This is an automated email from the ASF dual-hosted git repository. xinrong pushed a commit to branch master in repository https://gitbox.apache.org/repos/asf/spark.git
The following commit(s) were added to refs/heads/master by this push: new e505244460b [SPARK-44150][PYTHON][FOLLOW-UP] Revert commits e505244460b is described below commit e505244460baa49f862d36333792c9d924cb4dde Author: Xinrong Meng <xinr...@apache.org> AuthorDate: Thu Jun 29 14:55:03 2023 -0700 [SPARK-44150][PYTHON][FOLLOW-UP] Revert commits ### What changes were proposed in this pull request? Revert two commits of [SPARK-44150] that block master CI. ### Why are the changes needed? N/A ### Does this PR introduce _any_ user-facing change? N/A ### How was this patch tested? N/A Closes #41799 from xinrong-meng/revert. Authored-by: Xinrong Meng <xinr...@apache.org> Signed-off-by: Xinrong Meng <xinr...@apache.org> --- python/pyspark/sql/pandas/serializers.py | 32 +++---------------- python/pyspark/sql/tests/test_arrow_python_udf.py | 39 ----------------------- python/pyspark/worker.py | 3 -- 3 files changed, 5 insertions(+), 69 deletions(-) diff --git a/python/pyspark/sql/pandas/serializers.py b/python/pyspark/sql/pandas/serializers.py index 12d4c3077fe..307fcc33752 100644 --- a/python/pyspark/sql/pandas/serializers.py +++ b/python/pyspark/sql/pandas/serializers.py @@ -190,7 +190,7 @@ class ArrowStreamPandasSerializer(ArrowStreamSerializer): ) return converter(s) - def _create_array(self, series, arrow_type, spark_type=None, arrow_cast=False): + def _create_array(self, series, arrow_type, spark_type=None): """ Create an Arrow Array from the given pandas.Series and optional type. @@ -202,9 +202,6 @@ class ArrowStreamPandasSerializer(ArrowStreamSerializer): If None, pyarrow's inferred type will be used spark_type : DataType, optional If None, spark type converted from arrow_type will be used - arrow_cast: bool, optional - Whether to apply Arrow casting when the user-specified return type mismatches the - actual return values. Returns ------- @@ -229,14 +226,7 @@ class ArrowStreamPandasSerializer(ArrowStreamSerializer): else: mask = series.isnull() try: - if arrow_cast: - return pa.Array.from_pandas(series, mask=mask).cast( - target_type=arrow_type, safe=self._safecheck - ) - else: - return pa.Array.from_pandas( - series, mask=mask, type=arrow_type, safe=self._safecheck - ) + return pa.Array.from_pandas(series, mask=mask, type=arrow_type, safe=self._safecheck) except TypeError as e: error_msg = ( "Exception thrown when converting pandas.Series (%s) " @@ -329,14 +319,12 @@ class ArrowStreamPandasUDFSerializer(ArrowStreamPandasSerializer): df_for_struct=False, struct_in_pandas="dict", ndarray_as_list=False, - arrow_cast=False, ): super(ArrowStreamPandasUDFSerializer, self).__init__(timezone, safecheck) self._assign_cols_by_name = assign_cols_by_name self._df_for_struct = df_for_struct self._struct_in_pandas = struct_in_pandas self._ndarray_as_list = ndarray_as_list - self._arrow_cast = arrow_cast def arrow_to_pandas(self, arrow_column): import pyarrow.types as types @@ -398,13 +386,7 @@ class ArrowStreamPandasUDFSerializer(ArrowStreamPandasSerializer): # Assign result columns by schema name if user labeled with strings elif self._assign_cols_by_name and any(isinstance(name, str) for name in s.columns): arrs_names = [ - ( - self._create_array( - s[field.name], field.type, arrow_cast=self._arrow_cast - ), - field.name, - ) - for field in t + (self._create_array(s[field.name], field.type), field.name) for field in t ] # Assign result columns by position else: @@ -412,11 +394,7 @@ class ArrowStreamPandasUDFSerializer(ArrowStreamPandasSerializer): # the selected series has name '1', so we rename it to field.name # as the name is used by _create_array to provide a meaningful error message ( - self._create_array( - s[s.columns[i]].rename(field.name), - field.type, - arrow_cast=self._arrow_cast, - ), + self._create_array(s[s.columns[i]].rename(field.name), field.type), field.name, ) for i, field in enumerate(t) @@ -425,7 +403,7 @@ class ArrowStreamPandasUDFSerializer(ArrowStreamPandasSerializer): struct_arrs, struct_names = zip(*arrs_names) arrs.append(pa.StructArray.from_arrays(struct_arrs, struct_names)) else: - arrs.append(self._create_array(s, t, arrow_cast=self._arrow_cast)) + arrs.append(self._create_array(s, t)) return pa.RecordBatch.from_arrays(arrs, ["_%d" % i for i in range(len(arrs))]) diff --git a/python/pyspark/sql/tests/test_arrow_python_udf.py b/python/pyspark/sql/tests/test_arrow_python_udf.py index 264ea0b901f..0accb0f3cc1 100644 --- a/python/pyspark/sql/tests/test_arrow_python_udf.py +++ b/python/pyspark/sql/tests/test_arrow_python_udf.py @@ -17,8 +17,6 @@ import unittest -from pyspark.errors import PythonException -from pyspark.sql import Row from pyspark.sql.functions import udf from pyspark.sql.tests.test_udf import BaseUDFTestsMixin from pyspark.testing.sqlutils import ( @@ -143,43 +141,6 @@ class PythonUDFArrowTestsMixin(BaseUDFTestsMixin): "[[1, 2], [3, 4]]", ) - def test_type_coercion_string_to_numeric(self): - df_int_value = self.spark.createDataFrame(["1", "2"], schema="string") - df_floating_value = self.spark.createDataFrame(["1.1", "2.2"], schema="string") - - int_ddl_types = ["tinyint", "smallint", "int", "bigint"] - floating_ddl_types = ["double", "float"] - - for ddl_type in int_ddl_types: - # df_int_value - res = df_int_value.select(udf(lambda x: x, ddl_type)("value").alias("res")) - self.assertEquals(res.collect(), [Row(res=1), Row(res=2)]) - self.assertEquals(res.dtypes[0][1], ddl_type) - - floating_results = [ - [Row(res=1.1), Row(res=2.2)], - [Row(res=1.100000023841858), Row(res=2.200000047683716)], - ] - for ddl_type, floating_res in zip(floating_ddl_types, floating_results): - # df_int_value - res = df_int_value.select(udf(lambda x: x, ddl_type)("value").alias("res")) - self.assertEquals(res.collect(), [Row(res=1.0), Row(res=2.0)]) - self.assertEquals(res.dtypes[0][1], ddl_type) - # df_floating_value - res = df_floating_value.select(udf(lambda x: x, ddl_type)("value").alias("res")) - self.assertEquals(res.collect(), floating_res) - self.assertEquals(res.dtypes[0][1], ddl_type) - - # invalid - with self.assertRaises(PythonException): - df_floating_value.select(udf(lambda x: x, "int")("value").alias("res")).collect() - - with self.assertRaises(PythonException): - df_int_value.select(udf(lambda x: x, "decimal")("value").alias("res")).collect() - - with self.assertRaises(PythonException): - df_floating_value.select(udf(lambda x: x, "decimal")("value").alias("res")).collect() - class PythonUDFArrowTests(PythonUDFArrowTestsMixin, ReusedSQLTestCase): @classmethod diff --git a/python/pyspark/worker.py b/python/pyspark/worker.py index 577286a7357..71a7ccd15aa 100644 --- a/python/pyspark/worker.py +++ b/python/pyspark/worker.py @@ -598,8 +598,6 @@ def read_udfs(pickleSer, infile, eval_type): "row" if eval_type == PythonEvalType.SQL_ARROW_BATCHED_UDF else "dict" ) ndarray_as_list = eval_type == PythonEvalType.SQL_ARROW_BATCHED_UDF - # Arrow-optimized Python UDF uses explicit Arrow cast for type coercion - arrow_cast = eval_type == PythonEvalType.SQL_ARROW_BATCHED_UDF ser = ArrowStreamPandasUDFSerializer( timezone, safecheck, @@ -607,7 +605,6 @@ def read_udfs(pickleSer, infile, eval_type): df_for_struct, struct_in_pandas, ndarray_as_list, - arrow_cast, ) else: ser = BatchedSerializer(CPickleSerializer(), 100) --------------------------------------------------------------------- To unsubscribe, e-mail: commits-unsubscr...@spark.apache.org For additional commands, e-mail: commits-h...@spark.apache.org