Your message dated Fri, 16 May 2025 10:49:05 +0000
with message-id <e1ufscj-006rpe...@fasolo.debian.org>
and subject line Bug#1103099: fixed in sklearn-pandas 2.2.0-5
has caused the Debian Bug report #1103099,
regarding sklearn-pandas: FTBFS in testing/i386: dh_auto_test: error: pybuild 
--test --test-pytest -i python{version} -p 3.13 returned exit code 13
to be marked as done.

This means that you claim that the problem has been dealt with.
If this is not the case it is now your responsibility to reopen the
Bug report if necessary, and/or fix the problem forthwith.

(NB: If you are a system administrator and have no idea what this
message is talking about, this may indicate a serious mail system
misconfiguration somewhere. Please contact ow...@bugs.debian.org
immediately.)


-- 
1103099: https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1103099
Debian Bug Tracking System
Contact ow...@bugs.debian.org with problems
--- Begin Message ---
Source: sklearn-pandas
Version: 2.2.0-4
Severity: serious
Justification: FTBFS
Tags: trixie sid ftbfs
User: lu...@debian.org
Usertags: ftbfs-20250414 ftbfs-trixie

Hi,

During a rebuild of all packages in testing (trixie), your package failed
to build on i386.


Relevant part (hopefully):
>  debian/rules binary
> dh binary --buildsystem=pybuild
>    dh_update_autotools_config -O--buildsystem=pybuild
>    dh_autoreconf -O--buildsystem=pybuild
>    dh_auto_configure -O--buildsystem=pybuild
>       pybuild --configure -i python{version} -p 3.13
> I: pybuild base:311: python3.13 setup.py config 
> /build/reproducible-path/sklearn-pandas-2.2.0/setup.py:5: 
> SetuptoolsDeprecationWarning: The test command is disabled and references to 
> it are deprecated.
> !!
> 
>         
> ********************************************************************************
>         Please remove any references to `setuptools.command.test` in all 
> supported versions of the affected package.
> 
>         This deprecation is overdue, please update your project and remove 
> deprecated
>         calls to avoid build errors in the future.
>         
> ********************************************************************************
> 
> !!
>   from setuptools.command.test import test as TestCommand
> /usr/lib/python3/dist-packages/setuptools/_distutils/dist.py:270: 
> UserWarning: Unknown distribution option: 'tests_require'
>   warnings.warn(msg)
> running config
>    dh_auto_build -O--buildsystem=pybuild
>       pybuild --build -i python{version} -p 3.13
> I: pybuild base:311: /usr/bin/python3 setup.py build 
> /build/reproducible-path/sklearn-pandas-2.2.0/setup.py:5: 
> SetuptoolsDeprecationWarning: The test command is disabled and references to 
> it are deprecated.
> !!
> 
>         
> ********************************************************************************
>         Please remove any references to `setuptools.command.test` in all 
> supported versions of the affected package.
> 
>         This deprecation is overdue, please update your project and remove 
> deprecated
>         calls to avoid build errors in the future.
>         
> ********************************************************************************
> 
> !!
>   from setuptools.command.test import test as TestCommand
> /usr/lib/python3/dist-packages/setuptools/_distutils/dist.py:270: 
> UserWarning: Unknown distribution option: 'tests_require'
>   warnings.warn(msg)
> running build
> running build_py
> creating 
> /build/reproducible-path/sklearn-pandas-2.2.0/.pybuild/cpython3_3.13_sklearn-pandas/build/sklearn_pandas
> copying sklearn_pandas/pipeline.py -> 
> /build/reproducible-path/sklearn-pandas-2.2.0/.pybuild/cpython3_3.13_sklearn-pandas/build/sklearn_pandas
> copying sklearn_pandas/dataframe_mapper.py -> 
> /build/reproducible-path/sklearn-pandas-2.2.0/.pybuild/cpython3_3.13_sklearn-pandas/build/sklearn_pandas
> copying sklearn_pandas/cross_validation.py -> 
> /build/reproducible-path/sklearn-pandas-2.2.0/.pybuild/cpython3_3.13_sklearn-pandas/build/sklearn_pandas
> copying sklearn_pandas/transformers.py -> 
> /build/reproducible-path/sklearn-pandas-2.2.0/.pybuild/cpython3_3.13_sklearn-pandas/build/sklearn_pandas
> copying sklearn_pandas/features_generator.py -> 
> /build/reproducible-path/sklearn-pandas-2.2.0/.pybuild/cpython3_3.13_sklearn-pandas/build/sklearn_pandas
> copying sklearn_pandas/__init__.py -> 
> /build/reproducible-path/sklearn-pandas-2.2.0/.pybuild/cpython3_3.13_sklearn-pandas/build/sklearn_pandas
>    dh_auto_test -O--buildsystem=pybuild
>       pybuild --test --test-pytest -i python{version} -p 3.13
> I: pybuild base:311: cd 
> /build/reproducible-path/sklearn-pandas-2.2.0/.pybuild/cpython3_3.13_sklearn-pandas/build;
>  python3.13 -m pytest ; cd /build/reproducible-path/sklearn-pandas-2.2.0; 
> python3.13 -m doctest -v README.rst
> ============================= test session starts 
> ==============================
> platform linux -- Python 3.13.2, pytest-8.3.5, pluggy-1.5.0
> rootdir: 
> /build/reproducible-path/sklearn-pandas-2.2.0/.pybuild/cpython3_3.13_sklearn-pandas/build
> configfile: pytest.ini
> plugins: typeguard-4.4.2
> collected 69 items
> 
> tests/test_dataframe_mapper.py ......................................... [ 
> 59%]
> ..................                                                       [ 
> 85%]
> tests/test_features_generator.py ....                                    [ 
> 91%]
> tests/test_pipeline.py ....                                              [ 
> 97%]
> tests/test_transformers.py ..                                            
> [100%]
> 
> =============================== warnings summary 
> ===============================
> tests/test_dataframe_mapper.py::test_sparse_features
>   
> /build/reproducible-path/sklearn-pandas-2.2.0/.pybuild/cpython3_3.13_sklearn-pandas/build/tests/test_dataframe_mapper.py:820:
>  DeprecationWarning: Please import `csr_matrix` from the `scipy.sparse` 
> namespace; the `scipy.sparse.csr` namespace is deprecated and will be removed 
> in SciPy 2.0.0.
>     assert type(dmatrix) == sparse.csr.csr_matrix
> 
> tests/test_dataframe_mapper.py::test_sparse_off
>   
> /build/reproducible-path/sklearn-pandas-2.2.0/.pybuild/cpython3_3.13_sklearn-pandas/build/tests/test_dataframe_mapper.py:834:
>  DeprecationWarning: Please import `csr_matrix` from the `scipy.sparse` 
> namespace; the `scipy.sparse.csr` namespace is deprecated and will be removed 
> in SciPy 2.0.0.
>     assert type(dmatrix) != sparse.csr.csr_matrix
> 
> tests/test_transformers.py::test_common_numerical_transformer
> tests/test_transformers.py::test_numerical_transformer_serialization
>   
> /build/reproducible-path/sklearn-pandas-2.2.0/.pybuild/cpython3_3.13_sklearn-pandas/build/sklearn_pandas/transformers.py:35:
>  DeprecationWarning: 
>               NumericalTransformer will be deprecated in 3.0 version.
>               Please use Sklearn.base.TransformerMixin to write
>               customer transformers
>               
>     warnings.warn("""
> 
> -- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
> ======================== 69 passed, 4 warnings in 8.10s 
> ========================
> Trying:
>     from sklearn_pandas import DataFrameMapper
> Expecting nothing
> ok
> Trying:
>     import pandas as pd
> Expecting nothing
> ok
> Trying:
>     import numpy as np
> Expecting nothing
> ok
> Trying:
>     import sklearn.preprocessing, sklearn.decomposition, \
>         sklearn.linear_model, sklearn.pipeline, sklearn.metrics, \
>         sklearn.compose
> Expecting nothing
> ok
> Trying:
>     from sklearn.feature_extraction.text import CountVectorizer
> Expecting nothing
> ok
> Trying:
>     data = pd.DataFrame({'pet':      ['cat', 'dog', 'dog', 'fish', 'cat', 
> 'dog', 'cat', 'fish'],
>                          'children': [4., 6, 3, 3, 2, 3, 5, 4],
>                          'salary':   [90., 24, 44, 27, 32, 59, 36, 27]})
> Expecting nothing
> ok
> Trying:
>     mapper = DataFrameMapper([
>         ('pet', sklearn.preprocessing.LabelBinarizer()),
>         (['children'], sklearn.preprocessing.StandardScaler())
>     ])
> Expecting nothing
> ok
> Trying:
>     data['children'].shape
> Expecting:
>     (8,)
> ok
> Trying:
>     data[['children']].shape
> Expecting:
>     (8, 1)
> ok
> Trying:
>     np.round(mapper.fit_transform(data.copy()), 2)
> Expecting:
>     array([[ 1.  ,  0.  ,  0.  ,  0.21],
>            [ 0.  ,  1.  ,  0.  ,  1.88],
>            [ 0.  ,  1.  ,  0.  , -0.63],
>            [ 0.  ,  0.  ,  1.  , -0.63],
>            [ 1.  ,  0.  ,  0.  , -1.46],
>            [ 0.  ,  1.  ,  0.  , -0.63],
>            [ 1.  ,  0.  ,  0.  ,  1.04],
>            [ 0.  ,  0.  ,  1.  ,  0.21]])
> ok
> Trying:
>     sample = pd.DataFrame({'pet': ['cat'], 'children': [5.]})
> Expecting nothing
> ok
> Trying:
>     np.round(mapper.transform(sample), 2)
> Expecting:
>     array([[1.  , 0.  , 0.  , 1.04]])
> ok
> Trying:
>     mapper.transformed_names_
> Expecting:
>     ['pet_cat', 'pet_dog', 'pet_fish', 'children']
> ok
> Trying:
>     mapper_alias = DataFrameMapper([
>         (['children'], sklearn.preprocessing.StandardScaler(),
>          {'alias': 'children_scaled'})
>     ])
> Expecting nothing
> ok
> Trying:
>     _ = mapper_alias.fit_transform(data.copy())
> Expecting nothing
> ok
> Trying:
>     mapper_alias.transformed_names_
> Expecting:
>     ['children_scaled']
> ok
> Trying:
>     mapper_alias = DataFrameMapper([
>         (['children'], sklearn.preprocessing.StandardScaler(), {'prefix': 
> 'standard_scaled_'}),
>         (['children'], sklearn.preprocessing.StandardScaler(), {'suffix': 
> '_raw'})
>     ])
> Expecting nothing
> ok
> Trying:
>     _ = mapper_alias.fit_transform(data.copy())
> Expecting nothing
> ok
> Trying:
>     mapper_alias.transformed_names_
> Expecting:
>     ['standard_scaled_children', 'children_raw']
> ok
> Trying:
>     class GetColumnsStartingWith:
>       def __init__(self, start_str):
>         self.pattern = start_str
> 
>       def __call__(self, X:pd.DataFrame=None):
>         return [c for c in X.columns if c.startswith(self.pattern)]
> Expecting nothing
> ok
> Trying:
>     df = pd.DataFrame({
>        'sepal length (cm)': [1.0, 2.0, 3.0],
>        'sepal width (cm)': [1.0, 2.0, 3.0],
>        'petal length (cm)': [1.0, 2.0, 3.0],
>        'petal width (cm)': [1.0, 2.0, 3.0]
>     })
> Expecting nothing
> ok
> Trying:
>     t = DataFrameMapper([
>         (
>           sklearn.compose.make_column_selector(dtype_include=float),
>           sklearn.preprocessing.StandardScaler(),
>           {'alias': 'x'}
>         ),
>         (
>           GetColumnsStartingWith('petal'),
>           None,
>           {'alias': 'petal'}
>         )], df_out=True, default=False)
> Expecting nothing
> ok
> Trying:
>     t.fit(df).transform(df).shape
> Expecting:
>     (3, 6)
> ok
> Trying:
>     t.transformed_names_
> Expecting:
>     ['x_0', 'x_1', 'x_2', 'x_3', 'petal_0', 'petal_1']
> ok
> Trying:
>     from sklearn.base import TransformerMixin
> Expecting nothing
> ok
> Trying:
>     class DateEncoder(TransformerMixin):
>        def fit(self, X, y=None):
>            return self
> 
>        def transform(self, X):
>            dt = X.dt
>            return pd.concat([dt.year, dt.month, dt.day], axis=1)
> Expecting nothing
> ok
> Trying:
>     dates_df = pd.DataFrame(
>         {'dates': pd.date_range('2015-10-30', '2015-11-02')})
> Expecting nothing
> ok
> Trying:
>     mapper_dates = DataFrameMapper([
>         ('dates', DateEncoder())
>     ], input_df=True)
> Expecting nothing
> ok
> Trying:
>     mapper_dates.fit_transform(dates_df)
> Expecting:
>     array([[2015,   10,   30],
>            [2015,   10,   31],
>            [2015,   11,    1],
>            [2015,   11,    2]], dtype=int32)
> **********************************************************************
> File "README.rst", line 228, in README.rst
> Failed example:
>     mapper_dates.fit_transform(dates_df)
> Expected:
>     array([[2015,   10,   30],
>            [2015,   10,   31],
>            [2015,   11,    1],
>            [2015,   11,    2]], dtype=int32)
> Got:
>     array([[2015,   10,   30],
>            [2015,   10,   31],
>            [2015,   11,    1],
>            [2015,   11,    2]])
> Trying:
>     mapper_dates = DataFrameMapper([
>         ('dates', DateEncoder(), {'input_df': True})
>     ])
> Expecting nothing
> ok
> Trying:
>     mapper_dates.fit_transform(dates_df)
> Expecting:
>     array([[2015,   10,   30],
>            [2015,   10,   31],
>            [2015,   11,    1],
>            [2015,   11,    2]], dtype=int32)
> **********************************************************************
> File "README.rst", line 240, in README.rst
> Failed example:
>     mapper_dates.fit_transform(dates_df)
> Expected:
>     array([[2015,   10,   30],
>            [2015,   10,   31],
>            [2015,   11,    1],
>            [2015,   11,    2]], dtype=int32)
> Got:
>     array([[2015,   10,   30],
>            [2015,   10,   31],
>            [2015,   11,    1],
>            [2015,   11,    2]])
> Trying:
>     mapper_df = DataFrameMapper([
>         ('pet', sklearn.preprocessing.LabelBinarizer()),
>         (['children'], sklearn.preprocessing.StandardScaler())
>     ], df_out=True)
> Expecting nothing
> ok
> Trying:
>     np.round(mapper_df.fit_transform(data.copy()), 2)
> Expecting:
>        pet_cat  pet_dog  pet_fish  children
>     0        1        0         0      0.21
>     1        0        1         0      1.88
>     2        0        1         0     -0.63
>     3        0        0         1     -0.63
>     4        1        0         0     -1.46
>     5        0        1         0     -0.63
>     6        1        0         0      1.04
>     7        0        0         1      0.21
> ok
> Trying:
>     mapper_df = DataFrameMapper([
>         ('pet', sklearn.preprocessing.LabelBinarizer()),
>         (['children'], sklearn.preprocessing.StandardScaler())
>     ], drop_cols=['salary'])
> Expecting nothing
> ok
> Trying:
>     np.round(mapper_df.fit_transform(data.copy()), 1)
> Expecting:
>     array([[ 1. ,  0. ,  0. ,  0.2],
>            [ 0. ,  1. ,  0. ,  1.9],
>            [ 0. ,  1. ,  0. , -0.6],
>            [ 0. ,  0. ,  1. , -0.6],
>            [ 1. ,  0. ,  0. , -1.5],
>            [ 0. ,  1. ,  0. , -0.6],
>            [ 1. ,  0. ,  0. ,  1. ],
>            [ 0. ,  0. ,  1. ,  0.2]])
> ok
> Trying:
>     mapper2 = DataFrameMapper([
>         (['children', 'salary'], sklearn.decomposition.PCA(1))
>     ])
> Expecting nothing
> ok
> Trying:
>     np.round(mapper2.fit_transform(data.copy()), 1)
> Expecting:
>     array([[ 47.6],
>            [-18.4],
>            [  1.6],
>            [-15.4],
>            [-10.4],
>            [ 16.6],
>            [ -6.4],
>            [-15.4]])
> ok
> Trying:
>     from sklearn.impute import SimpleImputer
> Expecting nothing
> ok
> Trying:
>     mapper3 = DataFrameMapper([
>         (['age'], [SimpleImputer(),
>                    sklearn.preprocessing.StandardScaler()])])
> Expecting nothing
> ok
> Trying:
>     data_3 = pd.DataFrame({'age': [1, np.nan, 3]})
> Expecting nothing
> ok
> Trying:
>     mapper3.fit_transform(data_3)
> Expecting:
>     array([[-1.22474487],
>            [ 0.        ],
>            [ 1.22474487]])
> ok
> Trying:
>     mapper3 = DataFrameMapper([
>         ('pet', sklearn.preprocessing.LabelBinarizer()),
>         ('children', None)
>     ])
> Expecting nothing
> ok
> Trying:
>     np.round(mapper3.fit_transform(data.copy()))
> Expecting:
>     array([[1., 0., 0., 4.],
>            [0., 1., 0., 6.],
>            [0., 1., 0., 3.],
>            [0., 0., 1., 3.],
>            [1., 0., 0., 2.],
>            [0., 1., 0., 3.],
>            [1., 0., 0., 5.],
>            [0., 0., 1., 4.]])
> ok
> Trying:
>     mapper4 = DataFrameMapper([
>         ('pet', sklearn.preprocessing.LabelBinarizer()),
>         ('children', None)
>     ], default=sklearn.preprocessing.StandardScaler())
> Expecting nothing
> ok
> Trying:
>     np.round(mapper4.fit_transform(data.copy()), 1)
> Expecting:
>     array([[ 1. ,  0. ,  0. ,  4. ,  2.3],
>            [ 0. ,  1. ,  0. ,  6. , -0.9],
>            [ 0. ,  1. ,  0. ,  3. ,  0.1],
>            [ 0. ,  0. ,  1. ,  3. , -0.7],
>            [ 1. ,  0. ,  0. ,  2. , -0.5],
>            [ 0. ,  1. ,  0. ,  3. ,  0.8],
>            [ 1. ,  0. ,  0. ,  5. , -0.3],
>            [ 0. ,  0. ,  1. ,  4. , -0.7]])
> ok
> Trying:
>     from sklearn_pandas import gen_features
> Expecting nothing
> ok
> Trying:
>     feature_def = gen_features(
>         columns=['col1', 'col2', 'col3'],
>         classes=[sklearn.preprocessing.LabelEncoder]
>     )
> Expecting nothing
> ok
> Trying:
>     feature_def
> Expecting:
>     [('col1', [LabelEncoder()], {}), ('col2', [LabelEncoder()], {}), ('col3', 
> [LabelEncoder()], {})]
> ok
> Trying:
>     mapper5 = DataFrameMapper(feature_def)
> Expecting nothing
> ok
> Trying:
>     data5 = pd.DataFrame({
>         'col1': ['yes', 'no', 'yes'],
>         'col2': [True, False, False],
>         'col3': ['one', 'two', 'three']
>     })
> Expecting nothing
> ok
> Trying:
>     mapper5.fit_transform(data5)
> Expecting:
>     array([[1, 1, 0],
>            [0, 0, 2],
>            [1, 0, 1]])
> ok
> Trying:
>     from sklearn.impute import SimpleImputer
> Expecting nothing
> ok
> Trying:
>     import numpy as np
> Expecting nothing
> ok
> Trying:
>     feature_def = gen_features(
>         columns=[['col1'], ['col2'], ['col3']],
>         classes=[{'class': SimpleImputer, 'strategy':'most_frequent'}]
>     )
> Expecting nothing
> ok
> Trying:
>     mapper6 = DataFrameMapper(feature_def)
> Expecting nothing
> ok
> Trying:
>     data6 = pd.DataFrame({
>         'col1': [np.nan, 1, 1, 2, 3],
>         'col2': [True, False, np.nan, np.nan, True],
>         'col3': [0, 0, 0, np.nan, np.nan]
>     })
> Expecting nothing
> ok
> Trying:
>     mapper6.fit_transform(data6)
> Expecting:
>     array([[1.0, True, 0.0],
>            [1.0, False, 0.0],
>            [1.0, True, 0.0],
>            [2.0, True, 0.0],
>            [3.0, True, 0.0]], dtype=object)
> ok
> Trying:
>     feature_def = gen_features(
>         columns=['col1', 'col2', 'col3'],
>         classes=[sklearn.preprocessing.LabelEncoder],
>         prefix="lblencoder_"
>     )
> Expecting nothing
> ok
> Trying:
>     mapper5 = DataFrameMapper(feature_def)
> Expecting nothing
> ok
> Trying:
>     data5 = pd.DataFrame({
>         'col1': ['yes', 'no', 'yes'],
>         'col2': [True, False, False],
>         'col3': ['one', 'two', 'three']
>     })
> Expecting nothing
> ok
> Trying:
>     _ = mapper5.fit_transform(data5)
> Expecting nothing
> ok
> Trying:
>     mapper5.transformed_names_
> Expecting:
>     ['lblencoder_col1', 'lblencoder_col2', 'lblencoder_col3']
> ok
> Trying:
>     from sklearn.feature_selection import SelectKBest, chi2
> Expecting nothing
> ok
> Trying:
>     mapper_fs = DataFrameMapper([(['children','salary'], SelectKBest(chi2, 
> k=1))])
> Expecting nothing
> ok
> Trying:
>     mapper_fs.fit_transform(data[['children','salary']], data['pet'])
> Expecting:
>     array([[90.],
>            [24.],
>            [44.],
>            [27.],
>            [32.],
>            [59.],
>            [36.],
>            [27.]])
> ok
> Trying:
>     mapper5 = DataFrameMapper([
>         ('pet', CountVectorizer()),
>     ], sparse=True)
> Expecting nothing
> ok
> Trying:
>     type(mapper5.fit_transform(data))
> Expecting:
>     <class 'scipy.sparse._csr.csr_matrix'>
> ok
> Trying:
>     from sklearn_pandas import NumericalTransformer
> Expecting nothing
> ok
> Trying:
>     mapper5 = DataFrameMapper([
>         ('children', NumericalTransformer('log')),
>     ])
> Expecting nothing
> ok
> Trying:
>     mapper5.fit_transform(data)
> Expecting:
>     array([[1.38629436],
>            [1.79175947],
>            [1.09861229],
>            [1.09861229],
>            [0.69314718],
>            [1.09861229],
>            [1.60943791],
>            [1.38629436]])
> ok
> Trying:
>     import logging
> Expecting nothing
> ok
> Trying:
>     logging.getLogger('sklearn_pandas').setLevel(logging.INFO)
> Expecting nothing
> ok
> **********************************************************************
> 1 item had failures:
>    2 of  72 in README.rst
> 72 tests in 1 item.
> 70 passed and 2 failed.
> ***Test Failed*** 2 failures.
> E: pybuild pybuild:389: test: plugin distutils failed with: exit code=1: cd 
> /build/reproducible-path/sklearn-pandas-2.2.0/.pybuild/cpython3_3.13_sklearn-pandas/build;
>  python3.13 -m pytest ; cd {dir}; python{version} -m doctest -v README.rst
>       rm -fr -- /tmp/dh-xdg-rundir-pdmJDH4k
> dh_auto_test: error: pybuild --test --test-pytest -i python{version} -p 3.13 
> returned exit code 13


The full build log is available from:
http://qa-logs.debian.net/2025/04/14/sklearn-pandas_2.2.0-4_testing-i386.log

All bugs filed during this archive rebuild are listed at:
https://bugs.debian.org/cgi-bin/pkgreport.cgi?tag=ftbfs-20250414;users=lu...@debian.org
or:
https://udd.debian.org/bugs/?release=na&merged=ign&fnewerval=7&flastmodval=7&fusertag=only&fusertagtag=ftbfs-20250414&fusertaguser=lu...@debian.org&allbugs=1&cseverity=1&ctags=1&caffected=1#results

A list of current common problems and possible solutions is available at
http://wiki.debian.org/qa.debian.org/FTBFS . You're welcome to contribute!

If you reassign this bug to another package, please mark it as 'affects'-ing
this package. See https://www.debian.org/Bugs/server-control#affects

If you fail to reproduce this, please provide a build log and diff it with mine
so that we can identify if something relevant changed in the meantime.

--- End Message ---
--- Begin Message ---
Source: sklearn-pandas
Source-Version: 2.2.0-5
Done: Alexandre Detiste <tc...@debian.org>

We believe that the bug you reported is fixed in the latest version of
sklearn-pandas, which is due to be installed in the Debian FTP archive.

A summary of the changes between this version and the previous one is
attached.

Thank you for reporting the bug, which will now be closed.  If you
have further comments please address them to 1103...@bugs.debian.org,
and the maintainer will reopen the bug report if appropriate.

Debian distribution maintenance software
pp.
Alexandre Detiste <tc...@debian.org> (supplier of updated sklearn-pandas 
package)

(This message was generated automatically at their request; if you
believe that there is a problem with it please contact the archive
administrators by mailing ftpmas...@ftp-master.debian.org)


-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512

Format: 1.8
Date: Fri, 16 May 2025 12:18:52 +0200
Source: sklearn-pandas
Architecture: source
Version: 2.2.0-5
Distribution: unstable
Urgency: medium
Maintainer: Debian Science Maintainers 
<debian-science-maintain...@lists.alioth.debian.org>
Changed-By: Alexandre Detiste <tc...@debian.org>
Closes: 1103099
Changes:
 sklearn-pandas (2.2.0-5) unstable; urgency=medium
 .
   * Team upload.
   * Disable doctest on i386 (Closes: #1103099)
Checksums-Sha1:
 971f1cd7ce9d9ee347f8c63e88dc74118c71d27b 2301 sklearn-pandas_2.2.0-5.dsc
 13f2a057957bf607413d10983a4c8f57895cfca7 5236 
sklearn-pandas_2.2.0-5.debian.tar.xz
 eae6065844b80c644e03efc4c9fb5f6e32f94a3b 6111 
sklearn-pandas_2.2.0-5_source.buildinfo
Checksums-Sha256:
 13609acd729ead46a535f01377b23047de0f7db61d4b1c8f42f286c1c145ff7f 2301 
sklearn-pandas_2.2.0-5.dsc
 c791834708fa1ef675a7740333b5eed7fc8eac31b6223dc50077c3a1f3e57a2c 5236 
sklearn-pandas_2.2.0-5.debian.tar.xz
 742d0647d011a3889e6c77c6befabc3bd642a7f321a871992d3b85d8985f5088 6111 
sklearn-pandas_2.2.0-5_source.buildinfo
Files:
 e11c131de13eb496c16f8a70a668269a 2301 python optional 
sklearn-pandas_2.2.0-5.dsc
 1dfd8cd9305743e003b82b2c690166c4 5236 python optional 
sklearn-pandas_2.2.0-5.debian.tar.xz
 aa40d33b2d3f7fb9904d1c3960631a33 6111 python optional 
sklearn-pandas_2.2.0-5_source.buildinfo

-----BEGIN PGP SIGNATURE-----

iQJFBAEBCgAvFiEEj23hBDd/OxHnQXSHMfMURUShdBoFAmgnEUYRHHRjaGV0QGRl
Ymlhbi5vcmcACgkQMfMURUShdBqGlRAAubKmhKA1EI9+NOSmC3W0efM20z57+scW
DQWR1Zio3R/+aXiQco7V4tWw47FZ45ZuviFUIRLE1jmCX4PArGHiq5idesdkkG24
GXcuyKOWWidQe16V8xN09s2urki0dkeyCnt5A512Gk3HDVswd8UIwAeSV34m202k
urend14uWqHDuFxOINGaHehorjIgcinpeB0vdjPRVff9OJj56PEUuKInOcmvfpAN
v8Zp82zkVVGZP3GVY7FafqT73+6VGb7nDQpvwqCNvyprKXk5F1dHANZlxU/WgoCb
Rc8bff5CMhDdqf5PkV8bMCya+MffgNTMPJp/EnREwiG6Df3FpuP6GEYUDKfxcBL/
F1BhZGB2duqN++zbS8HEyebC4mJnSUU2bF00I+b+VYymxPVLBIPOHljd8iOOXwQN
2kZa2I4GTCT9U9yQLrm4h6CRbxqskOA/BfXPnNVZ2DUWNps3MnOYBe/7IiozhuFm
3ENKlFgU0ijXfj8u7jtDTG5ZOM0fqfcEPImaONK+0RZ4zw0xj+zCBQM4CzIPSlug
hVID8fUljNrJp6yfe6KTqqvHuFjPL186/ME7jTEYnBrcUuVWs68gsdOT3/Dg7bcs
saBiL4DGFshVmnM0q2MAFFmwiYWD68BYDQoszKK08Mmh46DoyZYTkd8FrIy8alvd
QjmdzzLoP8A=
=L0xr
-----END PGP SIGNATURE-----

Attachment: pgpKr6LdKJ9v8.pgp
Description: PGP signature


--- End Message ---

Reply via email to