Source: gmp-ecm Version: 6.4.2-2 Severity: serious Tags: jessie sid User: debian...@lists.debian.org Usertags: qa-ftbfs-20130620 qa-ftbfs Justification: FTBFS on amd64
Hi, During a rebuild of all packages in sid, your package failed to build on amd64. Relevant part: > make[2]: Entering directory `/«PKGBUILDDIR»' > make[2]: Leaving directory `/«PKGBUILDDIR»' > ./test.pp1 ./ecm > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 328006342451 (12 digits) > Using B1=120, B2=8008, polynomial x^1, x0=5 > Step 1 took 0ms > Step 2 took 0ms > ********** Factor found in step 2: 328006342451 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 328006342451 (12 digits) > Using B1=120, B2=8008, polynomial x^1, x0=262405073961 > Step 1 took 0ms > Step 2 took 0ms > ********** Factor found in step 2: 328006342451 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 2050449218179969792522461197 (28 digits) > Using B1=20, B2=-1578-1248978, polynomial x^1, x0=6 > Step 1 took 0ms > Step 2 took 4ms > ********** Factor found in step 2: 30210179 > Found probable prime factor of 8 digits: 30210179 > Probable prime cofactor 67872792749091946543 has 20 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 6215074747201 (13 digits) > Using B1=630, B2=283728, polynomial x^1, x0=5 > Step 1 took 0ms > Step 2 took 4ms > ********** Factor found in step 2: 6215074747201 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 6215074747201 (13 digits) > Using B1=630, B2=222366, polynomial x^2, x0=5 > Step 1 took 0ms > Step 2 took 4ms > ********** Factor found in step 2: 6215074747201 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 6215074747201 (13 digits) > Using B1=630, B2=222366, polynomial Dickson(3), x0=5 > Step 1 took 0ms > Step 2 took 4ms > ********** Factor found in step 2: 6215074747201 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 8857714771093 (13 digits) > Using B1=23251, B2=53722, polynomial x^1, x0=3 > Step 1 took 4ms > Step 2 took 0ms > ********** Factor found in step 2: 8857714771093 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 236344687097 (12 digits) > Using B1=619, B2=62500, polynomial x^1, x0=3 > Step 1 took 0ms > Step 2 took 4ms > ********** Factor found in step 2: 236344687097 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 87251820842149 (14 digits) > Using B1=3691, B2=286878, polynomial x^1, x0=5 > Step 1 took 0ms > Step 2 took 4ms > ********** Factor found in step 2: 87251820842149 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 719571227339189 (15 digits) > Using B1=41039, B2=71740, polynomial x^1, x0=4 > Step 1 took 8ms > Step 2 took 0ms > ********** Factor found in step 2: 719571227339189 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 5468575720021 (13 digits) > Using B1=1439, B2=284778, polynomial x^1, x0=6 > Step 1 took 0ms > Step 2 took 4ms > ********** Factor found in step 2: 5468575720021 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 49804972211 (11 digits) > Using B1=15443, B2=298428, polynomial x^1, x0=5 > Step 1 took 0ms > Step 2 took 0ms > ********** Factor found in step 2: 49804972211 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 329573417220613 (15 digits) > Using B1=5279, B2=146178, polynomial x^1, x0=3 > Step 1 took 0ms > Step 2 took 0ms > ********** Factor found in step 2: 329573417220613 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 4866979762781 (13 digits) > Using B1=7309, B2=148278, polynomial x^1, x0=4 > Step 1 took 4ms > Step 2 took 0ms > ********** Factor found in step 2: 4866979762781 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 187333846633 (12 digits) > Using B1=2063, B2=9898, polynomial x^1, x0=3 > Step 1 took 0ms > Step 2 took 0ms > ********** Factor found in step 2: 187333846633 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 332526664667473 (15 digits) > Using B1=65993, B2=128104, polynomial x^1, x0=3 > Step 1 took 12ms > Step 2 took 4ms > ********** Factor found in step 2: 332526664667473 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 265043186297 (12 digits) > Using B1=8761, B2=292128, polynomial x^1, x0=3 > Step 1 took 0ms > Step 2 took 4ms > ********** Factor found in step 2: 265043186297 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 207734163253 (12 digits) > Using B1=1877, B2=5350, polynomial x^1, x0=3 > Step 1 took 0ms > Step 2 took 0ms > ********** Factor found in step 2: 207734163253 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 225974065503889 (15 digits) > Using B1=7867, B2=8560, polynomial x^1, x0=5 > Step 1 took 0ms > Step 2 took 0ms > ********** Factor found in step 2: 225974065503889 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 660198074631409 (15 digits) > Using B1=22541, B2=162978, polynomial x^1, x0=5 > Step 1 took 0ms > Step 2 took 4ms > ********** Factor found in step 2: 660198074631409 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 563215815517 (12 digits) > Using B1=3469, B2=144078, polynomial x^1, x0=3 > Step 1 took 0ms > Step 2 took 4ms > ********** Factor found in step 2: 563215815517 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 563215815517 (12 digits) > Using B1=3469, B2=109848-109884, polynomial x^1, x0=3 > Step 1 took 0ms > Step 2 took 0ms > ********** Factor found in step 2: 563215815517 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 409100738617 (12 digits) > Using B1=19, B2=54, polynomial x^1, x0=3 > Step 1 took 0ms > ********** Factor found in step 1: 409100738617 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is > 2277189375098448170118558775447117254551111605543304035536750762506158547102293199086726265869065639109 > (103 digits) > Using B1=2337233, B2=173055082, polynomial x^1, x0=3 > Step 1 took 1368ms > Step 2 took 96ms > ********** Factor found in step 2: 4190453151940208656715582382315221647 > Found probable prime factor of 37 digits: > 4190453151940208656715582382315221647 > Probable prime cofactor > 543423179434447039008165356160798838947285203071935410761431031147 has 66 > digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 630503947831861669 (18 digits) > Using B1=7, B2=9007199254739930-9007199254741630, polynomial x^1, x0=5 > Step 1 took 0ms > Step 2 took 0ms > ********** Factor found in step 2: 630503947831861669 > Found input number N > NOTE: NEXT TEST WILL FAIL ON 32BIT MACHINES, THIS IS EXPECTED. > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 8589934621 (10 digits) > Using B1=4294967310-4294967311, B2=1, polynomial x^1 > Step 1 took 12ms > ********** Factor found in step 1: 8589934621 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 6054018161*10^400+417727253109 (410 digits) > Using B1=2000, B2=2352760, polynomial x^1, x0=4 > Step 1 took 12ms > Step 2 took 120ms > ********** Factor found in step 2: 6054018161 > Found probable prime factor of 10 digits: 6054018161 > Probable prime cofactor (6054018161*10^400+417727253109)/6054018161 has 401 > digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 154618728587 (12 digits) > Using B1=4294957296-4294967295, B2=1, polynomial x^1 > Step 1 took 12ms > ********** Factor found in step 1: 154618728587 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P+1] > Input number is 18446744073709551337 (20 digits) > Using B1=70823, B2=1320588, polynomial x^1, x0=2 > Step 1 took 12ms > ********** Factor found in step 1: 18446744073709551337 > Found input number N > All P+1 tests are ok. > echo "" > > ./test.pm1 ./ecm > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 441995541378330835457 (21 digits) > Using B1=157080, B2=6999963848-7293805642, polynomial x^1, x0=3 > Step 1 took 28ms > Step 2 took 448ms > ********** Factor found in step 2: 441995541378330835457 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 335203548019575991076297 (24 digits) > Using B1=23, B2=72, polynomial x^1, x0=2 > Step 1 took 0ms > Step 2 took 0ms > ********** Factor found in step 2: 335203548019575991076297 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 335203548019575991076297 (24 digits) > Using B1=31, B2=58766400424189339236-58766400424189339290, polynomial x^1, > x0=3 > Step 1 took 0ms > Step 2 took 0ms > ********** Factor found in step 2: 335203548019575991076297 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 2050449353925555290706354283 (28 digits) > Using B1=20, B2=-3526-1518676, polynomial x^1, x0=2998850398 > Step 1 took 0ms > Step 2 took 16ms > ********** Factor found in step 2: 30210181 > Found probable prime factor of 8 digits: 30210181 > Probable prime cofactor 67872792749091946543 has 20 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 67872792749091946529 (20 digits) > Using B1=8467, B2=15275830, polynomial x^1, x0=3 > Step 1 took 0ms > Step 2 took 68ms > ********** Factor found in step 2: 67872792749091946529 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 5735039483399104015346944564789 (31 digits) > Using B1=1277209, B2=12169902, polynomial x^1, x0=2151324242 > Step 1 took 100ms > Step 2 took 12ms > ********** Factor found in step 2: 5735039483399104015346944564789 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 620224739362954187513 (21 digits) > Using B1=668093, B2=66358492, polynomial x^1, x0=3 > Step 1 took 84ms > Step 2 took 20ms > ********** Factor found in step 2: 620224739362954187513 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 1405929742229533753 (19 digits) > Using B1=1123483, B2=88597320, polynomial x^1, x0=2783822079 > Step 1 took 60ms > Step 2 took 216ms > ********** Factor found in step 2: 1405929742229533753 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 16811052664235873 (17 digits) > Using B1=19110, B2=293849602, polynomial x^1, x0=3 > Step 1 took 0ms > Step 2 took 432ms > ********** Factor found in step 2: 16811052664235873 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 9110965748024759967611 (22 digits) > Using B1=1193119, B2=380065050, polynomial x^1, x0=1665087576 > Step 1 took 88ms > Step 2 took 56ms > ********** Factor found in step 2: 9110965748024759967611 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 563796628294674772855559264041716715663 (39 digits) > Using B1=4031563, B2=19305310, polynomial x^1, x0=2048891498 > Step 1 took 452ms > Step 2 took 76ms > ********** Factor found in step 2: 563796628294674772855559264041716715663 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 188879386195169498836498369376071664143 (39 digits) > Using B1=3026227, B2=108523536, polynomial x^1, x0=3725534365 > Step 1 took 244ms > Step 2 took 292ms > ********** Factor found in step 2: 188879386195169498836498369376071664143 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 474476178924594486566271953891 (30 digits) > Using B1=9594209, B2=670420198, polynomial x^1, x0=88572647 > Step 1 took 712ms > Step 2 took 68ms > ********** Factor found in step 2: 474476178924594486566271953891 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 2124306045220073929294177 (25 digits) > Using B1=290021, B2=1681955640, polynomial x^1, x0=2939942435 > Step 1 took 48ms > Step 2 took 596ms > ********** Factor found in step 2: 2124306045220073929294177 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 25591172394760497166702530699464321 (35 digits) > Using B1=100000, B2=49166862, polynomial x^1, x0=4165598028 > Step 1 took 16ms > Step 2 took 152ms > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Resuming P-1 residue saved by user@ip-10-232-41-82 with GMP-ECM 6.4.2 on Fri > Jun 21 05:36:58 2013 > Input number is 25591172394760497166702530699464321 (35 digits) > Using B1=100000-120557, B2=2778372, polynomial x^1 > Step 1 took 0ms > Step 2 took 20ms > ********** Factor found in step 2: 25591172394760497166702530699464321 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 504403158265489337 (18 digits) > Using B1=8, B2=9007199254740674-9007199254741030, polynomial x^1, > x0=2917268683 > Step 1 took 0ms > Step 2 took 0ms > ********** Factor found in step 2: 504403158265489337 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 6857 (4 digits) > Using B1=840, B2=882, polynomial x^1, x0=750583732 > Step 1 took 0ms > Step 2 took 0ms > ********** Factor found in step 2: 6857 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 10090030271*10^400+696212088699 (411 digits) > Using B1=2000, B2=2660562, polynomial x^1, x0=2303410184 > Step 1 took 8ms > Step 2 took 80ms > ********** Factor found in step 2: 10090030271 > Found probable prime factor of 11 digits: 10090030271 > Probable prime cofactor (10090030271*10^400+696212088699)/10090030271 has 401 > digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [P-1] > Input number is 2^(64*2)-1 (39 digits) > Using B1=2, B2=1, polynomial x^1, x0=340282366920938463463374607431768211454 > Step 1 took 0ms > ********** Factor found in step 1: 340282366920938463463374607431768211455 > Found input number N > All P-1 tests are ok. > echo "" > > ./test.ecm ./ecm > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is 2050449353925555290706354283 (28 digits) > Using B1=30, B2=0-2443992, polynomial x^1, sigma=7 > Step 1 took 0ms > Step 2 took 16ms > ********** Factor found in step 2: 30210181 > Found probable prime factor of 8 digits: 30210181 > Probable prime cofactor 67872792749091946543 has 20 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is 2050449353925555290706354283 (28 digits) > Using B1=30, B2=0-2443992, polynomial x^1, sigma=7 > Step 1 took 0ms > Step 2 took 20ms > ********** Factor found in step 2: 30210181 > Found probable prime factor of 8 digits: 30210181 > Probable prime cofactor 67872792749091946543 has 20 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is 212252637915375215854013140804296246361 (39 digits) > Using B1=63421, B2=1822795201-1822795212, polynomial x^1, sigma=781683988 > Step 1 took 88ms > Step 2 took 0ms > ********** Factor found in step 2: 212252637915375215854013140804296246361 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is 137703491 (9 digits) > Using B1=84, B2=1506, polynomial x^1, sigma=6 > Step 1 took 0ms > ********** Factor found in step 1: 137703491 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is 3533000986701102061387017352606588294716061 (43 digits) > Using B1=191, B2=240, polynomial x^1, sigma=1621 > Step 1 took 0ms > Step 2 took 0ms > ********** Factor found in step 2: 291310394389387 > Found probable prime factor of 15 digits: 291310394389387 > Probable prime cofactor 12127960604037464813777571703 has 29 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is 145152979917007299777325725119 (30 digits) > Using B1=924, B2=145866, polynomial x^1, sigma=711387948 > Step 1 took 4ms > Step 2 took 4ms > ********** Factor found in step 2: 59124358487827 > Found probable prime factor of 14 digits: 59124358487827 > Probable prime cofactor 2455045325301797 has 16 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is 2^919-1 (277 digits) > Using B1=937, B2=1, polynomial x^1, sigma=262763035 > Step 1 took 4ms > ********** Factor found in step 1: 33554520197234177 > Found probable prime factor of 17 digits: 33554520197234177 > Composite cofactor (2^919-1)/33554520197234177 has 261 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is 2^919-1 (277 digits) > Using B1=283, B2=1746, polynomial x^1, sigma=1691973485 > Step 1 took 0ms > Step 2 took 4ms > ********** Factor found in step 2: 33554520197234177 > Found probable prime factor of 17 digits: 33554520197234177 > Composite cofactor (2^919-1)/33554520197234177 has 261 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is (2^1033+1)/3 (311 digits) > Using B1=521, B2=1, polynomial x^1, sigma=2301432245 > Step 1 took 4ms > ********** Factor found in step 1: 24651922299337 > Found probable prime factor of 14 digits: 24651922299337 > Composite cofactor ((2^1033+1)/3)/24651922299337 has 298 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is (2^1033+1)/3 (311 digits) > Using B1=223, B2=2226, polynomial x^1, sigma=2301432245 > Step 1 took 0ms > Step 2 took 4ms > ********** Factor found in step 2: 24651922299337 > Found probable prime factor of 14 digits: 24651922299337 > Composite cofactor ((2^1033+1)/3)/24651922299337 has 298 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is (2^1063+1)/3/26210488518118323164267329859 (292 digits) > Using B1=383, B2=1, polynomial x^1, sigma=2399424618 > Step 1 took 0ms > ********** Factor found in step 1: 114584129081 > Found probable prime factor of 12 digits: 114584129081 > Composite cofactor ((2^1063+1)/3/26210488518118323164267329859)/114584129081 > has 281 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is (2^1063+1)/3/26210488518118323164267329859 (292 digits) > Using B1=71, B2=510, polynomial x^1, sigma=2399424618 > Step 1 took 0ms > Step 2 took 4ms > ********** Factor found in step 2: 114584129081 > Found probable prime factor of 12 digits: 114584129081 > Composite cofactor ((2^1063+1)/3/26210488518118323164267329859)/114584129081 > has 281 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is > 242668358425701966181147598421249782519178289604307455138484425562807899 (72 > digits) > Using B1=28560, B2=80000000-87572112, polynomial x^1, sigma=1417477358 > Step 1 took 52ms > Step 2 took 56ms > ********** Factor found in step 2: 314189411150178070008866231673623 > Found probable prime factor of 33 digits: 314189411150178070008866231673623 > Probable prime cofactor 772363261821417470288502136863983499613 has 39 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is 3533000986701102061387017352606588294716061 (43 digits) > ********** Factor found in step 1: 291310394389387 > Found probable prime factor of 15 digits: 291310394389387 > Probable prime cofactor 12127960604037464813777571703 has 29 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is 121279606270805899614487548491773862357 (39 digits) > ********** Factor found in step 1: 10000000019 > Found probable prime factor of 11 digits: 10000000019 > Probable prime cofactor 12127960604037464813777571703 has 29 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is 291310394389387 (15 digits) > Using B1=2000, B2=147396, polynomial x^3, sigma=40 > Step 1 took 0ms > Step 2 took 4ms > ********** Factor found in step 2: 291310394389387 > Found input number N > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is 3533000986701102061387017352606588294716061 (43 digits) > Using B1=167, B2=216, polynomial x^1, sigma=3547 > Step 1 took 0ms > Step 2 took 0ms > ********** Factor found in step 2: 291310394389387 > Found probable prime factor of 15 digits: 291310394389387 > Probable prime cofactor 12127960604037464813777571703 has 29 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is > 449590253344339769860648131841615148645295989319968106906219761704350259884936939123964073775456979170209297434164627098624602597663490109944575251386017 > (153 digits) > Using B1=61843, B2=30575172, polynomial x^2, sigma=63844855 > Step 1 took 284ms > Step 2 took 260ms > ********** Factor found in step 2: 241421225374647262615077397 > Found probable prime factor of 27 digits: 241421225374647262615077397 > Probable prime cofactor > 1862264813902122131423372344559339567503391871088436708374700394762064021217072743463856958990845558484946068708307156081498461 > has 127 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is 17061648125571273329563156588435816942778260706938821014533 > (59 digits) > Using B1=174000, B2=85880350, polynomial x^2, sigma=585928442 > Step 1 took 400ms > Step 2 took 236ms > ********** Factor found in step 2: 4562371492227327125110177 > Found probable prime factor of 25 digits: 4562371492227327125110177 > Probable prime cofactor 3739644646350764691998599898592229 has 34 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is > 89101594496537524661600025466303491594098940711325290746374420963129505171895306244425914080753573576861992127359576789001 > (122 digits) > Using B1=157721, B2=1057746, polynomial x^1, sigma=877655087 > Step 1 took 580ms > Step 2 took 24ms > ********** Factor found in step 2: > 122213491239590733375594767461662771175707001 > Found probable prime factor of 45 digits: > 122213491239590733375594767461662771175707001 > Probable prime cofactor > 729065126875888654836271846897328714196046117321552802754910712464291427082001 > has 78 digits > GMP-ECM 6.4.2 [configured with GMP 5.1.2, --enable-asm-redc] [ECM] > Input number is > 5394204444759808120647321820789847518754252780933425517607611172590240019087317088600360602042567541009369753816111824690753627535877960715703346991252857 > (154 digits) > Using B1=149827, B2=61418292, polynomial x^2, sigma=805816989 > Step 1 took 696ms > Step 2 took 424ms > ############### ERROR ############### > Expected return code 6 but got 0 > make[1]: *** [check] Error 1 > dh_auto_test: make -j1 check returned exit code 2 The full build log is available from: http://aws-logs.debian.net/ftbfs-logs/2013/06/20/gmp-ecm_6.4.2-2_unstable.log A list of current common problems and possible solutions is available at http://wiki.debian.org/qa.debian.org/FTBFS . You're welcome to contribute! About the archive rebuild: The rebuild was done on EC2 VM instances from Amazon Web Services, using a clean, minimal and up-to-date chroot. Every failed build was retried once to eliminate random failures. -- To UNSUBSCRIBE, email to debian-bugs-rc-requ...@lists.debian.org with a subject of "unsubscribe". Trouble? Contact listmas...@lists.debian.org