Repository: spark
Updated Branches:
refs/heads/master 0368ff30d -> 1192fe4cd
[SPARK-13289][MLLIB] Fix infinite distances between word vectors in
Word2VecModel
## What changes were proposed in this pull request?
This PR fixes the bug that generates infinite distances between word vectors.
For example,
Before this PR, we have
```
val synonyms = model.findSynonyms("who", 40)
```
will give the following results:
```
to Infinity
and Infinity
that Infinity
with Infinity
```
With this PR, the distance between words is a value between 0 and 1, as follows:
```
scala> model.findSynonyms("who", 10)
res0: Array[(String, Double)] = Array((Harvard-educated,0.5253688097000122),
(ex-SAS,0.5213794708251953), (McMutrie,0.5187736749649048),
(fellow,0.5166833400726318), (businessman,0.5145374536514282),
(American-born,0.5127736330032349), (British-born,0.5062344074249268),
(gray-bearded,0.5047978162765503), (American-educated,0.5035858750343323),
(mentored,0.49849334359169006))
scala> model.findSynonyms("king", 10)
res1: Array[(String, Double)] = Array((queen,0.6787897944450378),
(prince,0.6786158084869385), (monarch,0.659771203994751),
(emperor,0.6490438580513), (goddess,0.643266499042511),
(dynasty,0.635733425617218), (sultan,0.6166239380836487),
(pharaoh,0.6150713562965393), (birthplace,0.6143025159835815),
(empress,0.6109727025032043))
scala> model.findSynonyms("queen", 10)
res2: Array[(String, Double)] = Array((princess,0.7670737504959106),
(godmother,0.6982434988021851), (raven-haired,0.6877717971801758),
(swan,0.684934139251709), (hunky,0.6816608309745789),
(Titania,0.6808111071586609), (heroine,0.6794036030769348),
(king,0.6787897944450378), (diva,0.67848801612854),
(lip-synching,0.6731793284416199))
```
### There are two places changed in this PR:
- Normalize the word vector to avoid overflow when calculating inner product
between word vectors. This also simplifies the distance calculation, since the
word vectors only need to be normalized once.
- Scale the learning rate by number of iteration, to be consistent with Google
Word2Vec implementation
## How was this patch tested?
Use word2vec to train text corpus, and run model.findSynonyms() to get the
distances between word vectors.
Author: Junyang <[email protected]>
Author: flyskyfly <[email protected]>
Closes #11812 from flyjy/TVec.
Project: http://git-wip-us.apache.org/repos/asf/spark/repo
Commit: http://git-wip-us.apache.org/repos/asf/spark/commit/1192fe4c
Tree: http://git-wip-us.apache.org/repos/asf/spark/tree/1192fe4c
Diff: http://git-wip-us.apache.org/repos/asf/spark/diff/1192fe4c
Branch: refs/heads/master
Commit: 1192fe4cd2a934790dc1ff2d459cf380e67335b2
Parents: 0368ff3
Author: Junyang <[email protected]>
Authored: Sat Apr 30 10:16:35 2016 +0100
Committer: Sean Owen <[email protected]>
Committed: Sat Apr 30 10:16:35 2016 +0100
----------------------------------------------------------------------
.../apache/spark/mllib/feature/Word2Vec.scala | 18 ++++++++---------
.../spark/mllib/feature/Word2VecSuite.scala | 21 ++++++++++++++++++++
python/pyspark/ml/feature.py | 15 +++++++-------
3 files changed, 37 insertions(+), 17 deletions(-)
----------------------------------------------------------------------
http://git-wip-us.apache.org/repos/asf/spark/blob/1192fe4c/mllib/src/main/scala/org/apache/spark/mllib/feature/Word2Vec.scala
----------------------------------------------------------------------
diff --git a/mllib/src/main/scala/org/apache/spark/mllib/feature/Word2Vec.scala
b/mllib/src/main/scala/org/apache/spark/mllib/feature/Word2Vec.scala
index 5b079fc..7e6c367 100644
--- a/mllib/src/main/scala/org/apache/spark/mllib/feature/Word2Vec.scala
+++ b/mllib/src/main/scala/org/apache/spark/mllib/feature/Word2Vec.scala
@@ -540,14 +540,16 @@ class Word2VecModel private[spark] (
val cosineVec = Array.fill[Float](numWords)(0)
val alpha: Float = 1
val beta: Float = 0
-
+ // Normalize input vector before blas.sgemv to avoid Inf value
+ val vecNorm = blas.snrm2(vectorSize, fVector, 1)
+ if (vecNorm != 0.0f) {
+ blas.sscal(vectorSize, 1 / vecNorm, fVector, 0, 1)
+ }
blas.sgemv(
"T", vectorSize, numWords, alpha, wordVectors, vectorSize, fVector, 1,
beta, cosineVec, 1)
- // Need not divide with the norm of the given vector since it is constant.
val cosVec = cosineVec.map(_.toDouble)
var ind = 0
- val vecNorm = blas.snrm2(vectorSize, fVector, 1)
while (ind < numWords) {
val norm = wordVecNorms(ind)
if (norm == 0.0) {
@@ -557,17 +559,13 @@ class Word2VecModel private[spark] (
}
ind += 1
}
- var topResults = wordList.zip(cosVec)
+
+ wordList.zip(cosVec)
.toSeq
.sortBy(-_._2)
.take(num + 1)
.tail
- if (vecNorm != 0.0f) {
- topResults = topResults.map { case (word, cosVal) =>
- (word, cosVal / vecNorm)
- }
- }
- topResults.toArray
+ .toArray
}
/**
http://git-wip-us.apache.org/repos/asf/spark/blob/1192fe4c/mllib/src/test/scala/org/apache/spark/mllib/feature/Word2VecSuite.scala
----------------------------------------------------------------------
diff --git
a/mllib/src/test/scala/org/apache/spark/mllib/feature/Word2VecSuite.scala
b/mllib/src/test/scala/org/apache/spark/mllib/feature/Word2VecSuite.scala
index 4fcf417..6d69944 100644
--- a/mllib/src/test/scala/org/apache/spark/mllib/feature/Word2VecSuite.scala
+++ b/mllib/src/test/scala/org/apache/spark/mllib/feature/Word2VecSuite.scala
@@ -108,5 +108,26 @@ class Word2VecSuite extends SparkFunSuite with
MLlibTestSparkContext {
}
}
+ test("test similarity for word vectors with large values is not Infinity or
NaN") {
+ val vecA = Array(-4.331467827487745E21, -5.26707742075006E21,
+ 5.63551690626524E21, 2.833692188614257E21, -1.9688159903619345E21,
-4.933950659913092E21,
+ -2.7401535502536787E21, -1.418671793782632E20).map(_.toFloat)
+ val vecB = Array(-3.9850175451103232E16, -3.4829783883841536E16,
+ 9.421469251534848E15, 4.4069684466679808E16, 7.20936298872832E15,
-4.2883302830374912E16,
+ -3.605579947835392E16, -2.8151294422155264E16).map(_.toFloat)
+ val vecC = Array(-1.9227381025734656E16, -3.907009342603264E16,
+ 2.110207626838016E15, -4.8770066610651136E16, -1.9734964555743232E16,
-3.2206001247617024E16,
+ 2.7725358220443648E16, 3.1618718156980224E16).map(_.toFloat)
+ val wordMapIn = Map(
+ ("A", vecA),
+ ("B", vecB),
+ ("C", vecC)
+ )
+
+ val model = new Word2VecModel(wordMapIn)
+ model.findSynonyms("A", 5).foreach { pair =>
+ assert(!(pair._2.isInfinite || pair._2.isNaN))
+ }
+ }
}
http://git-wip-us.apache.org/repos/asf/spark/blob/1192fe4c/python/pyspark/ml/feature.py
----------------------------------------------------------------------
diff --git a/python/pyspark/ml/feature.py b/python/pyspark/ml/feature.py
index 610d167..1b059a7 100644
--- a/python/pyspark/ml/feature.py
+++ b/python/pyspark/ml/feature.py
@@ -2186,13 +2186,14 @@ class Word2Vec(JavaEstimator, HasStepSize, HasMaxIter,
HasSeed, HasInputCol, Has
| c|[-0.3794820010662...|
+----+--------------------+
...
- >>> model.findSynonyms("a", 2).show()
- +----+-------------------+
- |word| similarity|
- +----+-------------------+
- | b| 0.2505344027513247|
- | c|-0.6980510075367647|
- +----+-------------------+
+ >>> from pyspark.sql.functions import format_number as fmt
+ >>> model.findSynonyms("a", 2).select("word", fmt("similarity",
5).alias("similarity")).show()
+ +----+----------+
+ |word|similarity|
+ +----+----------+
+ | b| 0.25053|
+ | c| -0.69805|
+ +----+----------+
...
>>> model.transform(doc).head().model
DenseVector([0.5524, -0.4995, -0.3599, 0.0241, 0.3461])
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]