Package: openrgb Severity: wishlist Tags: patch X-Debbugs-Cc: [email protected], [email protected]
Hi Ahmed & Matthias, what do you think about the idea of also letting the openrgb package build and ship the OpenRGBEffectsPlugin shared library? https://gitlab.com/OpenRGBDevelopers/OpenRGBEffectsPlugin I think it would make sense to add this plugin to the openrgb source package instead of creating a new source package because the version of the OpenRGBEffectsPlugin is not only tightly tied to OpenRGB itself but the former also needs the source of the latter to be available. So if the OpenRGBEffectsPlugin were to be created as a new source package, src:openrgb would have to provide a new binary package shipping the openrgb sourcecode. I have cooked up the patch at the end of this email which assumes that both the OpenRGBEffectsplugin as well as QCodeEditor are included as a Debian source package component. In d/rules then symlinks are created to make OpenRGB itself as well as QCodeEditor appear to be at the expected location relative to OpenRGBEffectsplugin. Another external software package which is required is SimplexNoise: https://github.com/SRombauts/SimplexNoise In contrast to QCodeEditor, I didn't use a Debian source component for this but added it as a patch because it only consists of two files. Both QCodeEditor as well as SimplexNoise seem to be neither maintained much upstream nor are they used elsewhere in Debian. I thus think that vendoring these components is justified here. Unfortunately, all of this is not immediately actionable even if you agree that this is a good idea because the OpenRGBEffectsplugin expects a specific version of OpenRGB, in this case the OpenRGB tag release_candidate_1.0rc1. Attempting to build OpenRGBEffectsplugin with OpenRGB, in Debian unstable would require some patching which is why instead of patching OpenRGBEffectsplugin I packaged OpenRGB release_candidate_1.0rc1 locally to make this a proof-of-concept. So, apologies to post a bug report that you should probably be doing nothing about right now. I wanted to record this patch for a future where OpenRGB 1.0 is released and OpenRGBEffectsplugin is updated to use OpenRGB 1.0. In such a future, I could adjust my patch to have this work again if you agree that this would be a good idea. What do you think? Thanks! cheers, josch diff --git a/debian/control b/debian/control index f079427c..8de20192 100644 --- a/debian/control +++ b/debian/control @@ -8,6 +8,9 @@ Build-Depends: libhidapi-dev, libhueplusplus1-dev, libmbedtls-dev, + libopenal-dev, + libpipewire-0.3-dev, + libqt5opengl5-dev, libstb-dev, libusb-1.0-0-dev, nlohmann-json3-dev, diff --git a/debian/patches/series b/debian/patches/series index 2b456a59..9f8f5ac8 100644 --- a/debian/patches/series +++ b/debian/patches/series @@ -4,4 +4,5 @@ 5-desktop-entry-keywords.patch 6-use-utc-timezone-for-timestamp.patch 7-use-C-collation-when-generating-udev-scripts.patch -8-install-service-path-and-fix-unit.patch +#8-install-service-path-and-fix-unit.patch +simplexnoise.patch diff --git a/debian/patches/simplexnoise.patch b/debian/patches/simplexnoise.patch new file mode 100644 index 00000000..a9fd0232 --- /dev/null +++ b/debian/patches/simplexnoise.patch @@ -0,0 +1,543 @@ +Subject: https://github.com/SRombauts/SimplexNoise + + +Index: openrgb/OpenRGBEffectsPlugin/Dependencies/SimplexNoise/src/SimplexNoise.cpp +=================================================================== +--- /dev/null 1970-01-01 00:00:00.000000000 +0000 ++++ openrgb/OpenRGBEffectsPlugin/Dependencies/SimplexNoise/src/SimplexNoise.cpp 2025-12-05 18:09:39.527157686 +0100 +@@ -0,0 +1,475 @@ ++/** ++ * @file SimplexNoise.cpp ++ * @brief A Perlin Simplex Noise C++ Implementation (1D, 2D, 3D). ++ * ++ * Copyright (c) 2014-2018 Sebastien Rombauts ([email protected]) ++ * ++ * This C++ implementation is based on the speed-improved Java version 2012-03-09 ++ * by Stefan Gustavson (original Java source code in the public domain). ++ * http://webstaff.itn.liu.se/~stegu/simplexnoise/SimplexNoise.java: ++ * - Based on example code by Stefan Gustavson ([email protected]). ++ * - Optimisations by Peter Eastman ([email protected]). ++ * - Better rank ordering method by Stefan Gustavson in 2012. ++ * ++ * This implementation is "Simplex Noise" as presented by ++ * Ken Perlin at a relatively obscure and not often cited course ++ * session "Real-Time Shading" at Siggraph 2001 (before real ++ * time shading actually took on), under the title "hardware noise". ++ * The 3D function is numerically equivalent to his Java reference ++ * code available in the PDF course notes, although I re-implemented ++ * it from scratch to get more readable code. The 1D, 2D and 4D cases ++ * were implemented from scratch by me from Ken Perlin's text. ++ * ++ * Distributed under the MIT License (MIT) (See accompanying file LICENSE.txt ++ * or copy at http://opensource.org/licenses/MIT) ++ */ ++ ++#include "SimplexNoise.h" ++ ++#include <cstdint> // int32_t/uint8_t ++ ++/** ++ * Computes the largest integer value not greater than the float one ++ * ++ * This method is faster than using (int32_t)std::floor(fp). ++ * ++ * I measured it to be approximately twice as fast: ++ * float: ~18.4ns instead of ~39.6ns on an AMD APU), ++ * double: ~20.6ns instead of ~36.6ns on an AMD APU), ++ * Reference: http://www.codeproject.com/Tips/700780/Fast-floor-ceiling-functions ++ * ++ * @param[in] fp float input value ++ * ++ * @return largest integer value not greater than fp ++ */ ++static inline int32_t fastfloor(float fp) { ++ int32_t i = static_cast<int32_t>(fp); ++ return (fp < i) ? (i - 1) : (i); ++} ++ ++/** ++ * Permutation table. This is just a random jumble of all numbers 0-255. ++ * ++ * This produce a repeatable pattern of 256, but Ken Perlin stated ++ * that it is not a problem for graphic texture as the noise features disappear ++ * at a distance far enough to be able to see a repeatable pattern of 256. ++ * ++ * This needs to be exactly the same for all instances on all platforms, ++ * so it's easiest to just keep it as static explicit data. ++ * This also removes the need for any initialisation of this class. ++ * ++ * Note that making this an uint32_t[] instead of a uint8_t[] might make the ++ * code run faster on platforms with a high penalty for unaligned single ++ * byte addressing. Intel x86 is generally single-byte-friendly, but ++ * some other CPUs are faster with 4-aligned reads. ++ * However, a char[] is smaller, which avoids cache trashing, and that ++ * is probably the most important aspect on most architectures. ++ * This array is accessed a *lot* by the noise functions. ++ * A vector-valued noise over 3D accesses it 96 times, and a ++ * float-valued 4D noise 64 times. We want this to fit in the cache! ++ */ ++static const uint8_t perm[256] = { ++ 151, 160, 137, 91, 90, 15, ++ 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, ++ 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, ++ 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, ++ 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, ++ 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, ++ 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, ++ 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, ++ 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, ++ 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, ++ 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, ++ 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, ++ 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 ++}; ++ ++/** ++ * Helper function to hash an integer using the above permutation table ++ * ++ * This inline function costs around 1ns, and is called N+1 times for a noise of N dimension. ++ * ++ * Using a real hash function would be better to improve the "repeatability of 256" of the above permutation table, ++ * but fast integer Hash functions uses more time and have bad random properties. ++ * ++ * @param[in] i Integer value to hash ++ * ++ * @return 8-bits hashed value ++ */ ++static inline uint8_t hash(int32_t i) { ++ return perm[static_cast<uint8_t>(i)]; ++} ++ ++/* NOTE Gradient table to test if lookup-table are more efficient than calculs ++static const float gradients1D[16] = { ++ -8.f, -7.f, -6.f, -5.f, -4.f, -3.f, -2.f, -1.f, ++ 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f ++}; ++*/ ++ ++/** ++ * Helper function to compute gradients-dot-residual vectors (1D) ++ * ++ * @note that these generate gradients of more than unit length. To make ++ * a close match with the value range of classic Perlin noise, the final ++ * noise values need to be rescaled to fit nicely within [-1,1]. ++ * (The simplex noise functions as such also have different scaling.) ++ * Note also that these noise functions are the most practical and useful ++ * signed version of Perlin noise. ++ * ++ * @param[in] hash hash value ++ * @param[in] x distance to the corner ++ * ++ * @return gradient value ++ */ ++static float grad(int32_t hash, float x) { ++ const int32_t h = hash & 0x0F; // Convert low 4 bits of hash code ++ float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0 ++ if ((h & 8) != 0) grad = -grad; // Set a random sign for the gradient ++// float grad = gradients1D[h]; // NOTE : Test of Gradient look-up table instead of the above ++ return (grad * x); // Multiply the gradient with the distance ++} ++ ++/** ++ * Helper functions to compute gradients-dot-residual vectors (2D) ++ * ++ * @param[in] hash hash value ++ * @param[in] x x coord of the distance to the corner ++ * @param[in] y y coord of the distance to the corner ++ * ++ * @return gradient value ++ */ ++static float grad(int32_t hash, float x, float y) { ++ const int32_t h = hash & 0x3F; // Convert low 3 bits of hash code ++ const float u = h < 4 ? x : y; // into 8 simple gradient directions, ++ const float v = h < 4 ? y : x; ++ return ((h & 1) ? -u : u) + ((h & 2) ? -2.0f * v : 2.0f * v); // and compute the dot product with (x,y). ++} ++ ++/** ++ * Helper functions to compute gradients-dot-residual vectors (3D) ++ * ++ * @param[in] hash hash value ++ * @param[in] x x coord of the distance to the corner ++ * @param[in] y y coord of the distance to the corner ++ * @param[in] z z coord of the distance to the corner ++ * ++ * @return gradient value ++ */ ++static float grad(int32_t hash, float x, float y, float z) { ++ int h = hash & 15; // Convert low 4 bits of hash code into 12 simple ++ float u = h < 8 ? x : y; // gradient directions, and compute dot product. ++ float v = h < 4 ? y : h == 12 || h == 14 ? x : z; // Fix repeats at h = 12 to 15 ++ return ((h & 1) ? -u : u) + ((h & 2) ? -v : v); ++} ++ ++/** ++ * 1D Perlin simplex noise ++ * ++ * Takes around 74ns on an AMD APU. ++ * ++ * @param[in] x float coordinate ++ * ++ * @return Noise value in the range[-1; 1], value of 0 on all integer coordinates. ++ */ ++float SimplexNoise::noise(float x) { ++ float n0, n1; // Noise contributions from the two "corners" ++ ++ // No need to skew the input space in 1D ++ ++ // Corners coordinates (nearest integer values): ++ int32_t i0 = fastfloor(x); ++ int32_t i1 = i0 + 1; ++ // Distances to corners (between 0 and 1): ++ float x0 = x - i0; ++ float x1 = x0 - 1.0f; ++ ++ // Calculate the contribution from the first corner ++ float t0 = 1.0f - x0*x0; ++// if(t0 < 0.0f) t0 = 0.0f; // not possible ++ t0 *= t0; ++ n0 = t0 * t0 * grad(hash(i0), x0); ++ ++ // Calculate the contribution from the second corner ++ float t1 = 1.0f - x1*x1; ++// if(t1 < 0.0f) t1 = 0.0f; // not possible ++ t1 *= t1; ++ n1 = t1 * t1 * grad(hash(i1), x1); ++ ++ // The maximum value of this noise is 8*(3/4)^4 = 2.53125 ++ // A factor of 0.395 scales to fit exactly within [-1,1] ++ return 0.395f * (n0 + n1); ++} ++ ++/** ++ * 2D Perlin simplex noise ++ * ++ * Takes around 150ns on an AMD APU. ++ * ++ * @param[in] x float coordinate ++ * @param[in] y float coordinate ++ * ++ * @return Noise value in the range[-1; 1], value of 0 on all integer coordinates. ++ */ ++float SimplexNoise::noise(float x, float y) { ++ float n0, n1, n2; // Noise contributions from the three corners ++ ++ // Skewing/Unskewing factors for 2D ++ static const float F2 = 0.366025403f; // F2 = (sqrt(3) - 1) / 2 ++ static const float G2 = 0.211324865f; // G2 = (3 - sqrt(3)) / 6 = F2 / (1 + 2 * K) ++ ++ // Skew the input space to determine which simplex cell we're in ++ const float s = (x + y) * F2; // Hairy factor for 2D ++ const float xs = x + s; ++ const float ys = y + s; ++ const int32_t i = fastfloor(xs); ++ const int32_t j = fastfloor(ys); ++ ++ // Unskew the cell origin back to (x,y) space ++ const float t = static_cast<float>(i + j) * G2; ++ const float X0 = i - t; ++ const float Y0 = j - t; ++ const float x0 = x - X0; // The x,y distances from the cell origin ++ const float y0 = y - Y0; ++ ++ // For the 2D case, the simplex shape is an equilateral triangle. ++ // Determine which simplex we are in. ++ int32_t i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords ++ if (x0 > y0) { // lower triangle, XY order: (0,0)->(1,0)->(1,1) ++ i1 = 1; ++ j1 = 0; ++ } else { // upper triangle, YX order: (0,0)->(0,1)->(1,1) ++ i1 = 0; ++ j1 = 1; ++ } ++ ++ // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and ++ // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where ++ // c = (3-sqrt(3))/6 ++ ++ const float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords ++ const float y1 = y0 - j1 + G2; ++ const float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords ++ const float y2 = y0 - 1.0f + 2.0f * G2; ++ ++ // Work out the hashed gradient indices of the three simplex corners ++ const int gi0 = hash(i + hash(j)); ++ const int gi1 = hash(i + i1 + hash(j + j1)); ++ const int gi2 = hash(i + 1 + hash(j + 1)); ++ ++ // Calculate the contribution from the first corner ++ float t0 = 0.5f - x0*x0 - y0*y0; ++ if (t0 < 0.0f) { ++ n0 = 0.0f; ++ } else { ++ t0 *= t0; ++ n0 = t0 * t0 * grad(gi0, x0, y0); ++ } ++ ++ // Calculate the contribution from the second corner ++ float t1 = 0.5f - x1*x1 - y1*y1; ++ if (t1 < 0.0f) { ++ n1 = 0.0f; ++ } else { ++ t1 *= t1; ++ n1 = t1 * t1 * grad(gi1, x1, y1); ++ } ++ ++ // Calculate the contribution from the third corner ++ float t2 = 0.5f - x2*x2 - y2*y2; ++ if (t2 < 0.0f) { ++ n2 = 0.0f; ++ } else { ++ t2 *= t2; ++ n2 = t2 * t2 * grad(gi2, x2, y2); ++ } ++ ++ // Add contributions from each corner to get the final noise value. ++ // The result is scaled to return values in the interval [-1,1]. ++ return 45.23065f * (n0 + n1 + n2); ++} ++ ++ ++/** ++ * 3D Perlin simplex noise ++ * ++ * @param[in] x float coordinate ++ * @param[in] y float coordinate ++ * @param[in] z float coordinate ++ * ++ * @return Noise value in the range[-1; 1], value of 0 on all integer coordinates. ++ */ ++float SimplexNoise::noise(float x, float y, float z) { ++ float n0, n1, n2, n3; // Noise contributions from the four corners ++ ++ // Skewing/Unskewing factors for 3D ++ static const float F3 = 1.0f / 3.0f; ++ static const float G3 = 1.0f / 6.0f; ++ ++ // Skew the input space to determine which simplex cell we're in ++ float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D ++ int i = fastfloor(x + s); ++ int j = fastfloor(y + s); ++ int k = fastfloor(z + s); ++ float t = (i + j + k) * G3; ++ float X0 = i - t; // Unskew the cell origin back to (x,y,z) space ++ float Y0 = j - t; ++ float Z0 = k - t; ++ float x0 = x - X0; // The x,y,z distances from the cell origin ++ float y0 = y - Y0; ++ float z0 = z - Z0; ++ ++ // For the 3D case, the simplex shape is a slightly irregular tetrahedron. ++ // Determine which simplex we are in. ++ int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords ++ int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords ++ if (x0 >= y0) { ++ if (y0 >= z0) { ++ i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; // X Y Z order ++ } else if (x0 >= z0) { ++ i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; // X Z Y order ++ } else { ++ i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; // Z X Y order ++ } ++ } else { // x0<y0 ++ if (y0 < z0) { ++ i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; // Z Y X order ++ } else if (x0 < z0) { ++ i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; // Y Z X order ++ } else { ++ i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; // Y X Z order ++ } ++ } ++ ++ // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), ++ // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and ++ // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where ++ // c = 1/6. ++ float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords ++ float y1 = y0 - j1 + G3; ++ float z1 = z0 - k1 + G3; ++ float x2 = x0 - i2 + 2.0f * G3; // Offsets for third corner in (x,y,z) coords ++ float y2 = y0 - j2 + 2.0f * G3; ++ float z2 = z0 - k2 + 2.0f * G3; ++ float x3 = x0 - 1.0f + 3.0f * G3; // Offsets for last corner in (x,y,z) coords ++ float y3 = y0 - 1.0f + 3.0f * G3; ++ float z3 = z0 - 1.0f + 3.0f * G3; ++ ++ // Work out the hashed gradient indices of the four simplex corners ++ int gi0 = hash(i + hash(j + hash(k))); ++ int gi1 = hash(i + i1 + hash(j + j1 + hash(k + k1))); ++ int gi2 = hash(i + i2 + hash(j + j2 + hash(k + k2))); ++ int gi3 = hash(i + 1 + hash(j + 1 + hash(k + 1))); ++ ++ // Calculate the contribution from the four corners ++ float t0 = 0.6f - x0*x0 - y0*y0 - z0*z0; ++ if (t0 < 0) { ++ n0 = 0.0; ++ } else { ++ t0 *= t0; ++ n0 = t0 * t0 * grad(gi0, x0, y0, z0); ++ } ++ float t1 = 0.6f - x1*x1 - y1*y1 - z1*z1; ++ if (t1 < 0) { ++ n1 = 0.0; ++ } else { ++ t1 *= t1; ++ n1 = t1 * t1 * grad(gi1, x1, y1, z1); ++ } ++ float t2 = 0.6f - x2*x2 - y2*y2 - z2*z2; ++ if (t2 < 0) { ++ n2 = 0.0; ++ } else { ++ t2 *= t2; ++ n2 = t2 * t2 * grad(gi2, x2, y2, z2); ++ } ++ float t3 = 0.6f - x3*x3 - y3*y3 - z3*z3; ++ if (t3 < 0) { ++ n3 = 0.0; ++ } else { ++ t3 *= t3; ++ n3 = t3 * t3 * grad(gi3, x3, y3, z3); ++ } ++ // Add contributions from each corner to get the final noise value. ++ // The result is scaled to stay just inside [-1,1] ++ return 32.0f*(n0 + n1 + n2 + n3); ++} ++ ++ ++/** ++ * Fractal/Fractional Brownian Motion (fBm) summation of 1D Perlin Simplex noise ++ * ++ * @param[in] octaves number of fraction of noise to sum ++ * @param[in] x float coordinate ++ * ++ * @return Noise value in the range[-1; 1], value of 0 on all integer coordinates. ++ */ ++float SimplexNoise::fractal(size_t octaves, float x) const { ++ float output = 0.f; ++ float denom = 0.f; ++ float frequency = mFrequency; ++ float amplitude = mAmplitude; ++ ++ for (size_t i = 0; i < octaves; i++) { ++ output += (amplitude * noise(x * frequency)); ++ denom += amplitude; ++ ++ frequency *= mLacunarity; ++ amplitude *= mPersistence; ++ } ++ ++ return (output / denom); ++} ++ ++/** ++ * Fractal/Fractional Brownian Motion (fBm) summation of 2D Perlin Simplex noise ++ * ++ * @param[in] octaves number of fraction of noise to sum ++ * @param[in] x x float coordinate ++ * @param[in] y y float coordinate ++ * ++ * @return Noise value in the range[-1; 1], value of 0 on all integer coordinates. ++ */ ++float SimplexNoise::fractal(size_t octaves, float x, float y) const { ++ float output = 0.f; ++ float denom = 0.f; ++ float frequency = mFrequency; ++ float amplitude = mAmplitude; ++ ++ for (size_t i = 0; i < octaves; i++) { ++ output += (amplitude * noise(x * frequency, y * frequency)); ++ denom += amplitude; ++ ++ frequency *= mLacunarity; ++ amplitude *= mPersistence; ++ } ++ ++ return (output / denom); ++} ++ ++/** ++ * Fractal/Fractional Brownian Motion (fBm) summation of 3D Perlin Simplex noise ++ * ++ * @param[in] octaves number of fraction of noise to sum ++ * @param[in] x x float coordinate ++ * @param[in] y y float coordinate ++ * @param[in] z z float coordinate ++ * ++ * @return Noise value in the range[-1; 1], value of 0 on all integer coordinates. ++ */ ++float SimplexNoise::fractal(size_t octaves, float x, float y, float z) const { ++ float output = 0.f; ++ float denom = 0.f; ++ float frequency = mFrequency; ++ float amplitude = mAmplitude; ++ ++ for (size_t i = 0; i < octaves; i++) { ++ output += (amplitude * noise(x * frequency, y * frequency, z * frequency)); ++ denom += amplitude; ++ ++ frequency *= mLacunarity; ++ amplitude *= mPersistence; ++ } ++ ++ return (output / denom); ++} +Index: openrgb/Dependencies/SimplexNoise/src/SimplexNoise.h +=================================================================== +--- /dev/null 1970-01-01 00:00:00.000000000 +0000 ++++ openrgb/OpenRGBEffectsPlugin/Dependencies/SimplexNoise/src/SimplexNoise.h 2025-12-05 18:09:47.751240993 +0100 +@@ -0,0 +1,55 @@ ++/** ++ * @file SimplexNoise.h ++ * @brief A Perlin Simplex Noise C++ Implementation (1D, 2D, 3D). ++ * ++ * Copyright (c) 2014-2018 Sebastien Rombauts ([email protected]) ++ * ++ * Distributed under the MIT License (MIT) (See accompanying file LICENSE.txt ++ * or copy at http://opensource.org/licenses/MIT) ++ */ ++#pragma once ++ ++#include <cstddef> // size_t ++ ++/** ++ * @brief A Perlin Simplex Noise C++ Implementation (1D, 2D, 3D, 4D). ++ */ ++class SimplexNoise { ++public: ++ // 1D Perlin simplex noise ++ static float noise(float x); ++ // 2D Perlin simplex noise ++ static float noise(float x, float y); ++ // 3D Perlin simplex noise ++ static float noise(float x, float y, float z); ++ ++ // Fractal/Fractional Brownian Motion (fBm) noise summation ++ float fractal(size_t octaves, float x) const; ++ float fractal(size_t octaves, float x, float y) const; ++ float fractal(size_t octaves, float x, float y, float z) const; ++ ++ /** ++ * Constructor of to initialize a fractal noise summation ++ * ++ * @param[in] frequency Frequency ("width") of the first octave of noise (default to 1.0) ++ * @param[in] amplitude Amplitude ("height") of the first octave of noise (default to 1.0) ++ * @param[in] lacunarity Lacunarity specifies the frequency multiplier between successive octaves (default to 2.0). ++ * @param[in] persistence Persistence is the loss of amplitude between successive octaves (usually 1/lacunarity) ++ */ ++ explicit SimplexNoise(float frequency = 1.0f, ++ float amplitude = 1.0f, ++ float lacunarity = 2.0f, ++ float persistence = 0.5f) : ++ mFrequency(frequency), ++ mAmplitude(amplitude), ++ mLacunarity(lacunarity), ++ mPersistence(persistence) { ++ } ++ ++private: ++ // Parameters of Fractional Brownian Motion (fBm) : sum of N "octaves" of noise ++ float mFrequency; ///< Frequency ("width") of the first octave of noise (default to 1.0) ++ float mAmplitude; ///< Amplitude ("height") of the first octave of noise (default to 1.0) ++ float mLacunarity; ///< Lacunarity specifies the frequency multiplier between successive octaves (default to 2.0). ++ float mPersistence; ///< Persistence is the loss of amplitude between successive octaves (usually 1/lacunarity) ++}; diff --git a/debian/rules b/debian/rules index f4154e5c..bd42951a 100755 --- a/debian/rules +++ b/debian/rules @@ -15,6 +15,29 @@ NL3_VERSION = $(shell dpkg-query '--showformat=$${Version}' --show 'nlohmann-jso %: dh $@ +execute_after_dh_auto_clean: + # initially after unpack, these are empty directories but after dh_auto_configure, they are symlinks + set -e; for f in OpenRGBEffectsPlugin/Dependencies/QCodeEditor OpenRGBEffectsPlugin/OpenRGB; do \ + [ -d "$$f" ] && rmdir "$$f" && continue; \ + [ -l "$$f" ] && rm "$$f" && continue; \ + [ ! -e "$$f" ] && continue; \ + echo "E: unexpected type for $$f" >&2; \ + exit 1; \ + done + +execute_before_dh_auto_configure: + ln -s ../ OpenRGBEffectsPlugin/OpenRGB + ln -s ../../QCodeEditor OpenRGBEffectsPlugin/Dependencies/QCodeEditor + +execute_after_dh_auto_configure: + dh_auto_configure --builddirectory=OpenRGBEffectsPlugin --sourcedirectory=OpenRGBEffectsPlugin + +execute_after_dh_auto_build: + dh_auto_build --builddirectory=OpenRGBEffectsPlugin --sourcedirectory=OpenRGBEffectsPlugin + +execute_after_dh_auto_install: + dh_auto_install --builddirectory=OpenRGBEffectsPlugin --sourcedirectory=OpenRGBEffectsPlugin + # install user service without enabling or starting it override_dh_installsystemd: dh_installsystemduser --no-enable diff --git a/debian/watch b/debian/watch index bc28c5b4..77846cef 100644 --- a/debian/watch +++ b/debian/watch @@ -2,6 +2,12 @@ version=4 #opts="mode=git, pgpmode=none, pretty=0.9+git%cd, repacksuffix=+ds, dversionmangle=s/\+ds$//" \ # https://gitlab.com/CalcProgrammer1/OpenRGB.git HEAD +opts="searchmode=plain,component=OpenRGBEffectsPlugin, \ + filenamemangle=s%(?:.*?)?release_candidate_(@ANY_VERSION@@ARCHIVE_EXT@)%@PACKAGE@-$1%" \ + https://gitlab.com/OpenRGBDevelopers/OpenRGBEffectsPlugin/-/tags \ + archive/release_candidate_@ANY_VERSION@/OpenRGBEffectsPlugin-release_candidate_@ANY_VERSION@@ARCHIVE_EXT@ + + # upstream does not tag frequently, so use git mode # otherwise, use release_* format for their tags opts="searchmode=plain, \ -- 2.51.0

