Package: src:python-sparse Version: 0.16.0a9-1 Severity: serious Tags: ftbfs forky sid
Dear maintainer: During a rebuild of all packages in unstable, this package failed to build. Below you will find the last part of the build log (probably the most relevant part, but not necessarily). If required, the full build log is available here: https://people.debian.org/~sanvila/build-logs/202512/ About the archive rebuild: The build was made on virtual machines from AWS, using sbuild and a reduced chroot with only build-essential packages. If you cannot reproduce the bug please contact me privately, as I am willing to provide ssh access to a virtual machine where the bug is fully reproducible. If this is really a bug in one of the build-depends, please use reassign and add an affects on src:python-sparse, so that this is still visible in the BTS web page for this package. Thanks. -------------------------------------------------------------------------------- [...] debian/rules clean dh clean --buildsystem=pybuild --test-pytest dh_auto_clean -O--buildsystem=pybuild -O--test-pytest dh_autoreconf_clean -O--buildsystem=pybuild -O--test-pytest dh_clean -O--buildsystem=pybuild -O--test-pytest debian/rules binary dh binary --buildsystem=pybuild --test-pytest dh_update_autotools_config -O--buildsystem=pybuild -O--test-pytest dh_autoreconf -O--buildsystem=pybuild -O--test-pytest debian/rules execute_before_dh_auto_configure make[1]: Entering directory '/<<PKGBUILDDIR>>' touch sparse/tests/__init__.py make[1]: Leaving directory '/<<PKGBUILDDIR>>' dh_auto_configure -O--buildsystem=pybuild -O--test-pytest dh_auto_build -O--buildsystem=pybuild -O--test-pytest [... snipped ...] adding 'sparse/numba_backend/tests/test_dot.py' adding 'sparse/numba_backend/tests/test_einsum.py' adding 'sparse/numba_backend/tests/test_elemwise.py' adding 'sparse/numba_backend/tests/test_io.py' adding 'sparse/numba_backend/tests/test_namespace.py' adding 'sparse/tests/__init__.py' adding 'sparse/tests/conftest.py' adding 'sparse/tests/test_backends.py' adding 'sparse-0.16.0a9.dist-info/licenses/LICENSE' adding 'sparse-0.16.0a9.dist-info/METADATA' adding 'sparse-0.16.0a9.dist-info/WHEEL' adding 'sparse-0.16.0a9.dist-info/entry_points.txt' adding 'sparse-0.16.0a9.dist-info/top_level.txt' adding 'sparse-0.16.0a9.dist-info/RECORD' removing build/bdist.linux-x86_64/wheel Successfully built sparse-0.16.0a9-py2.py3-none-any.whl I: pybuild plugin_pyproject:155: Unpacking wheel built for python3.13 with "installer" module create-stamp debian/debhelper-build-stamp dh_testroot -O--buildsystem=pybuild -O--test-pytest dh_prep -O--buildsystem=pybuild -O--test-pytest dh_auto_install --destdir=debian/python3-sparse/ -O--buildsystem=pybuild -O--test-pytest I: pybuild plugin_pyproject:186: Copying package built for python3.14 to destdir I: pybuild plugin_pyproject:186: Copying package built for python3.13 to destdir debian/rules execute_after_dh_auto_install make[1]: Entering directory '/<<PKGBUILDDIR>>' dh_auto_test I: pybuild base:317: cd /<<PKGBUILDDIR>>/.pybuild/cpython3_3.14_sparse/build; python3.14 -m pytest ImportError while loading conftest '/<<PKGBUILDDIR>>/.pybuild/cpython3_3.14_sparse/build/tests/conftest.py'. tests/conftest.py:1: in <module> import sparse sparse/__init__.py:35: in <module> from sparse.numba_backend import * # noqa: F403 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ sparse/numba_backend/__init__.py:79: in <module> from ._common import ( sparse/numba_backend/_common.py:8: in <module> import numba /usr/lib/python3/dist-packages/numba/__init__.py:77: in <module> from numba.misc.special import ( /usr/lib/python3/dist-packages/numba/misc/special.py:3: in <module> from numba.core.typing.typeof import typeof /usr/lib/python3/dist-packages/numba/core/typing/__init__.py:1: in <module> from .context import BaseContext, Context /usr/lib/python3/dist-packages/numba/core/typing/context.py:10: in <module> from numba.core.typeconv import Conversion, rules /usr/lib/python3/dist-packages/numba/core/typeconv/rules.py:2: in <module> from .typeconv import TypeManager, TypeCastingRules /usr/lib/python3/dist-packages/numba/core/typeconv/typeconv.py:16: in <module> raise ImportError(msg) E ImportError: Numba could not be imported. E -------------------------------------------------------------------------------- E If you are seeing this message and are undertaking Numba development work, you may need to rebuild Numba. E Please see the development set up guide: E E https://numba.readthedocs.io/en/stable/developer/contributing.html. E E -------------------------------------------------------------------------------- E If you are not working on Numba development, the original error was: 'cannot import name '_typeconv' from 'numba.core.typeconv' (/usr/lib/python3/dist-packages/numba/core/typeconv/__init__.py)'. E For help, please visit: E E https://numba.readthedocs.io/en/stable/user/faq.html#numba-could-not-be-imported E: pybuild pybuild:389: test: plugin pyproject failed with: exit code=4: cd /<<PKGBUILDDIR>>/.pybuild/cpython3_3.14_sparse/build; python3.14 -m pytest I: pybuild base:317: cd /<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build; python3.13 -m pytest ============================= test session starts ============================== platform linux -- Python 3.13.11, pytest-9.0.2, pluggy-1.6.0 rootdir: /<<PKGBUILDDIR>> configfile: pytest.ini plugins: cov-5.0.0, typeguard-4.4.4 collected 6108 items sparse/numba_backend/tests/test_array_function.py ...................... [ 0%] ........................................................................ [ 1%] ..................... [ 1%] sparse/numba_backend/tests/test_compressed.py .......................... [ 2%] ........................................................................ [ 3%] ............................XXXXXXXXxX.................................. [ 4%] ........................................................................ [ 5%] ........................................................................ [ 7%] ........................................................................ [ 8%] ..XXXXXXXXxX............................................................ [ 9%] ........................................................................ [ 10%] ........................................................................ [ 11%] ................................................xxxxxxXXxx.............. [ 12%] ........................................................................ [ 14%] ........................................................................ [ 15%] ........................................................................ [ 16%] ......................XXxxxxXXxx........................................ [ 17%] ........................................................................ [ 18%] ........................................................................ [ 19%] ........................................................................ [ 21%] ........................................................................ [ 22%] ........................................................................ [ 23%] ........................................................................ [ 24%] ........................................................................ [ 25%] ............................................................. [ 26%] sparse/numba_backend/tests/test_compressed_2d.py ....................... [ 27%] ........................................................................ [ 28%] ............................................. [ 29%] sparse/numba_backend/tests/test_compressed_convert.py .............. [ 29%] sparse/numba_backend/tests/test_conversion.py .......................... [ 29%] ......... [ 29%] sparse/numba_backend/tests/test_coo.py ................................. [ 30%] ........................................................................ [ 31%] ........................................................................ [ 32%] ........................................................................ [ 34%] .............................................XXXXXXXXxX................. [ 35%] ........................................................................ [ 36%] ........................................................................ [ 37%] ........................................................................ [ 38%] ...................XXXXXXXXxX........................................... [ 39%] ........................................................................ [ 41%] ........................................................................ [ 42%] .................................................................xXxxxxX [ 43%] Xxx..................................................................... [ 44%] ........................................................................ [ 45%] ........................................................................ [ 47%] .......................................XXxxxxXXxx....................... [ 48%] ........................................................................ [ 49%] ........................................................................ [ 50%] ........................................................................ [ 51%] ........................................................................ [ 52%] ........................................................................ [ 54%] ............................................................xXXX........ [ 55%] ........................................................................ [ 56%] ........................................................................ [ 57%] ........................................................................ [ 58%] ........................................................................ [ 59%] ........................................................................ [ 61%] ........................................................................ [ 62%] ........................................................................ [ 63%] ........................................................................ [ 64%] ........................................................................ [ 65%] ........................................................................ [ 67%] ........................................................................ [ 68%] ........................................................................ [ 69%] ........................................................................ [ 70%] ........................................................................ [ 71%] .....................................xxxxxxxxxxxxxxXxxXxxXxxXxxxxxxxxxxx [ 72%] xxxxxxxxxxxxxxxXxxXxxXxxXxxxxxxxxxxxx................................... [ 74%] ........................................................................ [ 75%] .................. [ 75%] sparse/numba_backend/tests/test_coo_numba.py .... [ 75%] sparse/numba_backend/tests/test_dask_interop.py . [ 75%] sparse/numba_backend/tests/test_dok.py ................................. [ 76%] ................................................................... [ 77%] sparse/numba_backend/tests/test_dot.py ................................. [ 77%] ........................................................................ [ 79%] ........................................................................ [ 80%] ............................................x........................... [ 81%] ........................................................................ [ 82%] ........................................................................ [ 83%] ....... [ 83%] sparse/numba_backend/tests/test_einsum.py .............................. [ 84%] ........................................................................ [ 85%] ........................................................................ [ 86%] ........... [ 86%] sparse/numba_backend/tests/test_elemwise.py ............................ [ 87%] ........................................................................ [ 88%] ........................................................................ [ 89%] ........................................................................ [ 90%] ........................................................................ [ 92%] ........................................................................ [ 93%] ........................................................................ [ 94%] ........................................................................ [ 95%] ........................................................................ [ 96%] ........................................................................ [ 97%] .............................. [ 98%] sparse/numba_backend/tests/test_io.py ..... [ 98%] sparse/numba_backend/tests/test_namespace.py . [ 98%] sparse/tests/test_backends.py .s............ssssssssssss................ [ 99%] .s [ 99%] tests/test_backends.py .s............ssssssssssss.................s [100%] =============================== warnings summary =============================== .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_array_function.py: 1 warning .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_coo.py: 8 warnings .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_dot.py: 9 warnings .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py: 10 warnings /<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_coo/core.py:424: DeprecationWarning: Conversion of an array with ndim > 0 to a scalar is deprecated, and will error in future. Ensure you extract a single element from your array before performing this operation. (Deprecated NumPy 1.25.) x[coords] = data .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_coo.py: 21 warnings /<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_coo/core.py:1139: DeprecationWarning: resize is deprecated on all SpraseArray objects. warnings.warn("resize is deprecated on all SpraseArray objects.", DeprecationWarning, stacklevel=1) .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_coo.py: 74 warnings .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_dask_interop.py: 3 warnings .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_dok.py: 7 warnings .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_dot.py: 150 warnings .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py: 16 warnings .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_elemwise.py: 2 warnings /<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_coo/core.py:215: DeprecationWarning: coords should be an ndarray. This will raise a ValueError in the future. warnings.warn( .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_coo.py: 12 warnings /<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_coo/core.py:244: DeprecationWarning: shape should be provided. This will raise a ValueError in the future. warnings.warn( .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_coo.py::test_html_for_size_zero /<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_utils.py:479: RuntimeWarning: invalid value encountered in scalar divide density = np.float64(arr.nnz) / np.float64(arr.size) .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_coo.py::test_html_for_size_zero /<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_utils.py:497: RuntimeWarning: invalid value encountered in scalar divide f"{np.float64(arr.nbytes) / np.float64(reduce(operator.mul, arr.shape, 1) * arr.dtype.itemsize):.2f}" .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py: 1651 warnings /<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_common.py:1187: DeprecationWarning: numpy.core is deprecated and has been renamed to numpy._core. The numpy._core namespace contains private NumPy internals and its use is discouraged, as NumPy internals can change without warning in any release. In practice, most real-world usage of numpy.core is to access functionality in the public NumPy API. If that is the case, use the public NumPy API. If not, you are using NumPy internals. If you would still like to access an internal attribute, use numpy._core.einsumfunc. if s not in np.core.einsumfunc.einsum_symbols: .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py: 224 warnings /<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_common.py:1297: DeprecationWarning: numpy.core is deprecated and has been renamed to numpy._core. The numpy._core namespace contains private NumPy internals and its use is discouraged, as NumPy internals can change without warning in any release. In practice, most real-world usage of numpy.core is to access functionality in the public NumPy API. If that is the case, use the public NumPy API. If not, you are using NumPy internals. If you would still like to access an internal attribute, use numpy._core.einsumfunc. if s not in np.core.einsumfunc.einsum_symbols: .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py: 14 warnings /<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_common.py:1235: DeprecationWarning: numpy.core is deprecated and has been renamed to numpy._core. The numpy._core namespace contains private NumPy internals and its use is discouraged, as NumPy internals can change without warning in any release. In practice, most real-world usage of numpy.core is to access functionality in the public NumPy API. If that is the case, use the public NumPy API. If not, you are using NumPy internals. If you would still like to access an internal attribute, use numpy._core.einsumfunc. unused = list(np.core.einsumfunc.einsum_symbols_set - set(used)) .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py: 30 warnings /<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_common.py:1280: DeprecationWarning: numpy.core is deprecated and has been renamed to numpy._core. The numpy._core namespace contains private NumPy internals and its use is discouraged, as NumPy internals can change without warning in any release. In practice, most real-world usage of numpy.core is to access functionality in the public NumPy API. If that is the case, use the public NumPy API. If not, you are using NumPy internals. If you would still like to access an internal attribute, use numpy._core.einsumfunc. if s not in (np.core.einsumfunc.einsum_symbols): .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py: 12 warnings /<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_common.py:1211: DeprecationWarning: numpy.core is deprecated and has been renamed to numpy._core. The numpy._core namespace contains private NumPy internals and its use is discouraged, as NumPy internals can change without warning in any release. In practice, most real-world usage of numpy.core is to access functionality in the public NumPy API. If that is the case, use the public NumPy API. If not, you are using NumPy internals. If you would still like to access an internal attribute, use numpy._core.einsumfunc. subscripts += np.core.einsumfunc.einsum_symbols[s] .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py::test_einsum_nosubscript[0.1-input3] .pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/tests/test_einsum.py::test_einsum_nosubscript[1.0-input3] /<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/sparse/numba_backend/_common.py:1225: DeprecationWarning: numpy.core is deprecated and has been renamed to numpy._core. The numpy._core namespace contains private NumPy internals and its use is discouraged, as NumPy internals can change without warning in any release. In practice, most real-world usage of numpy.core is to access functionality in the public NumPy API. If that is the case, use the public NumPy API. If not, you are using NumPy internals. If you would still like to access an internal attribute, use numpy._core.einsumfunc. subscripts += np.core.einsumfunc.einsum_symbols[s] .pybuild/cpython3_3.13_sparse/build/sparse/tests/test_backends.py::test_scipy_inv[csr-C] .pybuild/cpython3_3.13_sparse/build/tests/test_backends.py::test_scipy_inv[csr-C] /usr/lib/python3/dist-packages/scipy/sparse/linalg/_dsolve/linsolve.py:606: SparseEfficiencyWarning: splu converted its input to CSC format return splu(A).solve -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html - generated xml file: /<<PKGBUILDDIR>>/.pybuild/cpython3_3.13_sparse/build/junit/test-results.xml - ---------- coverage: platform linux, python 3.13.11-final-0 ---------- Name Stmts Miss Cover Missing --------------------------------------------------------------------------------- sparse/__init__.py 23 6 74% 18-19, 24-25, 32-33 sparse/_version.py 13 3 77% 8-11 sparse/finch_backend/__init__.py 6 6 0% 1-121 sparse/numba_backend/_common.py 689 51 93% 64-68, 159-160, 162, 166-167, 173, 196, 310, 371, 462, 491, 1213, 1223-1224, 1254, 1263, 1265, 1281, 1298, 1652, 1987, 1990, 1996, 2010-2018, 2052, 2075, 2088-2094, 2106, 2110, 2142, 2150, 2178-2179, 2183, 2193, 2198, 2202, 2206, 2210 sparse/numba_backend/_compressed/common.py 72 3 96% 19-22 sparse/numba_backend/_compressed/compressed.py 383 39 90% 28, 33, 150, 166, 176, 220, 329-335, 396, 406, 408, 513, 556, 559, 587-590, 607, 641, 650, 707, 710, 748, 794-795, 798-803, 831, 834, 837, 847, 892, 924 sparse/numba_backend/_compressed/convert.py 111 40 64% 19-35, 129, 166-199, 264-265 sparse/numba_backend/_compressed/indexing.py 118 1 99% 26 sparse/numba_backend/_coo/common.py 416 72 83% 163-164, 284, 325, 394, 679, 855, 945-947, 972-974, 1011, 1095, 1354, 1358, 1367-1414, 1425-1459, 1477, 1481, 1493, 1554 sparse/numba_backend/_coo/core.py 407 23 94% 264, 526, 855, 933, 941, 992, 1042, 1145, 1148, 1203, 1213, 1253, 1294-1301, 1451-1454, 1482, 1514, 1604 sparse/numba_backend/_coo/indexing.py 124 3 98% 46, 147, 152 sparse/numba_backend/_dok.py 181 9 95% 131, 319, 409, 416, 426, 502, 554-556 sparse/numba_backend/_settings.py 13 2 85% 16-17 sparse/numba_backend/_slicing.py 127 1 99% 113 sparse/numba_backend/_sparse_array.py 271 37 86% 36, 180-186, 207-215, 287, 300-301, 304, 316, 323, 332, 355, 395, 428, 431, 792, 802, 965-972, 976, 980, 984, 988, 992, 995-997 sparse/numba_backend/_umath.py 283 9 97% 119-121, 152, 335, 371, 689, 692, 756 sparse/numba_backend/_utils.py 308 100 68% 114-158, 171-193, 204-217, 318, 323, 463-472, 502-503, 530, 532, 534, 536, 538, 650, 673, 678 sparse/numba_backend/tests/test_array_function.py 76 1 99% 11 sparse/numba_backend/tests/test_compressed.py 209 6 97% 25-33 sparse/numba_backend/tests/test_coo.py 1092 1 99% 432 sparse/numba_backend/tests/test_coo_numba.py 45 4 91% 11, 18, 54, 64 sparse/numba_backend/tests/test_dot.py 193 1 99% 279 sparse/numba_backend/tests/test_elemwise.py 347 1 99% 381 sparse/tests/test_backends.py 143 45 69% 19-25, 39-62, 99-104, 110-116, 122-128, 211-223 --------------------------------------------------------------------------------- TOTAL 6313 464 93% 17 files skipped due to complete coverage. Coverage HTML written to dir htmlcov = 5923 passed, 28 skipped, 97 xfailed, 60 xpassed, 2250 warnings in 103.50s (0:01:43) = dh_auto_test: error: pybuild --test --test-pytest -i python{version} -p "3.14 3.13" returned exit code 13 make[1]: *** [debian/rules:16: execute_after_dh_auto_install] Error 25 make[1]: Leaving directory '/<<PKGBUILDDIR>>' make: *** [debian/rules:7: binary] Error 2 dpkg-buildpackage: error: debian/rules binary subprocess returned exit status 2 --------------------------------------------------------------------------------

