Your message dated Sun, 25 Aug 2013 03:04:31 +0000
with message-id <e1vdqcx-0001v3...@franck.debian.org>
and subject line Bug#713399: fixed in gmp-ecm 6.4.4-1
has caused the Debian Bug report #713399,
regarding gmp-ecm: FTBFS: dh_auto_test: make -j1 check returned exit code 2
to be marked as done.

This means that you claim that the problem has been dealt with.
If this is not the case it is now your responsibility to reopen the
Bug report if necessary, and/or fix the problem forthwith.

(NB: If you are a system administrator and have no idea what this
message is talking about, this may indicate a serious mail system
misconfiguration somewhere. Please contact ow...@bugs.debian.org
immediately.)


-- 
713399: http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=713399
Debian Bug Tracking System
Contact ow...@bugs.debian.org with problems
--- Begin Message ---
Source: gmp-ecm
Version: 6.4.2-2
Severity: serious
Tags: jessie sid
User: debian...@lists.debian.org
Usertags: qa-ftbfs-20130620 qa-ftbfs
Justification: FTBFS on amd64

Hi,

During a rebuild of all packages in sid, your package failed to build on
amd64.

Relevant part:
> make[2]: Entering directory `/«PKGBUILDDIR»'
> make[2]: Leaving directory `/«PKGBUILDDIR»'
> ./test.pp1 ./ecm
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 328006342451 (12 digits)
> Using B1=120, B2=8008, polynomial x^1, x0=5
> Step 1 took 0ms
> Step 2 took 0ms
> ********** Factor found in step 2: 328006342451
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 328006342451 (12 digits)
> Using B1=120, B2=8008, polynomial x^1, x0=262405073961
> Step 1 took 0ms
> Step 2 took 0ms
> ********** Factor found in step 2: 328006342451
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 2050449218179969792522461197 (28 digits)
> Using B1=20, B2=-1578-1248978, polynomial x^1, x0=6
> Step 1 took 0ms
> Step 2 took 4ms
> ********** Factor found in step 2: 30210179
> Found probable prime factor of  8 digits: 30210179
> Probable prime cofactor 67872792749091946543 has 20 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 6215074747201 (13 digits)
> Using B1=630, B2=283728, polynomial x^1, x0=5
> Step 1 took 0ms
> Step 2 took 4ms
> ********** Factor found in step 2: 6215074747201
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 6215074747201 (13 digits)
> Using B1=630, B2=222366, polynomial x^2, x0=5
> Step 1 took 0ms
> Step 2 took 4ms
> ********** Factor found in step 2: 6215074747201
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 6215074747201 (13 digits)
> Using B1=630, B2=222366, polynomial Dickson(3), x0=5
> Step 1 took 0ms
> Step 2 took 4ms
> ********** Factor found in step 2: 6215074747201
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 8857714771093 (13 digits)
> Using B1=23251, B2=53722, polynomial x^1, x0=3
> Step 1 took 4ms
> Step 2 took 0ms
> ********** Factor found in step 2: 8857714771093
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 236344687097 (12 digits)
> Using B1=619, B2=62500, polynomial x^1, x0=3
> Step 1 took 0ms
> Step 2 took 4ms
> ********** Factor found in step 2: 236344687097
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 87251820842149 (14 digits)
> Using B1=3691, B2=286878, polynomial x^1, x0=5
> Step 1 took 0ms
> Step 2 took 4ms
> ********** Factor found in step 2: 87251820842149
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 719571227339189 (15 digits)
> Using B1=41039, B2=71740, polynomial x^1, x0=4
> Step 1 took 8ms
> Step 2 took 0ms
> ********** Factor found in step 2: 719571227339189
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 5468575720021 (13 digits)
> Using B1=1439, B2=284778, polynomial x^1, x0=6
> Step 1 took 0ms
> Step 2 took 4ms
> ********** Factor found in step 2: 5468575720021
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 49804972211 (11 digits)
> Using B1=15443, B2=298428, polynomial x^1, x0=5
> Step 1 took 0ms
> Step 2 took 0ms
> ********** Factor found in step 2: 49804972211
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 329573417220613 (15 digits)
> Using B1=5279, B2=146178, polynomial x^1, x0=3
> Step 1 took 0ms
> Step 2 took 0ms
> ********** Factor found in step 2: 329573417220613
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 4866979762781 (13 digits)
> Using B1=7309, B2=148278, polynomial x^1, x0=4
> Step 1 took 4ms
> Step 2 took 0ms
> ********** Factor found in step 2: 4866979762781
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 187333846633 (12 digits)
> Using B1=2063, B2=9898, polynomial x^1, x0=3
> Step 1 took 0ms
> Step 2 took 0ms
> ********** Factor found in step 2: 187333846633
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 332526664667473 (15 digits)
> Using B1=65993, B2=128104, polynomial x^1, x0=3
> Step 1 took 12ms
> Step 2 took 4ms
> ********** Factor found in step 2: 332526664667473
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 265043186297 (12 digits)
> Using B1=8761, B2=292128, polynomial x^1, x0=3
> Step 1 took 0ms
> Step 2 took 4ms
> ********** Factor found in step 2: 265043186297
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 207734163253 (12 digits)
> Using B1=1877, B2=5350, polynomial x^1, x0=3
> Step 1 took 0ms
> Step 2 took 0ms
> ********** Factor found in step 2: 207734163253
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 225974065503889 (15 digits)
> Using B1=7867, B2=8560, polynomial x^1, x0=5
> Step 1 took 0ms
> Step 2 took 0ms
> ********** Factor found in step 2: 225974065503889
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 660198074631409 (15 digits)
> Using B1=22541, B2=162978, polynomial x^1, x0=5
> Step 1 took 0ms
> Step 2 took 4ms
> ********** Factor found in step 2: 660198074631409
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 563215815517 (12 digits)
> Using B1=3469, B2=144078, polynomial x^1, x0=3
> Step 1 took 0ms
> Step 2 took 4ms
> ********** Factor found in step 2: 563215815517
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 563215815517 (12 digits)
> Using B1=3469, B2=109848-109884, polynomial x^1, x0=3
> Step 1 took 0ms
> Step 2 took 0ms
> ********** Factor found in step 2: 563215815517
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 409100738617 (12 digits)
> Using B1=19, B2=54, polynomial x^1, x0=3
> Step 1 took 0ms
> ********** Factor found in step 1: 409100738617
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 
> 2277189375098448170118558775447117254551111605543304035536750762506158547102293199086726265869065639109
>  (103 digits)
> Using B1=2337233, B2=173055082, polynomial x^1, x0=3
> Step 1 took 1368ms
> Step 2 took 96ms
> ********** Factor found in step 2: 4190453151940208656715582382315221647
> Found probable prime factor of 37 digits: 
> 4190453151940208656715582382315221647
> Probable prime cofactor 
> 543423179434447039008165356160798838947285203071935410761431031147 has 66 
> digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 630503947831861669 (18 digits)
> Using B1=7, B2=9007199254739930-9007199254741630, polynomial x^1, x0=5
> Step 1 took 0ms
> Step 2 took 0ms
> ********** Factor found in step 2: 630503947831861669
> Found input number N
> NOTE: NEXT TEST WILL FAIL ON 32BIT MACHINES, THIS IS EXPECTED.
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 8589934621 (10 digits)
> Using B1=4294967310-4294967311, B2=1, polynomial x^1
> Step 1 took 12ms
> ********** Factor found in step 1: 8589934621
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 6054018161*10^400+417727253109 (410 digits)
> Using B1=2000, B2=2352760, polynomial x^1, x0=4
> Step 1 took 12ms
> Step 2 took 120ms
> ********** Factor found in step 2: 6054018161
> Found probable prime factor of 10 digits: 6054018161
> Probable prime cofactor (6054018161*10^400+417727253109)/6054018161 has 401 
> digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 154618728587 (12 digits)
> Using B1=4294957296-4294967295, B2=1, polynomial x^1
> Step 1 took 12ms
> ********** Factor found in step 1: 154618728587
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1]
> Input number is 18446744073709551337 (20 digits)
> Using B1=70823, B2=1320588, polynomial x^1, x0=2
> Step 1 took 12ms
> ********** Factor found in step 1: 18446744073709551337
> Found input number N
> All P+1 tests are ok.
> echo ""
> 
> ./test.pm1 ./ecm
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 441995541378330835457 (21 digits)
> Using B1=157080, B2=6999963848-7293805642, polynomial x^1, x0=3
> Step 1 took 28ms
> Step 2 took 448ms
> ********** Factor found in step 2: 441995541378330835457
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 335203548019575991076297 (24 digits)
> Using B1=23, B2=72, polynomial x^1, x0=2
> Step 1 took 0ms
> Step 2 took 0ms
> ********** Factor found in step 2: 335203548019575991076297
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 335203548019575991076297 (24 digits)
> Using B1=31, B2=58766400424189339236-58766400424189339290, polynomial x^1, 
> x0=3
> Step 1 took 0ms
> Step 2 took 0ms
> ********** Factor found in step 2: 335203548019575991076297
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 2050449353925555290706354283 (28 digits)
> Using B1=20, B2=-3526-1518676, polynomial x^1, x0=2998850398
> Step 1 took 0ms
> Step 2 took 16ms
> ********** Factor found in step 2: 30210181
> Found probable prime factor of  8 digits: 30210181
> Probable prime cofactor 67872792749091946543 has 20 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 67872792749091946529 (20 digits)
> Using B1=8467, B2=15275830, polynomial x^1, x0=3
> Step 1 took 0ms
> Step 2 took 68ms
> ********** Factor found in step 2: 67872792749091946529
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 5735039483399104015346944564789 (31 digits)
> Using B1=1277209, B2=12169902, polynomial x^1, x0=2151324242
> Step 1 took 100ms
> Step 2 took 12ms
> ********** Factor found in step 2: 5735039483399104015346944564789
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 620224739362954187513 (21 digits)
> Using B1=668093, B2=66358492, polynomial x^1, x0=3
> Step 1 took 84ms
> Step 2 took 20ms
> ********** Factor found in step 2: 620224739362954187513
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 1405929742229533753 (19 digits)
> Using B1=1123483, B2=88597320, polynomial x^1, x0=2783822079
> Step 1 took 60ms
> Step 2 took 216ms
> ********** Factor found in step 2: 1405929742229533753
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 16811052664235873 (17 digits)
> Using B1=19110, B2=293849602, polynomial x^1, x0=3
> Step 1 took 0ms
> Step 2 took 432ms
> ********** Factor found in step 2: 16811052664235873
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 9110965748024759967611 (22 digits)
> Using B1=1193119, B2=380065050, polynomial x^1, x0=1665087576
> Step 1 took 88ms
> Step 2 took 56ms
> ********** Factor found in step 2: 9110965748024759967611
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 563796628294674772855559264041716715663 (39 digits)
> Using B1=4031563, B2=19305310, polynomial x^1, x0=2048891498
> Step 1 took 452ms
> Step 2 took 76ms
> ********** Factor found in step 2: 563796628294674772855559264041716715663
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 188879386195169498836498369376071664143 (39 digits)
> Using B1=3026227, B2=108523536, polynomial x^1, x0=3725534365
> Step 1 took 244ms
> Step 2 took 292ms
> ********** Factor found in step 2: 188879386195169498836498369376071664143
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 474476178924594486566271953891 (30 digits)
> Using B1=9594209, B2=670420198, polynomial x^1, x0=88572647
> Step 1 took 712ms
> Step 2 took 68ms
> ********** Factor found in step 2: 474476178924594486566271953891
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 2124306045220073929294177 (25 digits)
> Using B1=290021, B2=1681955640, polynomial x^1, x0=2939942435
> Step 1 took 48ms
> Step 2 took 596ms
> ********** Factor found in step 2: 2124306045220073929294177
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 25591172394760497166702530699464321 (35 digits)
> Using B1=100000, B2=49166862, polynomial x^1, x0=4165598028
> Step 1 took 16ms
> Step 2 took 152ms
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Resuming P-1 residue saved by user@ip-10-232-41-82 with GMP-ECM 6.4.2 on Fri 
> Jun 21 05:36:58 2013 
> Input number is 25591172394760497166702530699464321 (35 digits)
> Using B1=100000-120557, B2=2778372, polynomial x^1
> Step 1 took 0ms
> Step 2 took 20ms
> ********** Factor found in step 2: 25591172394760497166702530699464321
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 504403158265489337 (18 digits)
> Using B1=8, B2=9007199254740674-9007199254741030, polynomial x^1, 
> x0=2917268683
> Step 1 took 0ms
> Step 2 took 0ms
> ********** Factor found in step 2: 504403158265489337
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 6857 (4 digits)
> Using B1=840, B2=882, polynomial x^1, x0=750583732
> Step 1 took 0ms
> Step 2 took 0ms
> ********** Factor found in step 2: 6857
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 10090030271*10^400+696212088699 (411 digits)
> Using B1=2000, B2=2660562, polynomial x^1, x0=2303410184
> Step 1 took 8ms
> Step 2 took 80ms
> ********** Factor found in step 2: 10090030271
> Found probable prime factor of 11 digits: 10090030271
> Probable prime cofactor (10090030271*10^400+696212088699)/10090030271 has 401 
> digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1]
> Input number is 2^(64*2)-1 (39 digits)
> Using B1=2, B2=1, polynomial x^1, x0=340282366920938463463374607431768211454
> Step 1 took 0ms
> ********** Factor found in step 1: 340282366920938463463374607431768211455
> Found input number N
> All P-1 tests are ok.
> echo ""
> 
> ./test.ecm ./ecm
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is 2050449353925555290706354283 (28 digits)
> Using B1=30, B2=0-2443992, polynomial x^1, sigma=7
> Step 1 took 0ms
> Step 2 took 16ms
> ********** Factor found in step 2: 30210181
> Found probable prime factor of  8 digits: 30210181
> Probable prime cofactor 67872792749091946543 has 20 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is 2050449353925555290706354283 (28 digits)
> Using B1=30, B2=0-2443992, polynomial x^1, sigma=7
> Step 1 took 0ms
> Step 2 took 20ms
> ********** Factor found in step 2: 30210181
> Found probable prime factor of  8 digits: 30210181
> Probable prime cofactor 67872792749091946543 has 20 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is 212252637915375215854013140804296246361 (39 digits)
> Using B1=63421, B2=1822795201-1822795212, polynomial x^1, sigma=781683988
> Step 1 took 88ms
> Step 2 took 0ms
> ********** Factor found in step 2: 212252637915375215854013140804296246361
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is 137703491 (9 digits)
> Using B1=84, B2=1506, polynomial x^1, sigma=6
> Step 1 took 0ms
> ********** Factor found in step 1: 137703491
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is 3533000986701102061387017352606588294716061 (43 digits)
> Using B1=191, B2=240, polynomial x^1, sigma=1621
> Step 1 took 0ms
> Step 2 took 0ms
> ********** Factor found in step 2: 291310394389387
> Found probable prime factor of 15 digits: 291310394389387
> Probable prime cofactor 12127960604037464813777571703 has 29 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is 145152979917007299777325725119 (30 digits)
> Using B1=924, B2=145866, polynomial x^1, sigma=711387948
> Step 1 took 4ms
> Step 2 took 4ms
> ********** Factor found in step 2: 59124358487827
> Found probable prime factor of 14 digits: 59124358487827
> Probable prime cofactor 2455045325301797 has 16 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is 2^919-1 (277 digits)
> Using B1=937, B2=1, polynomial x^1, sigma=262763035
> Step 1 took 4ms
> ********** Factor found in step 1: 33554520197234177
> Found probable prime factor of 17 digits: 33554520197234177
> Composite cofactor (2^919-1)/33554520197234177 has 261 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is 2^919-1 (277 digits)
> Using B1=283, B2=1746, polynomial x^1, sigma=1691973485
> Step 1 took 0ms
> Step 2 took 4ms
> ********** Factor found in step 2: 33554520197234177
> Found probable prime factor of 17 digits: 33554520197234177
> Composite cofactor (2^919-1)/33554520197234177 has 261 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is (2^1033+1)/3 (311 digits)
> Using B1=521, B2=1, polynomial x^1, sigma=2301432245
> Step 1 took 4ms
> ********** Factor found in step 1: 24651922299337
> Found probable prime factor of 14 digits: 24651922299337
> Composite cofactor ((2^1033+1)/3)/24651922299337 has 298 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is (2^1033+1)/3 (311 digits)
> Using B1=223, B2=2226, polynomial x^1, sigma=2301432245
> Step 1 took 0ms
> Step 2 took 4ms
> ********** Factor found in step 2: 24651922299337
> Found probable prime factor of 14 digits: 24651922299337
> Composite cofactor ((2^1033+1)/3)/24651922299337 has 298 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is (2^1063+1)/3/26210488518118323164267329859 (292 digits)
> Using B1=383, B2=1, polynomial x^1, sigma=2399424618
> Step 1 took 0ms
> ********** Factor found in step 1: 114584129081
> Found probable prime factor of 12 digits: 114584129081
> Composite cofactor ((2^1063+1)/3/26210488518118323164267329859)/114584129081 
> has 281 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is (2^1063+1)/3/26210488518118323164267329859 (292 digits)
> Using B1=71, B2=510, polynomial x^1, sigma=2399424618
> Step 1 took 0ms
> Step 2 took 4ms
> ********** Factor found in step 2: 114584129081
> Found probable prime factor of 12 digits: 114584129081
> Composite cofactor ((2^1063+1)/3/26210488518118323164267329859)/114584129081 
> has 281 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is 
> 242668358425701966181147598421249782519178289604307455138484425562807899 (72 
> digits)
> Using B1=28560, B2=80000000-87572112, polynomial x^1, sigma=1417477358
> Step 1 took 52ms
> Step 2 took 56ms
> ********** Factor found in step 2: 314189411150178070008866231673623
> Found probable prime factor of 33 digits: 314189411150178070008866231673623
> Probable prime cofactor 772363261821417470288502136863983499613 has 39 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is 3533000986701102061387017352606588294716061 (43 digits)
> ********** Factor found in step 1: 291310394389387
> Found probable prime factor of 15 digits: 291310394389387
> Probable prime cofactor 12127960604037464813777571703 has 29 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is 121279606270805899614487548491773862357 (39 digits)
> ********** Factor found in step 1: 10000000019
> Found probable prime factor of 11 digits: 10000000019
> Probable prime cofactor 12127960604037464813777571703 has 29 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is 291310394389387 (15 digits)
> Using B1=2000, B2=147396, polynomial x^3, sigma=40
> Step 1 took 0ms
> Step 2 took 4ms
> ********** Factor found in step 2: 291310394389387
> Found input number N
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is 3533000986701102061387017352606588294716061 (43 digits)
> Using B1=167, B2=216, polynomial x^1, sigma=3547
> Step 1 took 0ms
> Step 2 took 0ms
> ********** Factor found in step 2: 291310394389387
> Found probable prime factor of 15 digits: 291310394389387
> Probable prime cofactor 12127960604037464813777571703 has 29 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is 
> 449590253344339769860648131841615148645295989319968106906219761704350259884936939123964073775456979170209297434164627098624602597663490109944575251386017
>  (153 digits)
> Using B1=61843, B2=30575172, polynomial x^2, sigma=63844855
> Step 1 took 284ms
> Step 2 took 260ms
> ********** Factor found in step 2: 241421225374647262615077397
> Found probable prime factor of 27 digits: 241421225374647262615077397
> Probable prime cofactor 
> 1862264813902122131423372344559339567503391871088436708374700394762064021217072743463856958990845558484946068708307156081498461
>  has 127 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is 17061648125571273329563156588435816942778260706938821014533 
> (59 digits)
> Using B1=174000, B2=85880350, polynomial x^2, sigma=585928442
> Step 1 took 400ms
> Step 2 took 236ms
> ********** Factor found in step 2: 4562371492227327125110177
> Found probable prime factor of 25 digits: 4562371492227327125110177
> Probable prime cofactor 3739644646350764691998599898592229 has 34 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is 
> 89101594496537524661600025466303491594098940711325290746374420963129505171895306244425914080753573576861992127359576789001
>  (122 digits)
> Using B1=157721, B2=1057746, polynomial x^1, sigma=877655087
> Step 1 took 580ms
> Step 2 took 24ms
> ********** Factor found in step 2: 
> 122213491239590733375594767461662771175707001
> Found probable prime factor of 45 digits: 
> 122213491239590733375594767461662771175707001
> Probable prime cofactor 
> 729065126875888654836271846897328714196046117321552802754910712464291427082001
>  has 78 digits
> GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM]
> Input number is 
> 5394204444759808120647321820789847518754252780933425517607611172590240019087317088600360602042567541009369753816111824690753627535877960715703346991252857
>  (154 digits)
> Using B1=149827, B2=61418292, polynomial x^2, sigma=805816989
> Step 1 took 696ms
> Step 2 took 424ms
> ############### ERROR ###############
> Expected return code 6 but got 0
> make[1]: *** [check] Error 1
> dh_auto_test: make -j1 check returned exit code 2

The full build log is available from:
   http://aws-logs.debian.net/ftbfs-logs/2013/06/20/gmp-ecm_6.4.2-2_unstable.log

A list of current common problems and possible solutions is available at 
http://wiki.debian.org/qa.debian.org/FTBFS . You're welcome to contribute!

About the archive rebuild: The rebuild was done on EC2 VM instances from
Amazon Web Services, using a clean, minimal and up-to-date chroot. Every
failed build was retried once to eliminate random failures.

--- End Message ---
--- Begin Message ---
Source: gmp-ecm
Source-Version: 6.4.4-1

We believe that the bug you reported is fixed in the latest version of
gmp-ecm, which is due to be installed in the Debian FTP archive.

A summary of the changes between this version and the previous one is
attached.

Thank you for reporting the bug, which will now be closed.  If you
have further comments please address them to 713...@bugs.debian.org,
and the maintainer will reopen the bug report if appropriate.

Debian distribution maintenance software
pp.
Laurent Fousse <lfou...@debian.org> (supplier of updated gmp-ecm package)

(This message was generated automatically at their request; if you
believe that there is a problem with it please contact the archive
administrators by mailing ftpmas...@ftp-master.debian.org)


-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Format: 1.8
Date: Sat, 13 Jul 2013 22:33:00 -0700
Source: gmp-ecm
Binary: gmp-ecm libecm0 libecm-dev
Architecture: source amd64
Version: 6.4.4-1
Distribution: unstable
Urgency: low
Maintainer: Laurent Fousse <lfou...@debian.org>
Changed-By: Laurent Fousse <lfou...@debian.org>
Description: 
 gmp-ecm    - Factor integers using the Elliptic Curve Method
 libecm-dev - Factor integers using the Elliptic Curve Method (library)
 libecm0    - Factor integers using the Elliptic Curve Method (library)
Closes: 713399
Changes: 
 gmp-ecm (6.4.4-1) unstable; urgency=low
 .
   * New upstream release.
     + Fixes build with latest GMP (closes: #713399).
Checksums-Sha1: 
 e56085491e087a8c40c0808468b0c565dc3b8806 1178 gmp-ecm_6.4.4-1.dsc
 003d259772bd7748854f0fd8722299505c7d5259 941058 gmp-ecm_6.4.4.orig.tar.gz
 ef13e4324e9616d1e7d87bb75b916a467001c36b 4836 gmp-ecm_6.4.4-1.debian.tar.gz
 7bb1b637b8b7231820fdc33bea367b816666dddf 136538 gmp-ecm_6.4.4-1_amd64.deb
 a2af389908ad9f52708b49528e2bc3f86172bec7 241182 libecm0_6.4.4-1_amd64.deb
 38b8418912b81c4a2b2241e7a4d8f430b3029ff9 253288 libecm-dev_6.4.4-1_amd64.deb
Checksums-Sha256: 
 4d3c0487c75b9092cab6f4693300530b0bea21065f3cd71f952ee0d85ea2a56b 1178 
gmp-ecm_6.4.4-1.dsc
 c813a814592d8092745012debdba25388211e1a2579c26183adda7cfa215b06c 941058 
gmp-ecm_6.4.4.orig.tar.gz
 23ebcfdfe94aed0071142b28f75faba02a7099f65a0e5636c6eb0284ea3759d9 4836 
gmp-ecm_6.4.4-1.debian.tar.gz
 de983ee5ddac4f0b0e5e505d3b7f60b9bc01c2dc347f5c12995c629c7a01f9b6 136538 
gmp-ecm_6.4.4-1_amd64.deb
 c7ea99115ecc705213bc5544b1a13ba45652d0f0776de42cce8c87e7994796ab 241182 
libecm0_6.4.4-1_amd64.deb
 34afdaf1c1ba31d68ad2b6badc9153dfaaa2b94ed56203c3db8077779435d7e2 253288 
libecm-dev_6.4.4-1_amd64.deb
Files: 
 5c63f246a4cbc73b246085c958c23342 1178 math optional gmp-ecm_6.4.4-1.dsc
 927712d698ae9e5de71574fb6ee2316c 941058 math optional gmp-ecm_6.4.4.orig.tar.gz
 ccea667ecfebf353b4392339c997023c 4836 math optional 
gmp-ecm_6.4.4-1.debian.tar.gz
 a995f55da5cb1c40f8905458b9ba3b4c 136538 math optional gmp-ecm_6.4.4-1_amd64.deb
 801718c215b4edb9c7b1c3bb0a1e3372 241182 libs optional libecm0_6.4.4-1_amd64.deb
 7021cfd106c197bea8f08642ee31c8f2 253288 libdevel optional 
libecm-dev_6.4.4-1_amd64.deb

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.14 (GNU/Linux)

iEYEARECAAYFAlIZaicACgkQRoAVF6FpbSslFwCcCqTriGxxXBEbXdfekw9J1TB7
1HEAoJgfKi7fayTv9UKZ+Y6nV7k5MuDT
=QIDi
-----END PGP SIGNATURE-----

--- End Message ---

Reply via email to