Package: wnpp
Severity: wishlist

* Package name    : python3-gplearn
  Version         : 0.3.0
  Upstream Author : Trevor Stephens
* URL             : https://gplearn.readthedocs.io
* License         : BSD 3 clause
  Programming Lang: Python
  Description     : gplearn implements Genetic Programming in Python, with a 
scikit-learn inspired and compatible API.

While Genetic Programming (GP) can be used to perform a very wide variety of 
tasks, gplearn is purposefully constrained to solving symbolic regression 
problems. This is motivated by the scikit-learn ethos, of having powerful 
estimators that are straight-forward to implement.

Symbolic regression is a machine learning technique that aims to identify an 
underlying mathematical expression that best describes a relationship. It 
begins by building a population of naive random formulas to represent a 
relationship between known independent variables and their dependent variable 
targets in order to predict new data. Each successive generation of programs is 
then evolved from the one that came before it by selecting the fittest 
individuals from the population to undergo genetic operations.

gplearn retains the familiar scikit-learn fit/predict API and works with the 
existing scikit-learn pipeline and grid search modules. The package attempts to 
squeeze a lot of functionality into a scikit-learn-style API. While there are a 
lot of parameters to tweak, reading the documentation here should make the more 
relevant ones clear for your problem.

gplearn currently supports regression through the SymbolicRegressor as well as 
transformation for automated feature engineering with the SymbolicTransformer, 
which is designed to support regression problems, but should also work for 
binary classification. Future versions of the package will expand this class to 
support more complicated multi-target classification problems, and much more is 
planned too.

Reply via email to