Source: blis, python-scipy Control: found -1 blis/0.5.1-5 Control: found -1 python-scipy/1.1.0-2 X-Debbugs-CC: debian...@lists.debian.org User: debian...@lists.debian.org Usertags: breaks needs-update
Dear maintainers, With a recent upload of blis the autopkgtest of python-scipy fails in testing when that autopkgtest is run with the binary packages of blis from unstable. It passes when run with only packages from testing. In tabular form: pass fail blis from testing 0.5.1-5 python-scipy from testing 1.1.0-2 all others from testing from testing I copied some of the output at the bottom of this report. On a quick view, similar errors occur for python3. Currently this regression is blocking the migration of blis to testing [1]. Due to the nature of this issue, I filed this bug report against both packages. Can you please investigate the situation and reassign the bug to the right package? If needed, please change the bug's severity. More information about this bug and the reason for filing it can be found on https://wiki.debian.org/ContinuousIntegration/RegressionEmailInformation Paul [1] https://qa.debian.org/excuses.php?package=blis https://ci.debian.net/data/autopkgtest/testing/amd64/p/python-scipy/1739165/log.gz =================================== FAILURES =================================== ________________________ TestInt32Overflow.test_matvecs ________________________ self = <scipy.sparse.tests.test_sparsetools.TestInt32Overflow object at 0x7fa1f70d05d0> @pytest.mark.slow def test_matvecs(self): # Check *_matvecs routines n = self.n i = np.array([0, n-1]) j = np.array([0, n-1]) data = np.array([1, 2], dtype=np.int8) m = coo_matrix((data, (i, j))) b = np.ones((n, n), dtype=np.int8) for sptype in (csr_matrix, csc_matrix, bsr_matrix): m2 = sptype(m) > r = m2.dot(b) b = array([[1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1], [1, 1, ...], [1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]], dtype=int8) data = array([1, 2], dtype=int8) i = array([ 0, 49999]) j = array([ 0, 49999]) m = <50000x50000 sparse matrix of type '<type 'numpy.int8'>' with 2 stored elements in COOrdinate format> m2 = <50000x50000 sparse matrix of type '<type 'numpy.int8'>' with 2 stored elements in Compressed Sparse Row format> n = 50000 self = <scipy.sparse.tests.test_sparsetools.TestInt32Overflow object at 0x7fa1f70d05d0> sptype = <class 'scipy.sparse.csr.csr_matrix'> /usr/lib/python2.7/dist-packages/scipy/sparse/tests/test_sparsetools.py:142: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ /usr/lib/python2.7/dist-packages/scipy/sparse/base.py:361: in dot return self * other /usr/lib/python2.7/dist-packages/scipy/sparse/base.py:470: in __mul__ return self._mul_multivector(other) _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ self = <50000x50000 sparse matrix of type '<type 'numpy.int8'>' with 2 stored elements in Compressed Sparse Row format> other = array([[1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1], [1, 1, ...], [1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]], dtype=int8) def _mul_multivector(self, other): M,N = self.shape n_vecs = other.shape[1] # number of column vectors result = np.zeros((M,n_vecs), dtype=upcast_char(self.dtype.char, > other.dtype.char)) E MemoryError M = 50000 N = 50000 n_vecs = 50000 other = array([[1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1], [1, 1, ...], [1, 1, 1, ..., 1, 1, 1], [1, 1, 1, ..., 1, 1, 1]], dtype=int8) self = <50000x50000 sparse matrix of type '<type 'numpy.int8'>' with 2 stored elements in Compressed Sparse Row format> /usr/lib/python2.7/dist-packages/scipy/sparse/compressed.py:469: MemoryError ______________________ TestInt32Overflow.test_dia_matvec _______________________ self = <scipy.sparse.tests.test_sparsetools.TestInt32Overflow object at 0x7fa1f937fb10> @pytest.mark.slow def test_dia_matvec(self): # Check: huge dia_matrix _matvec n = self.n > data = np.ones((n, n), dtype=np.int8) n = 50000 self = <scipy.sparse.tests.test_sparsetools.TestInt32Overflow object at 0x7fa1f937fb10> /usr/lib/python2.7/dist-packages/scipy/sparse/tests/test_sparsetools.py:155: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ shape = (50000, 50000), dtype = <type 'numpy.int8'>, order = 'C' @set_module('numpy') def ones(shape, dtype=None, order='C'): """ Return a new array of given shape and type, filled with ones. Parameters ---------- shape : int or sequence of ints Shape of the new array, e.g., ``(2, 3)`` or ``2``. dtype : data-type, optional The desired data-type for the array, e.g., `numpy.int8`. Default is `numpy.float64`. order : {'C', 'F'}, optional, default: C Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory. Returns ------- out : ndarray Array of ones with the given shape, dtype, and order. See Also -------- ones_like : Return an array of ones with shape and type of input. empty : Return a new uninitialized array. zeros : Return a new array setting values to zero. full : Return a new array of given shape filled with value. Examples -------- >>> np.ones(5) array([ 1., 1., 1., 1., 1.]) >>> np.ones((5,), dtype=int) array([1, 1, 1, 1, 1]) >>> np.ones((2, 1)) array([[ 1.], [ 1.]]) >>> s = (2,2) >>> np.ones(s) array([[ 1., 1.], [ 1., 1.]]) """ > a = empty(shape, dtype, order) E MemoryError dtype = <type 'numpy.int8'> order = 'C' shape = (50000, 50000) /usr/lib/python2.7/dist-packages/numpy/core/numeric.py:223: MemoryError generated xml file: /tmp/autopkgtest-lxc.b012crl_/downtmp/autopkgtest_tmp/junit.xml
signature.asc
Description: OpenPGP digital signature