 57, 94, 
> 99, 113
> mne.fiff.constants                    545      0   100%   
> mne.fiff.cov                           88     24    73%   46, 58, 63, 69, 73, 
> 78-85, 101-103, 110-111, 128-131, 158, 168-169, 177-179
> mne.fiff.ctf                          131     17    87%   18, 48-53, 59, 67, 
> 73, 80, 86, 93, 98, 137, 160, 180, 183, 193, 196
> mne.fiff.diff                          26     22    15%   15-39
> mne.fiff.edf                            1      0   100%   
> mne.fiff.edf.edf                      318     54    83%   82, 155, 174, 
> 196-198, 217-230, 238, 245-247, 354, 367, 374-377, 381, 388-389, 393-395, 
> 485-486, 501, 504, 533-552
> mne.fiff.evoked                       323     85    74%   94, 103-104, 
> 108-109, 116-117, 144-145, 152, 172-180, 183, 187-202, 220-221, 237-238, 
> 247-250, 254-255, 298-302, 316, 445, 464-472, 502-544, 634-635
> mne.fiff.kit                            5      0   100%   
> mne.fiff.kit.constants                 62      0   100%   
> mne.fiff.kit.coreg                     88     17    81%   58-64, 69-71, 
> 90-92, 100-101, 122-124, 126-128, 166-167
> mne.fiff.kit.kit                      327     26    92%   116-119, 220, 301, 
> 312, 347, 388-395, 433, 485-486, 495-498, 533, 537, 552, 560, 578-580, 614-616
> mne.fiff.matrix                        61     40    34%   16-21, 45-87, 
> 105-108, 120, 126
> mne.fiff.meas_info                    316     25    92%   103-105, 161-164, 
> 190, 192, 197, 199, 262, 265, 268, 271, 296, 320-322, 339, 348-351, 355-357, 
> 478
> mne.fiff.open                         101      8    92%   65, 68, 71, 76, 
> 132, 168-169, 191
> mne.fiff.pick                         188     73    61%   39, 46-65, 184, 
> 188, 194, 206, 208, 219, 221, 227, 229, 231, 233, 243-248, 279, 293-296, 319, 
> 325, 391-396, 422-459, 489-495
> mne.fiff.proj                         235     16    93%   99-101, 224, 230, 
> 243, 249, 255, 261, 271, 274, 366, 372, 382, 392, 548, 604
> mne.fiff.raw                          800    116    86%   143-144, 185-192, 
> 223-225, 237-238, 244, 253-257, 263, 272-273, 283-287, 344, 363, 368, 374, 
> 442, 446, 586, 593, 599, 603, 720, 724, 728, 782, 855, 857, 859, 954, 960, 
> 996-999, 1224, 1232, 1428-1465, 1492-1507, 1545, 1562, 1601, 1603, 1605, 
> 1654-1661, 1689, 1728, 1732, 1927, 1930, 1944-1947, 1960, 1979, 1991, 1993, 
> 1995, 2000, 2002-2005, 2072, 2076, 2087
> mne.fiff.tag                          250     63    75%   42-47, 50-59, 118, 
> 143, 152, 154, 156, 159, 230, 247, 253, 256, 264-316, 323, 326, 332, 359-363, 
> 446-449, 456, 481
> mne.fiff.tree                          93      2    98%   20-21
> mne.fiff.write                        206     31    85%   69-71, 130-145, 
> 319, 351-368
> mne.filter                            442     39    91%   76, 106, 109, 113, 
> 477, 481, 494, 500, 527, 529, 616, 711, 720, 732, 735-739, 897, 1015-1022, 
> 1096, 1169, 1233, 1236, 1240, 1266-1268, 1300, 1306, 1316, 1343-1344, 1359
> mne.fixes                             202     48    76%   38, 43-44, 51-52, 
> 63-68, 98, 113, 123, 144, 149, 162, 175, 185, 195-196, 200, 204, 216-220, 
> 225-226, 232-236, 243, 249, 350, 353, 358, 361, 364, 367, 377-378, 397, 408, 
> 492, 494, 501, 508, 526
> mne.forward                             2      0   100%   
> mne.forward._compute_forward          170    147    14%   26-39, 44-51, 
> 56-62, 67-73, 78-95, 102-124, 129-148, 157-175, 189-196, 211-221, 233-254, 
> 259-263, 274-280, 286-346
> mne.forward._make_forward             271    254     6%   26-70, 77-111, 
> 116-142, 147-156, 223-476, 481-494
> mne.forward.forward                   797    737     8%   62-65, 96-114, 
> 137-159, 165-226, 244-314, 319, 325-355, 388-525, 552-641, 660-783, 788-796, 
> 802-806, 822-846, 867-890, 896-916, 923-972, 978-987, 993-1012, 1019-1049, 
> 1094-1116, 1159-1183, 1202-1226, 1245-1294, 1366-1509, 1532-1583
> mne.gui                                21     17    19%   15-18, 52-56, 
> 77-80, 86-89
> mne.inverse_sparse                      2      0   100%   
> mne.inverse_sparse._gamma_map         118    106    10%   56-164, 235-301
> mne.inverse_sparse.mxne_debiasing      45      1    98%   128
> mne.inverse_sparse.mxne_inverse       177    159    10%   20-60, 66-87, 
> 159-256, 261-275, 364-432
> mne.inverse_sparse.mxne_optim         307     11    96%   24, 26, 33, 64, 
> 198, 317-318, 328-331, 385, 623
> mne.label                             538    370    31%   72, 75, 79, 81, 
> 85-87, 140, 151, 154, 165-167, 262-263, 315-351, 378, 386-389, 400-406, 438, 
> 448-451, 486, 527-540, 558-582, 615-711, 733-759, 765-777, 817-858, 881-939, 
> 944-966, 1006-1068, 1087-1119, 1151-1228
> mne.layouts                             1      0   100%   
> mne.layouts.layout                    247     64    74%   67, 160, 205, 208, 
> 263, 274, 363, 366, 378, 414-423, 439-466, 494-518, 534-544, 560-562
> mne.minimum_norm                        2      0   100%   
> mne.minimum_norm.inverse              562    515     8%   41-51, 73-287, 
> 306-405, 425-438, 444-457, 483-599, 611-671, 675-678, 682-698, 703, 737-776, 
> 833-892, 899-950, 994-1003, 1031-1047, 1057-1101, 1174-1366, 1383-1389
> mne.minimum_norm.time_frequency       238    213    11%   83-118, 125-185, 
> 196-252, 316-331, 386-464, 476-591, 656-672
> mne.misc                               61     18    70%   28-29, 42, 66-67, 
> 85-100
> mne.mixed_norm                          5      0   100%   
> mne.parallel                           67     27    60%   16, 60-68, 79-83, 
> 93-96, 121-122, 125-128, 141-144
> mne.preprocessing                       5      0   100%   
> mne.preprocessing.ecg                  78      4    95%   64, 162, 168, 172
> mne.preprocessing.eog                  45     12    73%   48-68
> mne.preprocessing.ica                 570     46    92%   185, 197, 227, 
> 292-293, 297, 318, 330, 378, 385, 389-390, 394, 501-503, 666-668, 717-730, 
> 885, 944, 951, 1147-1148, 1178, 1186, 1236, 1337, 1340, 1351, 1364, 
> 1482-1486, 1490-1491, 1584
> mne.preprocessing.maxfilter           104     70    33%   46, 72, 88, 195-292
> mne.preprocessing.peak_finder          82     18    78%   49, 89-91, 96-98, 
> 117, 138-140, 151-157, 166
> mne.preprocessing.ssp                  83     18    78%   24-25, 109, 140, 
> 144-145, 155, 158, 161, 164, 166-177
> mne.preprocessing.stim                 26      1    96%   40
> mne.proj                              152     64    58%   62-63, 65-66, 
> 68-69, 127, 131, 142, 276-360
> mne.realtime                            4      0   100%   
> mne.realtime.client                   164    132    20%   41-60, 65-71, 
> 99-130, 146-168, 181-197, 207-230, 240, 250-260, 264-265, 269, 282-287, 
> 297-302, 313-314, 319-320, 324-325, 340-350, 365-370
> mne.realtime.epochs                   144     22    85%   158, 220-225, 242, 
> 251, 315, 323, 328, 359, 363, 367-369, 377, 387, 390-395
> mne.realtime.mockclient                50      3    94%   159, 171, 175
> mne.realtime.stim_server_client       111      7    94%   81, 253-254, 
> 278-279, 288-289
> mne.selection                          38      5    87%   47, 57, 77-79, 95
> mne.simulation                          2      0   100%   
> mne.simulation.evoked                  34     25    26%   49-52, 77-86, 
> 113-125
> mne.simulation.source                  78     72     8%   31-45, 74-110, 
> 151-196
> mne.source_estimate                   948    718    24%   29-64, 83-102, 
> 108-112, 134-156, 163-169, 188-206, 241-327, 334-345, 350-358, 404, 408, 414, 
> 418, 424, 428, 432, 450-454, 466-479, 509-516, 523, 537-539, 542-548, 
> 558-565, 568-570, 573-579, 582-584, 587-593, 596-598, 601-607, 610-612, 
> 615-617, 620, 623, 626, 629, 632-635, 638, 642, 675-691, 737, 896-934, 977, 
> 1002-1024, 1027-1038, 1042, 1046, 1058-1075, 1091-1117, 1135-1156, 1202-1207, 
> 1255-1300, 1368-1375, 1421-1422, 1446-1447, 1492, 1515-1532, 1557, 1581, 
> 1585-1596, 1644-1652, 1686-1746, 1755-1773, 1777-1780, 1825-1875, 1907-1933, 
> 1968-2000, 2025-2043, 2072-2107, 2127-2129, 2185-2195, 2218, 2237, 2260, 
> 2283-2292, 2321-2325, 2354-2402, 2408-2420, 2428-2520, 2572-2593
> mne.source_space                      891    832     7%   33, 57-61, 64-76, 
> 86-87, 97, 113-137, 161-178, 199-216, 223-417, 425-447, 463-470, 490-515, 
> 519, 538-544, 560-580, 585-666, 706-729, 739-804, 840-952, 1018-1132, 
> 1137-1146, 1163-1182, 1189-1351, 1355, 1361-1449, 1456-1511, 1516-1519, 
> 1525-1539, 1580-1620, 1625-1636
> mne.stats                               4      0   100%   
> mne.stats.cluster_level               554     77    86%   106, 180-182, 198, 
> 212-217, 241, 315, 346, 381, 383, 395, 415-422, 435, 441, 454, 458, 465, 469, 
> 498, 518, 541, 557-570, 586, 605, 610-614, 629-640, 676, 686, 696, 720, 
> 796-799, 835, 873, 991, 1121, 1248, 1361, 1402-1407, 1422-1423, 1427-1433
> mne.stats.multi_comp                   33      0   100%   
> mne.stats.parametric                   77      1    99%   261
> mne.stats.permutations                 48      0   100%   
> mne.surface                           637    550    14%   55-109, 115-191, 
> 210-285, 325, 359-367, 372-386, 394-433, 438-451, 456-458, 485-488, 519-520, 
> 525-527, 532-542, 564-604, 611-625, 635-638, 643-650, 654-657, 663-735, 
> 742-798, 819-829, 847-868, 873-889, 919-920, 951-1017, 1022-1040, 1045, 
> 1053-1064, 1080-1128, 1152-1184, 1191-1221
> mne.time_frequency                      6      0   100%   
> mne.time_frequency.ar                  43      9    79%   54, 63, 65, 75, 
> 148-152
> mne.time_frequency.csd                108     12    89%   48-51, 116, 125, 
> 131, 177-179, 202-206
> mne.time_frequency.multitaper         166     21    87%   45, 59, 91, 
> 157-160, 220, 224, 285, 288, 347, 358, 489, 497, 514-516, 523-527, 531
> mne.time_frequency.psd                 53      3    94%   53, 60, 132
> mne.time_frequency.stft                87     12    86%   44, 47, 54, 57, 62, 
> 66, 135, 139, 142, 146, 149, 153
> mne.time_frequency.tfr                155     22    86%   50, 61, 106, 112, 
> 120-122, 143, 146-148, 188, 325-327, 332, 387-396
> mne.transforms                        181    118    35%   29-46, 50-53, 
> 212-216, 221-237, 254-280, 293-313, 319-321, 342-356, 389-461
> mne.utils                             532    112    79%   48, 51-53, 165, 
> 192-221, 246, 392, 402-411, 421, 450, 457, 465-466, 478-480, 488-490, 
> 509-511, 530-532, 574-576, 631, 702-704, 721, 742-745, 758-765, 811, 823-826, 
> 829-831, 854, 858, 866-867, 875, 881-882, 960, 1009, 1120-1126, 1139, 
> 1141-1144, 1146-1149, 1153, 1178, 1186, 1199, 1203-1207, 1210, 1217-1221, 
> 1227-1232
> mne.viz                              1646    588    64%   89, 115, 198-223, 
> 316-319, 323, 332-333, 347-348, 358, 376, 396-418, 466-467, 540, 545, 547, 
> 549-550, 623, 630-631, 652, 656, 659, 714, 716, 718-719, 782-859, 864-895, 
> 930-986, 1017-1019, 1021, 1037, 1043, 1124-1128, 1147, 1152, 1155, 1160-1161, 
> 1168-1169, 1173-1178, 1190, 1213-1214, 1222-1236, 1259-1260, 1267-1268, 
> 1275-1276, 1327-1433, 1463, 1501, 1597-1684, 1691-1708, 1752, 1756, 
> 1768-1769, 1854, 1885-1886, 1895-1897, 1901, 1908, 1911-1913, 1969, 1973, 
> 1991, 1996, 1999, 2063-2102, 2131, 2137, 2214, 2220, 2225, 2228-2229, 
> 2237-2238, 2241, 2246, 2269, 2374, 2414, 2516, 2519, 2522-2523, 2527, 2547, 
> 2555, 2557-2564, 2577-2583, 2679-2681, 2688-2692, 2699-2700, 2753, 2785-2787, 
> 2818, 2841, 2855-2856, 2884, 2887-2889, 2908, 2929-2930, 2945-2946, 
> 2966-2967, 3017, 3033, 3067, 3124, 3131, 3156-3182, 3191, 3193, 3195-3198, 
> 3201-3209, 3214-3236, 3277, 3287-3291, 3294, 3394-3460
> -----------------------------------------------------------------
> TOTAL                               21020   8192    61%   
> ----------------------------------------------------------------------
> Ran 302 tests in 468.392s
> 
> FAILED (SKIP=100, errors=1)
> make[1]: *** [override_dh_auto_test] Error 1

The full build log is available from:
   
http://aws-logs.debian.net/ftbfs-logs/2014/01/14/python-mne_0.7.1-1_unstable.log

A list of current common problems and possible solutions is available at
http://wiki.debian.org/qa.debian.org/FTBFS . You're welcome to contribute!

About the archive rebuild: The rebuild was done on EC2 VM instances from
Amazon Web Services, using a clean, minimal and up-to-date chroot. Every
failed build was retried once to eliminate random failures.

--- End Message ---
--- Begin Message ---
Source: python-mne
Source-Version: 0.7.3-1

We believe that the bug you reported is fixed in the latest version of
python-mne, which is due to be installed in the Debian FTP archive.

A summary of the changes between this version and the previous one is
attached.

Thank you for reporting the bug, which will now be closed.  If you
have further comments please address them to 735...@bugs.debian.org,
and the maintainer will reopen the bug report if appropriate.

Debian distribution maintenance software
pp.
Alexandre Gramfort <alexandre.gramf...@m4x.org> (supplier of updated python-mne 
package)

(This message was generated automatically at their request; if you
believe that there is a problem with it please contact the archive
administrators by mailing ftpmas...@ftp-master.debian.org)


-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Format: 1.8
Date: Sat, 18 Jan 2014 17:00:00 -0400
Source: python-mne
Binary: python-mne
Architecture: source all
Version: 0.7.3-1
Distribution: unstable
Urgency: low
Maintainer: Debian Med Packaging Team 
<debian-med-packag...@lists.alioth.debian.org>
Changed-By: Alexandre Gramfort <alexandre.gramf...@m4x.org>
Description: 
 python-mne - Python modules for MEG and EEG data analysis
Closes: 735811
Changes: 
 python-mne (0.7.3-1) unstable; urgency=low
 .
   * New upstream version
     Closes: #735811
   * Set back X-Python-Version to >= 2.6
Checksums-Sha1: 
 2ff7c8967a4b70008be0e9fb2b2cba42d2f2c52b 1635 python-mne_0.7.3-1.dsc
 8312eda681e52dad20f4d3d6fe237e443d1f422d 57866625 python-mne_0.7.3.orig.tar.gz
 172a4cf2addf990b6be244a1b95cd566f5488be0 2936 python-mne_0.7.3-1.debian.tar.xz
 315155c37b5204c8bc88351edb2f52fd8b31882b 3757974 python-mne_0.7.3-1_all.deb
Checksums-Sha256: 
 23ff09095149a8f0d301d1d79c8d304bf6e20fdf79cd4447eff9e34e8d5c37e3 1635 
python-mne_0.7.3-1.dsc
 9bc2e6250626854abdb9bbaed865ae73c057851ee5c566d7bce38e1b78b42290 57866625 
python-mne_0.7.3.orig.tar.gz
 9389756bcafd5a586739a420bb53c4480987463ee5ddcf581ea8fc2851725730 2936 
python-mne_0.7.3-1.debian.tar.xz
 826741cdc8a9824fe605195cb463dac3002d27e898da89e10d64cc227ee40748 3757974 
python-mne_0.7.3-1_all.deb
Files: 
 2f9b705ddbf2b96c637e60d8e4ee3290 1635 python optional python-mne_0.7.3-1.dsc
 78963d024e31cd7760d2a4c48176180f 57866625 python optional 
python-mne_0.7.3.orig.tar.gz
 7bf1113f54ba121820db8cf741eca4b0 2936 python optional 
python-mne_0.7.3-1.debian.tar.xz
 384c63dd399281485c75707a7e01f223 3757974 python optional 
python-mne_0.7.3-1_all.deb

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1

iEYEARECAAYFAlLbCYMACgkQYDBbMcCf01oe+QCfWz529gEpJ64Uq2USfJO79jIe
c8kAn0q/yb0x/Ej2wtHHzRNf4/rdl1ue
=IE7p
-----END PGP SIGNATURE-----

--- End Message ---

Reply via email to