This is an automated email from the ASF dual-hosted git repository. weichenxu123 pushed a commit to branch master in repository https://gitbox.apache.org/repos/asf/spark.git
The following commit(s) were added to refs/heads/master by this push: new 7019d5e63b72 [SPARK-51867][ML][FOLLOW-UP][ML] Use private to avoid exposing Data class 7019d5e63b72 is described below commit 7019d5e63b7218049bacf3392716bf6faf8f82a1 Author: Weichen Xu <weichen...@databricks.com> AuthorDate: Thu May 1 12:58:19 2025 +0800 [SPARK-51867][ML][FOLLOW-UP][ML] Use private to avoid exposing Data class ### What changes were proposed in this pull request? Use private[ml] to avoid exposing Data class ### Why are the changes needed? to avoid exposing Data class ### Does this PR introduce _any_ user-facing change? No. ### How was this patch tested? UT. ### Was this patch authored or co-authored using generative AI tooling? No. Closes #50763 from WeichenXu123/save-to-local-follow-up. Authored-by: Weichen Xu <weichen...@databricks.com> Signed-off-by: Weichen Xu <weichen...@databricks.com> --- .../scala/org/apache/spark/ml/classification/FMClassifier.scala | 2 +- .../main/scala/org/apache/spark/ml/classification/LinearSVC.scala | 2 +- .../org/apache/spark/ml/classification/LogisticRegression.scala | 2 +- .../spark/ml/classification/MultilayerPerceptronClassifier.scala | 2 +- .../main/scala/org/apache/spark/ml/classification/NaiveBayes.scala | 2 +- .../main/scala/org/apache/spark/ml/clustering/GaussianMixture.scala | 6 +++++- mllib/src/main/scala/org/apache/spark/ml/clustering/KMeans.scala | 4 ++-- mllib/src/main/scala/org/apache/spark/ml/clustering/LDA.scala | 2 +- .../org/apache/spark/ml/feature/BucketedRandomProjectionLSH.scala | 2 +- .../src/main/scala/org/apache/spark/ml/feature/ChiSqSelector.scala | 2 +- .../main/scala/org/apache/spark/ml/feature/CountVectorizer.scala | 2 +- mllib/src/main/scala/org/apache/spark/ml/feature/IDF.scala | 2 +- mllib/src/main/scala/org/apache/spark/ml/feature/MaxAbsScaler.scala | 2 +- mllib/src/main/scala/org/apache/spark/ml/feature/MinHashLSH.scala | 2 +- mllib/src/main/scala/org/apache/spark/ml/feature/MinMaxScaler.scala | 2 +- .../src/main/scala/org/apache/spark/ml/feature/OneHotEncoder.scala | 2 +- mllib/src/main/scala/org/apache/spark/ml/feature/PCA.scala | 2 +- mllib/src/main/scala/org/apache/spark/ml/feature/RFormula.scala | 4 ++-- mllib/src/main/scala/org/apache/spark/ml/feature/RobustScaler.scala | 2 +- .../src/main/scala/org/apache/spark/ml/feature/StandardScaler.scala | 2 +- .../src/main/scala/org/apache/spark/ml/feature/StringIndexer.scala | 2 +- .../src/main/scala/org/apache/spark/ml/feature/TargetEncoder.scala | 2 +- .../org/apache/spark/ml/feature/UnivariateFeatureSelector.scala | 2 +- .../org/apache/spark/ml/feature/VarianceThresholdSelector.scala | 2 +- .../src/main/scala/org/apache/spark/ml/feature/VectorIndexer.scala | 2 +- mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala | 2 +- .../org/apache/spark/ml/regression/AFTSurvivalRegression.scala | 2 +- .../src/main/scala/org/apache/spark/ml/regression/FMRegressor.scala | 2 +- .../apache/spark/ml/regression/GeneralizedLinearRegression.scala | 2 +- .../scala/org/apache/spark/ml/regression/IsotonicRegression.scala | 2 +- .../scala/org/apache/spark/ml/regression/LinearRegression.scala | 4 ++-- 31 files changed, 38 insertions(+), 34 deletions(-) diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/FMClassifier.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/FMClassifier.scala index b0dba4e3cf9d..222cfbb80c3d 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/classification/FMClassifier.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/classification/FMClassifier.scala @@ -345,7 +345,7 @@ class FMClassificationModel private[classification] ( @Since("3.0.0") object FMClassificationModel extends MLReadable[FMClassificationModel] { - private case class Data( + private[ml] case class Data( intercept: Double, linear: Vector, factors: Matrix diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/LinearSVC.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/LinearSVC.scala index e67e7b0daed1..c5d1170318f7 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/classification/LinearSVC.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/classification/LinearSVC.scala @@ -447,7 +447,7 @@ class LinearSVCModel private[classification] ( @Since("2.2.0") object LinearSVCModel extends MLReadable[LinearSVCModel] { - private case class Data(coefficients: Vector, intercept: Double) + private[ml] case class Data(coefficients: Vector, intercept: Double) @Since("2.2.0") override def read: MLReader[LinearSVCModel] = new LinearSVCReader diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala index 093f3efba2dd..d09cacf3fb5b 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/classification/LogisticRegression.scala @@ -1318,7 +1318,7 @@ class LogisticRegressionModel private[spark] ( @Since("1.6.0") object LogisticRegressionModel extends MLReadable[LogisticRegressionModel] { - case class Data( + private[ml] case class Data( numClasses: Int, numFeatures: Int, interceptVector: Vector, diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.scala index f8f41a6a6bec..2359749f8b48 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.scala @@ -368,7 +368,7 @@ class MultilayerPerceptronClassificationModel private[ml] ( @Since("2.0.0") object MultilayerPerceptronClassificationModel extends MLReadable[MultilayerPerceptronClassificationModel] { - private case class Data(weights: Vector) + private[ml] case class Data(weights: Vector) @Since("2.0.0") override def read: MLReader[MultilayerPerceptronClassificationModel] = diff --git a/mllib/src/main/scala/org/apache/spark/ml/classification/NaiveBayes.scala b/mllib/src/main/scala/org/apache/spark/ml/classification/NaiveBayes.scala index c07e3289f653..ce26478c625c 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/classification/NaiveBayes.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/classification/NaiveBayes.scala @@ -598,7 +598,7 @@ class NaiveBayesModel private[ml] ( @Since("1.6.0") object NaiveBayesModel extends MLReadable[NaiveBayesModel] { - private case class Data(pi: Vector, theta: Matrix, sigma: Matrix) + private[ml] case class Data(pi: Vector, theta: Matrix, sigma: Matrix) @Since("1.6.0") override def read: MLReader[NaiveBayesModel] = new NaiveBayesModelReader diff --git a/mllib/src/main/scala/org/apache/spark/ml/clustering/GaussianMixture.scala b/mllib/src/main/scala/org/apache/spark/ml/clustering/GaussianMixture.scala index 5924a9976c9b..ee0b19f8129d 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/clustering/GaussianMixture.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/clustering/GaussianMixture.scala @@ -223,7 +223,11 @@ class GaussianMixtureModel private[ml] ( @Since("2.0.0") object GaussianMixtureModel extends MLReadable[GaussianMixtureModel] { - private case class Data(weights: Array[Double], mus: Array[OldVector], sigmas: Array[OldMatrix]) + private[ml] case class Data( + weights: Array[Double], + mus: Array[OldVector], + sigmas: Array[OldMatrix] + ) @Since("2.0.0") override def read: MLReader[GaussianMixtureModel] = new GaussianMixtureModelReader diff --git a/mllib/src/main/scala/org/apache/spark/ml/clustering/KMeans.scala b/mllib/src/main/scala/org/apache/spark/ml/clustering/KMeans.scala index ca90097eb01d..e87dc9eb040b 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/clustering/KMeans.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/clustering/KMeans.scala @@ -213,7 +213,7 @@ class KMeansModel private[ml] ( } /** Helper class for storing model data */ -private case class ClusterData(clusterIdx: Int, clusterCenter: Vector) +private[ml] case class ClusterData(clusterIdx: Int, clusterCenter: Vector) /** A writer for KMeans that handles the "internal" (or default) format */ @@ -265,7 +265,7 @@ object KMeansModel extends MLReadable[KMeansModel] { * We store all cluster centers in a single row and use this class to store model data by * Spark 1.6 and earlier. A model can be loaded from such older data for backward compatibility. */ - private case class OldData(clusterCenters: Array[OldVector]) + private[ml] case class OldData(clusterCenters: Array[OldVector]) private class KMeansModelReader extends MLReader[KMeansModel] { diff --git a/mllib/src/main/scala/org/apache/spark/ml/clustering/LDA.scala b/mllib/src/main/scala/org/apache/spark/ml/clustering/LDA.scala index 9fde28502973..4db66ca9325c 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/clustering/LDA.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/clustering/LDA.scala @@ -643,7 +643,7 @@ class LocalLDAModel private[ml] ( @Since("1.6.0") object LocalLDAModel extends MLReadable[LocalLDAModel] { - private case class LocalModelData( + private[ml] case class LocalModelData( vocabSize: Int, topicsMatrix: Matrix, docConcentration: Vector, diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/BucketedRandomProjectionLSH.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/BucketedRandomProjectionLSH.scala index aee51e4be519..ef7ff1be69a6 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/BucketedRandomProjectionLSH.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/BucketedRandomProjectionLSH.scala @@ -213,7 +213,7 @@ object BucketedRandomProjectionLSH extends DefaultParamsReadable[BucketedRandomP @Since("2.1.0") object BucketedRandomProjectionLSHModel extends MLReadable[BucketedRandomProjectionLSHModel] { // TODO: Save using the existing format of Array[Vector] once SPARK-12878 is resolved. - private case class Data(randUnitVectors: Matrix) + private[ml] case class Data(randUnitVectors: Matrix) @Since("2.1.0") override def read: MLReader[BucketedRandomProjectionLSHModel] = { diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/ChiSqSelector.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/ChiSqSelector.scala index 5205e3965bbc..545bac693a93 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/ChiSqSelector.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/ChiSqSelector.scala @@ -170,7 +170,7 @@ final class ChiSqSelectorModel private[ml] ( @Since("1.6.0") object ChiSqSelectorModel extends MLReadable[ChiSqSelectorModel] { - private case class Data(selectedFeatures: Seq[Int]) + private[ml] case class Data(selectedFeatures: Seq[Int]) class ChiSqSelectorModelWriter(instance: ChiSqSelectorModel) extends MLWriter { diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/CountVectorizer.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/CountVectorizer.scala index 55e03781ad27..92b2a09f85b5 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/CountVectorizer.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/CountVectorizer.scala @@ -368,7 +368,7 @@ class CountVectorizerModel( @Since("1.6.0") object CountVectorizerModel extends MLReadable[CountVectorizerModel] { - private case class Data(vocabulary: Seq[String]) + private[ml] case class Data(vocabulary: Seq[String]) private[CountVectorizerModel] class CountVectorizerModelWriter(instance: CountVectorizerModel) extends MLWriter { diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/IDF.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/IDF.scala index e4ba7a0adec2..11ef88ac1fb8 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/IDF.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/IDF.scala @@ -195,7 +195,7 @@ class IDFModel private[ml] ( @Since("1.6.0") object IDFModel extends MLReadable[IDFModel] { - private case class Data(idf: Vector, docFreq: Array[Long], numDocs: Long) + private[ml] case class Data(idf: Vector, docFreq: Array[Long], numDocs: Long) private[IDFModel] class IDFModelWriter(instance: IDFModel) extends MLWriter { diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/MaxAbsScaler.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/MaxAbsScaler.scala index a15578ae3185..db60ee879afb 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/MaxAbsScaler.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/MaxAbsScaler.scala @@ -158,7 +158,7 @@ class MaxAbsScalerModel private[ml] ( @Since("2.0.0") object MaxAbsScalerModel extends MLReadable[MaxAbsScalerModel] { - private case class Data(maxAbs: Vector) + private[ml] case class Data(maxAbs: Vector) private[MaxAbsScalerModel] class MaxAbsScalerModelWriter(instance: MaxAbsScalerModel) extends MLWriter { diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/MinHashLSH.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/MinHashLSH.scala index 1bddc67f8f81..8faadcc7db49 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/MinHashLSH.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/MinHashLSH.scala @@ -210,7 +210,7 @@ object MinHashLSH extends DefaultParamsReadable[MinHashLSH] { @Since("2.1.0") object MinHashLSHModel extends MLReadable[MinHashLSHModel] { - private case class Data(randCoefficients: Array[Int]) + private[ml] case class Data(randCoefficients: Array[Int]) @Since("2.1.0") override def read: MLReader[MinHashLSHModel] = new MinHashLSHModelReader diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/MinMaxScaler.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/MinMaxScaler.scala index e806d4a29d33..e02a25bf7b8d 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/MinMaxScaler.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/MinMaxScaler.scala @@ -242,7 +242,7 @@ class MinMaxScalerModel private[ml] ( @Since("1.6.0") object MinMaxScalerModel extends MLReadable[MinMaxScalerModel] { - private case class Data(originalMin: Vector, originalMax: Vector) + private[ml] case class Data(originalMin: Vector, originalMax: Vector) private[MinMaxScalerModel] class MinMaxScalerModelWriter(instance: MinMaxScalerModel) extends MLWriter { diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/OneHotEncoder.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/OneHotEncoder.scala index d34ffbfc202f..0a9b6c46feae 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/OneHotEncoder.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/OneHotEncoder.scala @@ -401,7 +401,7 @@ class OneHotEncoderModel private[ml] ( @Since("3.0.0") object OneHotEncoderModel extends MLReadable[OneHotEncoderModel] { - private case class Data(categorySizes: Array[Int]) + private[ml] case class Data(categorySizes: Array[Int]) private[OneHotEncoderModel] class OneHotEncoderModelWriter(instance: OneHotEncoderModel) extends MLWriter { diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/PCA.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/PCA.scala index 0c80d442114c..e5fd96671b20 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/PCA.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/PCA.scala @@ -181,7 +181,7 @@ class PCAModel private[ml] ( @Since("1.6.0") object PCAModel extends MLReadable[PCAModel] { - private case class Data(pc: Matrix, explainedVariance: Vector) + private[ml] case class Data(pc: Matrix, explainedVariance: Vector) private[PCAModel] class PCAModelWriter(instance: PCAModel) extends MLWriter { diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/RFormula.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/RFormula.scala index abb69d7e873d..b482d08b2fac 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/RFormula.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/RFormula.scala @@ -496,7 +496,7 @@ private class ColumnPruner(override val uid: String, val columnsToPrune: Set[Str } private object ColumnPruner extends MLReadable[ColumnPruner] { - private case class Data(columnsToPrune: Seq[String]) + private[ml] case class Data(columnsToPrune: Seq[String]) override def read: MLReader[ColumnPruner] = new ColumnPrunerReader @@ -588,7 +588,7 @@ private class VectorAttributeRewriter( } private object VectorAttributeRewriter extends MLReadable[VectorAttributeRewriter] { - private case class Data(vectorCol: String, prefixesToRewrite: Map[String, String]) + private[ml] case class Data(vectorCol: String, prefixesToRewrite: Map[String, String]) override def read: MLReader[VectorAttributeRewriter] = new VectorAttributeRewriterReader diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/RobustScaler.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/RobustScaler.scala index bb0179613b7b..246e553b3add 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/RobustScaler.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/RobustScaler.scala @@ -279,7 +279,7 @@ class RobustScalerModel private[ml] ( @Since("3.0.0") object RobustScalerModel extends MLReadable[RobustScalerModel] { - private case class Data(range: Vector, median: Vector) + private[ml] case class Data(range: Vector, median: Vector) private[RobustScalerModel] class RobustScalerModelWriter(instance: RobustScalerModel) extends MLWriter { diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/StandardScaler.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/StandardScaler.scala index 19c3e4ca25cc..87e2557eb484 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/StandardScaler.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/StandardScaler.scala @@ -200,7 +200,7 @@ class StandardScalerModel private[ml] ( @Since("1.6.0") object StandardScalerModel extends MLReadable[StandardScalerModel] { - private case class Data(std: Vector, mean: Vector) + private[ml] case class Data(std: Vector, mean: Vector) private[StandardScalerModel] class StandardScalerModelWriter(instance: StandardScalerModel) extends MLWriter { diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/StringIndexer.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/StringIndexer.scala index 30b8c813188f..243333f9f0de 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/StringIndexer.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/StringIndexer.scala @@ -469,7 +469,7 @@ class StringIndexerModel ( @Since("1.6.0") object StringIndexerModel extends MLReadable[StringIndexerModel] { - private case class Data(labelsArray: Seq[Seq[String]]) + private[ml] case class Data(labelsArray: Seq[Seq[String]]) private[StringIndexerModel] class StringIndexModelWriter(instance: StringIndexerModel) extends MLWriter { diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/TargetEncoder.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/TargetEncoder.scala index 8634779b0bc9..aa11a139b022 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/TargetEncoder.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/TargetEncoder.scala @@ -402,7 +402,7 @@ class TargetEncoderModel private[ml] ( @Since("4.0.0") object TargetEncoderModel extends MLReadable[TargetEncoderModel] { - private case class Data( + private[ml] case class Data( index: Int, categories: Array[Double], counts: Array[Double], stats: Array[Double]) diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/UnivariateFeatureSelector.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/UnivariateFeatureSelector.scala index 75ff263d61b3..c394f121a215 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/UnivariateFeatureSelector.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/UnivariateFeatureSelector.scala @@ -338,7 +338,7 @@ class UnivariateFeatureSelectorModel private[ml]( @Since("3.1.1") object UnivariateFeatureSelectorModel extends MLReadable[UnivariateFeatureSelectorModel] { - private case class Data(selectedFeatures: Seq[Int]) + private[ml] case class Data(selectedFeatures: Seq[Int]) @Since("3.1.1") override def read: MLReader[UnivariateFeatureSelectorModel] = diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/VarianceThresholdSelector.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/VarianceThresholdSelector.scala index 08ba51b413d2..0549434e2429 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/VarianceThresholdSelector.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/VarianceThresholdSelector.scala @@ -176,7 +176,7 @@ class VarianceThresholdSelectorModel private[ml]( @Since("3.1.0") object VarianceThresholdSelectorModel extends MLReadable[VarianceThresholdSelectorModel] { - private case class Data(selectedFeatures: Seq[Int]) + private[ml] case class Data(selectedFeatures: Seq[Int]) @Since("3.1.0") override def read: MLReader[VarianceThresholdSelectorModel] = diff --git a/mllib/src/main/scala/org/apache/spark/ml/feature/VectorIndexer.scala b/mllib/src/main/scala/org/apache/spark/ml/feature/VectorIndexer.scala index 48ad67af0934..8d98153a8a14 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/feature/VectorIndexer.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/feature/VectorIndexer.scala @@ -528,7 +528,7 @@ class VectorIndexerModel private[ml] ( @Since("1.6.0") object VectorIndexerModel extends MLReadable[VectorIndexerModel] { - private case class Data(numFeatures: Int, categoryMaps: Map[Int, Map[Double, Int]]) + private[ml] case class Data(numFeatures: Int, categoryMaps: Map[Int, Map[Double, Int]]) private[VectorIndexerModel] class VectorIndexerModelWriter(instance: VectorIndexerModel) extends MLWriter { diff --git a/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala b/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala index 0dd10691c5d2..039361aea08e 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala @@ -547,7 +547,7 @@ class ALSModel private[ml] ( } } -private case class FeatureData(id: Int, features: Array[Float]) +private[ml] case class FeatureData(id: Int, features: Array[Float]) @Since("1.6.0") object ALSModel extends MLReadable[ALSModel] { diff --git a/mllib/src/main/scala/org/apache/spark/ml/regression/AFTSurvivalRegression.scala b/mllib/src/main/scala/org/apache/spark/ml/regression/AFTSurvivalRegression.scala index 1b77c1d4d51a..de9d016edea6 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/regression/AFTSurvivalRegression.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/regression/AFTSurvivalRegression.scala @@ -497,7 +497,7 @@ class AFTSurvivalRegressionModel private[ml] ( @Since("1.6.0") object AFTSurvivalRegressionModel extends MLReadable[AFTSurvivalRegressionModel] { - private case class Data(coefficients: Vector, intercept: Double, scale: Double) + private[ml] case class Data(coefficients: Vector, intercept: Double, scale: Double) @Since("1.6.0") override def read: MLReader[AFTSurvivalRegressionModel] = new AFTSurvivalRegressionModelReader diff --git a/mllib/src/main/scala/org/apache/spark/ml/regression/FMRegressor.scala b/mllib/src/main/scala/org/apache/spark/ml/regression/FMRegressor.scala index 09df9295d618..0bb89354c47a 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/regression/FMRegressor.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/regression/FMRegressor.scala @@ -510,7 +510,7 @@ class FMRegressionModel private[regression] ( @Since("3.0.0") object FMRegressionModel extends MLReadable[FMRegressionModel] { - private case class Data( + private[ml] case class Data( intercept: Double, linear: Vector, factors: Matrix) diff --git a/mllib/src/main/scala/org/apache/spark/ml/regression/GeneralizedLinearRegression.scala b/mllib/src/main/scala/org/apache/spark/ml/regression/GeneralizedLinearRegression.scala index 0584a21d25fc..777b70e7d021 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/regression/GeneralizedLinearRegression.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/regression/GeneralizedLinearRegression.scala @@ -1143,7 +1143,7 @@ class GeneralizedLinearRegressionModel private[ml] ( @Since("2.0.0") object GeneralizedLinearRegressionModel extends MLReadable[GeneralizedLinearRegressionModel] { - private case class Data(intercept: Double, coefficients: Vector) + private[ml] case class Data(intercept: Double, coefficients: Vector) @Since("2.0.0") override def read: MLReader[GeneralizedLinearRegressionModel] = diff --git a/mllib/src/main/scala/org/apache/spark/ml/regression/IsotonicRegression.scala b/mllib/src/main/scala/org/apache/spark/ml/regression/IsotonicRegression.scala index 5d93541ab245..131fbcd4d167 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/regression/IsotonicRegression.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/regression/IsotonicRegression.scala @@ -285,7 +285,7 @@ class IsotonicRegressionModel private[ml] ( @Since("1.6.0") object IsotonicRegressionModel extends MLReadable[IsotonicRegressionModel] { - private case class Data( + private[ml] case class Data( boundaries: Array[Double], predictions: Array[Double], isotonic: Boolean) diff --git a/mllib/src/main/scala/org/apache/spark/ml/regression/LinearRegression.scala b/mllib/src/main/scala/org/apache/spark/ml/regression/LinearRegression.scala index ea27afa75551..919cec4e16e4 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/regression/LinearRegression.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/regression/LinearRegression.scala @@ -786,7 +786,7 @@ class LinearRegressionModel private[ml] ( } } -private case class LinearModelData(intercept: Double, coefficients: Vector, scale: Double) +private[ml] case class LinearModelData(intercept: Double, coefficients: Vector, scale: Double) /** A writer for LinearRegression that handles the "internal" (or default) format */ private class InternalLinearRegressionModelWriter @@ -816,7 +816,7 @@ private class PMMLLinearRegressionModelWriter override def stageName(): String = "org.apache.spark.ml.regression.LinearRegressionModel" - private case class Data(intercept: Double, coefficients: Vector) + private[ml] case class Data(intercept: Double, coefficients: Vector) override def write(path: String, sparkSession: SparkSession, optionMap: mutable.Map[String, String], stage: PipelineStage): Unit = { --------------------------------------------------------------------- To unsubscribe, e-mail: commits-unsubscr...@spark.apache.org For additional commands, e-mail: commits-h...@spark.apache.org