http://git-wip-us.apache.org/repos/asf/spark/blob/04e44b37/python/pyspark/mllib/fpm.py ---------------------------------------------------------------------- diff --git a/python/pyspark/mllib/fpm.py b/python/pyspark/mllib/fpm.py index 3aa6d79..628ccc0 100644 --- a/python/pyspark/mllib/fpm.py +++ b/python/pyspark/mllib/fpm.py @@ -16,12 +16,14 @@ # from pyspark import SparkContext +from pyspark.rdd import ignore_unicode_prefix from pyspark.mllib.common import JavaModelWrapper, callMLlibFunc, inherit_doc __all__ = ['FPGrowth', 'FPGrowthModel'] @inherit_doc +@ignore_unicode_prefix class FPGrowthModel(JavaModelWrapper): """
http://git-wip-us.apache.org/repos/asf/spark/blob/04e44b37/python/pyspark/mllib/linalg.py ---------------------------------------------------------------------- diff --git a/python/pyspark/mllib/linalg.py b/python/pyspark/mllib/linalg.py index a80320c..38b3aa3 100644 --- a/python/pyspark/mllib/linalg.py +++ b/python/pyspark/mllib/linalg.py @@ -25,7 +25,13 @@ SciPy is available in their environment. import sys import array -import copy_reg + +if sys.version >= '3': + basestring = str + xrange = range + import copyreg as copy_reg +else: + import copy_reg import numpy as np @@ -57,7 +63,7 @@ except: def _convert_to_vector(l): if isinstance(l, Vector): return l - elif type(l) in (array.array, np.array, np.ndarray, list, tuple): + elif type(l) in (array.array, np.array, np.ndarray, list, tuple, xrange): return DenseVector(l) elif _have_scipy and scipy.sparse.issparse(l): assert l.shape[1] == 1, "Expected column vector" @@ -88,7 +94,7 @@ def _vector_size(v): """ if isinstance(v, Vector): return len(v) - elif type(v) in (array.array, list, tuple): + elif type(v) in (array.array, list, tuple, xrange): return len(v) elif type(v) == np.ndarray: if v.ndim == 1 or (v.ndim == 2 and v.shape[1] == 1): @@ -193,7 +199,7 @@ class DenseVector(Vector): DenseVector([1.0, 0.0]) """ def __init__(self, ar): - if isinstance(ar, basestring): + if isinstance(ar, bytes): ar = np.frombuffer(ar, dtype=np.float64) elif not isinstance(ar, np.ndarray): ar = np.array(ar, dtype=np.float64) @@ -321,11 +327,13 @@ class DenseVector(Vector): __sub__ = _delegate("__sub__") __mul__ = _delegate("__mul__") __div__ = _delegate("__div__") + __truediv__ = _delegate("__truediv__") __mod__ = _delegate("__mod__") __radd__ = _delegate("__radd__") __rsub__ = _delegate("__rsub__") __rmul__ = _delegate("__rmul__") __rdiv__ = _delegate("__rdiv__") + __rtruediv__ = _delegate("__rtruediv__") __rmod__ = _delegate("__rmod__") @@ -344,12 +352,12 @@ class SparseVector(Vector): :param args: Non-zero entries, as a dictionary, list of tupes, or two sorted lists containing indices and values. - >>> print SparseVector(4, {1: 1.0, 3: 5.5}) - (4,[1,3],[1.0,5.5]) - >>> print SparseVector(4, [(1, 1.0), (3, 5.5)]) - (4,[1,3],[1.0,5.5]) - >>> print SparseVector(4, [1, 3], [1.0, 5.5]) - (4,[1,3],[1.0,5.5]) + >>> SparseVector(4, {1: 1.0, 3: 5.5}) + SparseVector(4, {1: 1.0, 3: 5.5}) + >>> SparseVector(4, [(1, 1.0), (3, 5.5)]) + SparseVector(4, {1: 1.0, 3: 5.5}) + >>> SparseVector(4, [1, 3], [1.0, 5.5]) + SparseVector(4, {1: 1.0, 3: 5.5}) """ self.size = int(size) assert 1 <= len(args) <= 2, "must pass either 2 or 3 arguments" @@ -361,8 +369,8 @@ class SparseVector(Vector): self.indices = np.array([p[0] for p in pairs], dtype=np.int32) self.values = np.array([p[1] for p in pairs], dtype=np.float64) else: - if isinstance(args[0], basestring): - assert isinstance(args[1], str), "values should be string too" + if isinstance(args[0], bytes): + assert isinstance(args[1], bytes), "values should be string too" if args[0]: self.indices = np.frombuffer(args[0], np.int32) self.values = np.frombuffer(args[1], np.float64) @@ -591,12 +599,12 @@ class Vectors(object): :param args: Non-zero entries, as a dictionary, list of tupes, or two sorted lists containing indices and values. - >>> print Vectors.sparse(4, {1: 1.0, 3: 5.5}) - (4,[1,3],[1.0,5.5]) - >>> print Vectors.sparse(4, [(1, 1.0), (3, 5.5)]) - (4,[1,3],[1.0,5.5]) - >>> print Vectors.sparse(4, [1, 3], [1.0, 5.5]) - (4,[1,3],[1.0,5.5]) + >>> Vectors.sparse(4, {1: 1.0, 3: 5.5}) + SparseVector(4, {1: 1.0, 3: 5.5}) + >>> Vectors.sparse(4, [(1, 1.0), (3, 5.5)]) + SparseVector(4, {1: 1.0, 3: 5.5}) + >>> Vectors.sparse(4, [1, 3], [1.0, 5.5]) + SparseVector(4, {1: 1.0, 3: 5.5}) """ return SparseVector(size, *args) @@ -645,7 +653,7 @@ class Matrix(object): """ Convert Matrix attributes which are array-like or buffer to array. """ - if isinstance(array_like, basestring): + if isinstance(array_like, bytes): return np.frombuffer(array_like, dtype=dtype) return np.asarray(array_like, dtype=dtype) @@ -677,7 +685,7 @@ class DenseMatrix(Matrix): def toSparse(self): """Convert to SparseMatrix""" indices = np.nonzero(self.values)[0] - colCounts = np.bincount(indices / self.numRows) + colCounts = np.bincount(indices // self.numRows) colPtrs = np.cumsum(np.hstack( (0, colCounts, np.zeros(self.numCols - colCounts.size)))) values = self.values[indices] http://git-wip-us.apache.org/repos/asf/spark/blob/04e44b37/python/pyspark/mllib/rand.py ---------------------------------------------------------------------- diff --git a/python/pyspark/mllib/rand.py b/python/pyspark/mllib/rand.py index 20ee9d7..06fbc0e 100644 --- a/python/pyspark/mllib/rand.py +++ b/python/pyspark/mllib/rand.py @@ -88,10 +88,10 @@ class RandomRDDs(object): :param seed: Random seed (default: a random long integer). :return: RDD of float comprised of i.i.d. samples ~ N(0.0, 1.0). - >>> x = RandomRDDs.normalRDD(sc, 1000, seed=1L) + >>> x = RandomRDDs.normalRDD(sc, 1000, seed=1) >>> stats = x.stats() >>> stats.count() - 1000L + 1000 >>> abs(stats.mean() - 0.0) < 0.1 True >>> abs(stats.stdev() - 1.0) < 0.1 @@ -118,10 +118,10 @@ class RandomRDDs(object): >>> std = 1.0 >>> expMean = exp(mean + 0.5 * std * std) >>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std)) - >>> x = RandomRDDs.logNormalRDD(sc, mean, std, 1000, seed=2L) + >>> x = RandomRDDs.logNormalRDD(sc, mean, std, 1000, seed=2) >>> stats = x.stats() >>> stats.count() - 1000L + 1000 >>> abs(stats.mean() - expMean) < 0.5 True >>> from math import sqrt @@ -145,10 +145,10 @@ class RandomRDDs(object): :return: RDD of float comprised of i.i.d. samples ~ Pois(mean). >>> mean = 100.0 - >>> x = RandomRDDs.poissonRDD(sc, mean, 1000, seed=2L) + >>> x = RandomRDDs.poissonRDD(sc, mean, 1000, seed=2) >>> stats = x.stats() >>> stats.count() - 1000L + 1000 >>> abs(stats.mean() - mean) < 0.5 True >>> from math import sqrt @@ -171,10 +171,10 @@ class RandomRDDs(object): :return: RDD of float comprised of i.i.d. samples ~ Exp(mean). >>> mean = 2.0 - >>> x = RandomRDDs.exponentialRDD(sc, mean, 1000, seed=2L) + >>> x = RandomRDDs.exponentialRDD(sc, mean, 1000, seed=2) >>> stats = x.stats() >>> stats.count() - 1000L + 1000 >>> abs(stats.mean() - mean) < 0.5 True >>> from math import sqrt @@ -202,10 +202,10 @@ class RandomRDDs(object): >>> scale = 2.0 >>> expMean = shape * scale >>> expStd = sqrt(shape * scale * scale) - >>> x = RandomRDDs.gammaRDD(sc, shape, scale, 1000, seed=2L) + >>> x = RandomRDDs.gammaRDD(sc, shape, scale, 1000, seed=2) >>> stats = x.stats() >>> stats.count() - 1000L + 1000 >>> abs(stats.mean() - expMean) < 0.5 True >>> abs(stats.stdev() - expStd) < 0.5 @@ -254,7 +254,7 @@ class RandomRDDs(object): :return: RDD of Vector with vectors containing i.i.d. samples ~ `N(0.0, 1.0)`. >>> import numpy as np - >>> mat = np.matrix(RandomRDDs.normalVectorRDD(sc, 100, 100, seed=1L).collect()) + >>> mat = np.matrix(RandomRDDs.normalVectorRDD(sc, 100, 100, seed=1).collect()) >>> mat.shape (100, 100) >>> abs(mat.mean() - 0.0) < 0.1 @@ -286,8 +286,8 @@ class RandomRDDs(object): >>> std = 1.0 >>> expMean = exp(mean + 0.5 * std * std) >>> expStd = sqrt((exp(std * std) - 1.0) * exp(2.0 * mean + std * std)) - >>> mat = np.matrix(RandomRDDs.logNormalVectorRDD(sc, mean, std, \ - 100, 100, seed=1L).collect()) + >>> m = RandomRDDs.logNormalVectorRDD(sc, mean, std, 100, 100, seed=1).collect() + >>> mat = np.matrix(m) >>> mat.shape (100, 100) >>> abs(mat.mean() - expMean) < 0.1 @@ -315,7 +315,7 @@ class RandomRDDs(object): >>> import numpy as np >>> mean = 100.0 - >>> rdd = RandomRDDs.poissonVectorRDD(sc, mean, 100, 100, seed=1L) + >>> rdd = RandomRDDs.poissonVectorRDD(sc, mean, 100, 100, seed=1) >>> mat = np.mat(rdd.collect()) >>> mat.shape (100, 100) @@ -345,7 +345,7 @@ class RandomRDDs(object): >>> import numpy as np >>> mean = 0.5 - >>> rdd = RandomRDDs.exponentialVectorRDD(sc, mean, 100, 100, seed=1L) + >>> rdd = RandomRDDs.exponentialVectorRDD(sc, mean, 100, 100, seed=1) >>> mat = np.mat(rdd.collect()) >>> mat.shape (100, 100) @@ -380,8 +380,7 @@ class RandomRDDs(object): >>> scale = 2.0 >>> expMean = shape * scale >>> expStd = sqrt(shape * scale * scale) - >>> mat = np.matrix(RandomRDDs.gammaVectorRDD(sc, shape, scale, \ - 100, 100, seed=1L).collect()) + >>> mat = np.matrix(RandomRDDs.gammaVectorRDD(sc, shape, scale, 100, 100, seed=1).collect()) >>> mat.shape (100, 100) >>> abs(mat.mean() - expMean) < 0.1 http://git-wip-us.apache.org/repos/asf/spark/blob/04e44b37/python/pyspark/mllib/recommendation.py ---------------------------------------------------------------------- diff --git a/python/pyspark/mllib/recommendation.py b/python/pyspark/mllib/recommendation.py index c5c4c13..80e0a35 100644 --- a/python/pyspark/mllib/recommendation.py +++ b/python/pyspark/mllib/recommendation.py @@ -15,6 +15,7 @@ # limitations under the License. # +import array from collections import namedtuple from pyspark import SparkContext @@ -104,14 +105,14 @@ class MatrixFactorizationModel(JavaModelWrapper, JavaSaveable, JavaLoader): assert isinstance(user_product, RDD), "user_product should be RDD of (user, product)" first = user_product.first() assert len(first) == 2, "user_product should be RDD of (user, product)" - user_product = user_product.map(lambda (u, p): (int(u), int(p))) + user_product = user_product.map(lambda u_p: (int(u_p[0]), int(u_p[1]))) return self.call("predict", user_product) def userFeatures(self): - return self.call("getUserFeatures") + return self.call("getUserFeatures").mapValues(lambda v: array.array('d', v)) def productFeatures(self): - return self.call("getProductFeatures") + return self.call("getProductFeatures").mapValues(lambda v: array.array('d', v)) @classmethod def load(cls, sc, path): http://git-wip-us.apache.org/repos/asf/spark/blob/04e44b37/python/pyspark/mllib/stat/_statistics.py ---------------------------------------------------------------------- diff --git a/python/pyspark/mllib/stat/_statistics.py b/python/pyspark/mllib/stat/_statistics.py index 1d83e9d..b475be4 100644 --- a/python/pyspark/mllib/stat/_statistics.py +++ b/python/pyspark/mllib/stat/_statistics.py @@ -15,7 +15,7 @@ # limitations under the License. # -from pyspark import RDD +from pyspark.rdd import RDD, ignore_unicode_prefix from pyspark.mllib.common import callMLlibFunc, JavaModelWrapper from pyspark.mllib.linalg import Matrix, _convert_to_vector from pyspark.mllib.regression import LabeledPoint @@ -38,7 +38,7 @@ class MultivariateStatisticalSummary(JavaModelWrapper): return self.call("variance").toArray() def count(self): - return self.call("count") + return int(self.call("count")) def numNonzeros(self): return self.call("numNonzeros").toArray() @@ -78,7 +78,7 @@ class Statistics(object): >>> cStats.variance() array([ 4., 13., 0., 25.]) >>> cStats.count() - 3L + 3 >>> cStats.numNonzeros() array([ 3., 2., 0., 3.]) >>> cStats.max() @@ -124,20 +124,20 @@ class Statistics(object): >>> rdd = sc.parallelize([Vectors.dense([1, 0, 0, -2]), Vectors.dense([4, 5, 0, 3]), ... Vectors.dense([6, 7, 0, 8]), Vectors.dense([9, 0, 0, 1])]) >>> pearsonCorr = Statistics.corr(rdd) - >>> print str(pearsonCorr).replace('nan', 'NaN') + >>> print(str(pearsonCorr).replace('nan', 'NaN')) [[ 1. 0.05564149 NaN 0.40047142] [ 0.05564149 1. NaN 0.91359586] [ NaN NaN 1. NaN] [ 0.40047142 0.91359586 NaN 1. ]] >>> spearmanCorr = Statistics.corr(rdd, method="spearman") - >>> print str(spearmanCorr).replace('nan', 'NaN') + >>> print(str(spearmanCorr).replace('nan', 'NaN')) [[ 1. 0.10540926 NaN 0.4 ] [ 0.10540926 1. NaN 0.9486833 ] [ NaN NaN 1. NaN] [ 0.4 0.9486833 NaN 1. ]] >>> try: ... Statistics.corr(rdd, "spearman") - ... print "Method name as second argument without 'method=' shouldn't be allowed." + ... print("Method name as second argument without 'method=' shouldn't be allowed.") ... except TypeError: ... pass """ @@ -153,6 +153,7 @@ class Statistics(object): return callMLlibFunc("corr", x.map(float), y.map(float), method) @staticmethod + @ignore_unicode_prefix def chiSqTest(observed, expected=None): """ .. note:: Experimental @@ -188,11 +189,11 @@ class Statistics(object): >>> from pyspark.mllib.linalg import Vectors, Matrices >>> observed = Vectors.dense([4, 6, 5]) >>> pearson = Statistics.chiSqTest(observed) - >>> print pearson.statistic + >>> print(pearson.statistic) 0.4 >>> pearson.degreesOfFreedom 2 - >>> print round(pearson.pValue, 4) + >>> print(round(pearson.pValue, 4)) 0.8187 >>> pearson.method u'pearson' @@ -202,12 +203,12 @@ class Statistics(object): >>> observed = Vectors.dense([21, 38, 43, 80]) >>> expected = Vectors.dense([3, 5, 7, 20]) >>> pearson = Statistics.chiSqTest(observed, expected) - >>> print round(pearson.pValue, 4) + >>> print(round(pearson.pValue, 4)) 0.0027 >>> data = [40.0, 24.0, 29.0, 56.0, 32.0, 42.0, 31.0, 10.0, 0.0, 30.0, 15.0, 12.0] >>> chi = Statistics.chiSqTest(Matrices.dense(3, 4, data)) - >>> print round(chi.statistic, 4) + >>> print(round(chi.statistic, 4)) 21.9958 >>> data = [LabeledPoint(0.0, Vectors.dense([0.5, 10.0])), @@ -218,9 +219,9 @@ class Statistics(object): ... LabeledPoint(1.0, Vectors.dense([3.5, 40.0])),] >>> rdd = sc.parallelize(data, 4) >>> chi = Statistics.chiSqTest(rdd) - >>> print chi[0].statistic + >>> print(chi[0].statistic) 0.75 - >>> print chi[1].statistic + >>> print(chi[1].statistic) 1.5 """ if isinstance(observed, RDD): http://git-wip-us.apache.org/repos/asf/spark/blob/04e44b37/python/pyspark/mllib/tests.py ---------------------------------------------------------------------- diff --git a/python/pyspark/mllib/tests.py b/python/pyspark/mllib/tests.py index 8eaddcf..c6ed5ac 100644 --- a/python/pyspark/mllib/tests.py +++ b/python/pyspark/mllib/tests.py @@ -72,11 +72,11 @@ class VectorTests(PySparkTestCase): def _test_serialize(self, v): self.assertEqual(v, ser.loads(ser.dumps(v))) jvec = self.sc._jvm.SerDe.loads(bytearray(ser.dumps(v))) - nv = ser.loads(str(self.sc._jvm.SerDe.dumps(jvec))) + nv = ser.loads(bytes(self.sc._jvm.SerDe.dumps(jvec))) self.assertEqual(v, nv) vs = [v] * 100 jvecs = self.sc._jvm.SerDe.loads(bytearray(ser.dumps(vs))) - nvs = ser.loads(str(self.sc._jvm.SerDe.dumps(jvecs))) + nvs = ser.loads(bytes(self.sc._jvm.SerDe.dumps(jvecs))) self.assertEqual(vs, nvs) def test_serialize(self): @@ -412,11 +412,11 @@ class StatTests(PySparkTestCase): self.assertEqual(10, len(summary.normL1())) self.assertEqual(10, len(summary.normL2())) - data2 = self.sc.parallelize(xrange(10)).map(lambda x: Vectors.dense(x)) + data2 = self.sc.parallelize(range(10)).map(lambda x: Vectors.dense(x)) summary2 = Statistics.colStats(data2) self.assertEqual(array([45.0]), summary2.normL1()) import math - expectedNormL2 = math.sqrt(sum(map(lambda x: x*x, xrange(10)))) + expectedNormL2 = math.sqrt(sum(map(lambda x: x*x, range(10)))) self.assertTrue(math.fabs(summary2.normL2()[0] - expectedNormL2) < 1e-14) @@ -438,11 +438,11 @@ class VectorUDTTests(PySparkTestCase): def test_infer_schema(self): sqlCtx = SQLContext(self.sc) rdd = self.sc.parallelize([LabeledPoint(1.0, self.dv1), LabeledPoint(0.0, self.sv1)]) - srdd = sqlCtx.inferSchema(rdd) - schema = srdd.schema + df = rdd.toDF() + schema = df.schema field = [f for f in schema.fields if f.name == "features"][0] self.assertEqual(field.dataType, self.udt) - vectors = srdd.map(lambda p: p.features).collect() + vectors = df.map(lambda p: p.features).collect() self.assertEqual(len(vectors), 2) for v in vectors: if isinstance(v, SparseVector): @@ -695,7 +695,7 @@ class ChiSqTestTests(PySparkTestCase): class SerDeTest(PySparkTestCase): def test_to_java_object_rdd(self): # SPARK-6660 - data = RandomRDDs.uniformRDD(self.sc, 10, 5, seed=0L) + data = RandomRDDs.uniformRDD(self.sc, 10, 5, seed=0) self.assertEqual(_to_java_object_rdd(data).count(), 10) @@ -771,7 +771,7 @@ class StandardScalerTests(PySparkTestCase): if __name__ == "__main__": if not _have_scipy: - print "NOTE: Skipping SciPy tests as it does not seem to be installed" + print("NOTE: Skipping SciPy tests as it does not seem to be installed") unittest.main() if not _have_scipy: - print "NOTE: SciPy tests were skipped as it does not seem to be installed" + print("NOTE: SciPy tests were skipped as it does not seem to be installed") http://git-wip-us.apache.org/repos/asf/spark/blob/04e44b37/python/pyspark/mllib/tree.py ---------------------------------------------------------------------- diff --git a/python/pyspark/mllib/tree.py b/python/pyspark/mllib/tree.py index a7a4d2a..0fe6e4f 100644 --- a/python/pyspark/mllib/tree.py +++ b/python/pyspark/mllib/tree.py @@ -163,14 +163,16 @@ class DecisionTree(object): ... LabeledPoint(1.0, [3.0]) ... ] >>> model = DecisionTree.trainClassifier(sc.parallelize(data), 2, {}) - >>> print model, # it already has newline + >>> print(model) DecisionTreeModel classifier of depth 1 with 3 nodes - >>> print model.toDebugString(), # it already has newline + + >>> print(model.toDebugString()) DecisionTreeModel classifier of depth 1 with 3 nodes If (feature 0 <= 0.0) Predict: 0.0 Else (feature 0 > 0.0) Predict: 1.0 + <BLANKLINE> >>> model.predict(array([1.0])) 1.0 >>> model.predict(array([0.0])) @@ -318,9 +320,10 @@ class RandomForest(object): 3 >>> model.totalNumNodes() 7 - >>> print model, + >>> print(model) TreeEnsembleModel classifier with 3 trees - >>> print model.toDebugString(), + <BLANKLINE> + >>> print(model.toDebugString()) TreeEnsembleModel classifier with 3 trees <BLANKLINE> Tree 0: @@ -335,6 +338,7 @@ class RandomForest(object): Predict: 0.0 Else (feature 0 > 1.0) Predict: 1.0 + <BLANKLINE> >>> model.predict([2.0]) 1.0 >>> model.predict([0.0]) @@ -483,8 +487,9 @@ class GradientBoostedTrees(object): 100 >>> model.totalNumNodes() 300 - >>> print model, # it already has newline + >>> print(model) # it already has newline TreeEnsembleModel classifier with 100 trees + <BLANKLINE> >>> model.predict([2.0]) 1.0 >>> model.predict([0.0]) http://git-wip-us.apache.org/repos/asf/spark/blob/04e44b37/python/pyspark/mllib/util.py ---------------------------------------------------------------------- diff --git a/python/pyspark/mllib/util.py b/python/pyspark/mllib/util.py index c5c3468..16a90db 100644 --- a/python/pyspark/mllib/util.py +++ b/python/pyspark/mllib/util.py @@ -15,10 +15,14 @@ # limitations under the License. # +import sys import numpy as np import warnings -from pyspark.mllib.common import callMLlibFunc, JavaModelWrapper, inherit_doc +if sys.version > '3': + xrange = range + +from pyspark.mllib.common import callMLlibFunc, inherit_doc from pyspark.mllib.linalg import Vectors, SparseVector, _convert_to_vector @@ -94,22 +98,16 @@ class MLUtils(object): >>> from pyspark.mllib.util import MLUtils >>> from pyspark.mllib.regression import LabeledPoint >>> tempFile = NamedTemporaryFile(delete=True) - >>> tempFile.write("+1 1:1.0 3:2.0 5:3.0\\n-1\\n-1 2:4.0 4:5.0 6:6.0") + >>> _ = tempFile.write(b"+1 1:1.0 3:2.0 5:3.0\\n-1\\n-1 2:4.0 4:5.0 6:6.0") >>> tempFile.flush() >>> examples = MLUtils.loadLibSVMFile(sc, tempFile.name).collect() >>> tempFile.close() - >>> type(examples[0]) == LabeledPoint - True - >>> print examples[0] - (1.0,(6,[0,2,4],[1.0,2.0,3.0])) - >>> type(examples[1]) == LabeledPoint - True - >>> print examples[1] - (-1.0,(6,[],[])) - >>> type(examples[2]) == LabeledPoint - True - >>> print examples[2] - (-1.0,(6,[1,3,5],[4.0,5.0,6.0])) + >>> examples[0] + LabeledPoint(1.0, (6,[0,2,4],[1.0,2.0,3.0])) + >>> examples[1] + LabeledPoint(-1.0, (6,[],[])) + >>> examples[2] + LabeledPoint(-1.0, (6,[1,3,5],[4.0,5.0,6.0])) """ from pyspark.mllib.regression import LabeledPoint if multiclass is not None: http://git-wip-us.apache.org/repos/asf/spark/blob/04e44b37/python/pyspark/profiler.py ---------------------------------------------------------------------- diff --git a/python/pyspark/profiler.py b/python/pyspark/profiler.py index 4408996..d18daaa 100644 --- a/python/pyspark/profiler.py +++ b/python/pyspark/profiler.py @@ -84,11 +84,11 @@ class Profiler(object): >>> from pyspark import BasicProfiler >>> class MyCustomProfiler(BasicProfiler): ... def show(self, id): - ... print "My custom profiles for RDD:%s" % id + ... print("My custom profiles for RDD:%s" % id) ... >>> conf = SparkConf().set("spark.python.profile", "true") >>> sc = SparkContext('local', 'test', conf=conf, profiler_cls=MyCustomProfiler) - >>> sc.parallelize(list(range(1000))).map(lambda x: 2 * x).take(10) + >>> sc.parallelize(range(1000)).map(lambda x: 2 * x).take(10) [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] >>> sc.show_profiles() My custom profiles for RDD:1 @@ -111,9 +111,9 @@ class Profiler(object): """ Print the profile stats to stdout, id is the RDD id """ stats = self.stats() if stats: - print "=" * 60 - print "Profile of RDD<id=%d>" % id - print "=" * 60 + print("=" * 60) + print("Profile of RDD<id=%d>" % id) + print("=" * 60) stats.sort_stats("time", "cumulative").print_stats() def dump(self, id, path): http://git-wip-us.apache.org/repos/asf/spark/blob/04e44b37/python/pyspark/rdd.py ---------------------------------------------------------------------- diff --git a/python/pyspark/rdd.py b/python/pyspark/rdd.py index 93e658e..d9cdbb6 100644 --- a/python/pyspark/rdd.py +++ b/python/pyspark/rdd.py @@ -16,21 +16,29 @@ # import copy -from collections import defaultdict -from itertools import chain, ifilter, imap -import operator import sys +import os +import re +import operator import shlex -from subprocess import Popen, PIPE -from tempfile import NamedTemporaryFile -from threading import Thread import warnings import heapq import bisect import random import socket +from subprocess import Popen, PIPE +from tempfile import NamedTemporaryFile +from threading import Thread +from collections import defaultdict +from itertools import chain +from functools import reduce from math import sqrt, log, isinf, isnan, pow, ceil +if sys.version > '3': + basestring = unicode = str +else: + from itertools import imap as map, ifilter as filter + from pyspark.serializers import NoOpSerializer, CartesianDeserializer, \ BatchedSerializer, CloudPickleSerializer, PairDeserializer, \ PickleSerializer, pack_long, AutoBatchedSerializer @@ -50,20 +58,21 @@ from py4j.java_collections import ListConverter, MapConverter __all__ = ["RDD"] -# TODO: for Python 3.3+, PYTHONHASHSEED should be reset to disable randomized -# hash for string def portable_hash(x): """ - This function returns consistant hash code for builtin types, especially + This function returns consistent hash code for builtin types, especially for None and tuple with None. - The algrithm is similar to that one used by CPython 2.7 + The algorithm is similar to that one used by CPython 2.7 >>> portable_hash(None) 0 >>> portable_hash((None, 1)) & 0xffffffff 219750521 """ + if sys.version >= '3.3' and 'PYTHONHASHSEED' not in os.environ: + raise Exception("Randomness of hash of string should be disabled via PYTHONHASHSEED") + if x is None: return 0 if isinstance(x, tuple): @@ -71,7 +80,7 @@ def portable_hash(x): for i in x: h ^= portable_hash(i) h *= 1000003 - h &= sys.maxint + h &= sys.maxsize h ^= len(x) if h == -1: h = -2 @@ -123,6 +132,19 @@ def _load_from_socket(port, serializer): sock.close() +def ignore_unicode_prefix(f): + """ + Ignore the 'u' prefix of string in doc tests, to make it works + in both python 2 and 3 + """ + if sys.version >= '3': + # the representation of unicode string in Python 3 does not have prefix 'u', + # so remove the prefix 'u' for doc tests + literal_re = re.compile(r"(\W|^)[uU](['])", re.UNICODE) + f.__doc__ = literal_re.sub(r'\1\2', f.__doc__) + return f + + class Partitioner(object): def __init__(self, numPartitions, partitionFunc): self.numPartitions = numPartitions @@ -251,7 +273,7 @@ class RDD(object): [('a', 1), ('b', 1), ('c', 1)] """ def func(_, iterator): - return imap(f, iterator) + return map(f, iterator) return self.mapPartitionsWithIndex(func, preservesPartitioning) def flatMap(self, f, preservesPartitioning=False): @@ -266,7 +288,7 @@ class RDD(object): [(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)] """ def func(s, iterator): - return chain.from_iterable(imap(f, iterator)) + return chain.from_iterable(map(f, iterator)) return self.mapPartitionsWithIndex(func, preservesPartitioning) def mapPartitions(self, f, preservesPartitioning=False): @@ -329,7 +351,7 @@ class RDD(object): [2, 4] """ def func(iterator): - return ifilter(f, iterator) + return filter(f, iterator) return self.mapPartitions(func, True) def distinct(self, numPartitions=None): @@ -341,7 +363,7 @@ class RDD(object): """ return self.map(lambda x: (x, None)) \ .reduceByKey(lambda x, _: x, numPartitions) \ - .map(lambda (x, _): x) + .map(lambda x: x[0]) def sample(self, withReplacement, fraction, seed=None): """ @@ -354,8 +376,8 @@ class RDD(object): :param seed: seed for the random number generator >>> rdd = sc.parallelize(range(100), 4) - >>> rdd.sample(False, 0.1, 81).count() - 10 + >>> 6 <= rdd.sample(False, 0.1, 81).count() <= 14 + True """ assert fraction >= 0.0, "Negative fraction value: %s" % fraction return self.mapPartitionsWithIndex(RDDSampler(withReplacement, fraction, seed).func, True) @@ -368,12 +390,14 @@ class RDD(object): :param seed: random seed :return: split RDDs in a list - >>> rdd = sc.parallelize(range(5), 1) + >>> rdd = sc.parallelize(range(500), 1) >>> rdd1, rdd2 = rdd.randomSplit([2, 3], 17) - >>> rdd1.collect() - [1, 3] - >>> rdd2.collect() - [0, 2, 4] + >>> len(rdd1.collect() + rdd2.collect()) + 500 + >>> 150 < rdd1.count() < 250 + True + >>> 250 < rdd2.count() < 350 + True """ s = float(sum(weights)) cweights = [0.0] @@ -416,7 +440,7 @@ class RDD(object): rand.shuffle(samples) return samples - maxSampleSize = sys.maxint - int(numStDev * sqrt(sys.maxint)) + maxSampleSize = sys.maxsize - int(numStDev * sqrt(sys.maxsize)) if num > maxSampleSize: raise ValueError( "Sample size cannot be greater than %d." % maxSampleSize) @@ -430,7 +454,7 @@ class RDD(object): # See: scala/spark/RDD.scala while len(samples) < num: # TODO: add log warning for when more than one iteration was run - seed = rand.randint(0, sys.maxint) + seed = rand.randint(0, sys.maxsize) samples = self.sample(withReplacement, fraction, seed).collect() rand.shuffle(samples) @@ -507,7 +531,7 @@ class RDD(object): """ return self.map(lambda v: (v, None)) \ .cogroup(other.map(lambda v: (v, None))) \ - .filter(lambda (k, vs): all(vs)) \ + .filter(lambda k_vs: all(k_vs[1])) \ .keys() def _reserialize(self, serializer=None): @@ -549,7 +573,7 @@ class RDD(object): def sortPartition(iterator): sort = ExternalSorter(memory * 0.9, serializer).sorted if spill else sorted - return iter(sort(iterator, key=lambda (k, v): keyfunc(k), reverse=(not ascending))) + return iter(sort(iterator, key=lambda k_v: keyfunc(k_v[0]), reverse=(not ascending))) return self.partitionBy(numPartitions, partitionFunc).mapPartitions(sortPartition, True) @@ -579,7 +603,7 @@ class RDD(object): def sortPartition(iterator): sort = ExternalSorter(memory * 0.9, serializer).sorted if spill else sorted - return iter(sort(iterator, key=lambda (k, v): keyfunc(k), reverse=(not ascending))) + return iter(sort(iterator, key=lambda kv: keyfunc(kv[0]), reverse=(not ascending))) if numPartitions == 1: if self.getNumPartitions() > 1: @@ -594,12 +618,12 @@ class RDD(object): return self # empty RDD maxSampleSize = numPartitions * 20.0 # constant from Spark's RangePartitioner fraction = min(maxSampleSize / max(rddSize, 1), 1.0) - samples = self.sample(False, fraction, 1).map(lambda (k, v): k).collect() + samples = self.sample(False, fraction, 1).map(lambda kv: kv[0]).collect() samples = sorted(samples, key=keyfunc) # we have numPartitions many parts but one of the them has # an implicit boundary - bounds = [samples[len(samples) * (i + 1) / numPartitions] + bounds = [samples[int(len(samples) * (i + 1) / numPartitions)] for i in range(0, numPartitions - 1)] def rangePartitioner(k): @@ -662,12 +686,13 @@ class RDD(object): """ return self.map(lambda x: (f(x), x)).groupByKey(numPartitions) + @ignore_unicode_prefix def pipe(self, command, env={}): """ Return an RDD created by piping elements to a forked external process. >>> sc.parallelize(['1', '2', '', '3']).pipe('cat').collect() - ['1', '2', '', '3'] + [u'1', u'2', u'', u'3'] """ def func(iterator): pipe = Popen( @@ -675,17 +700,18 @@ class RDD(object): def pipe_objs(out): for obj in iterator: - out.write(str(obj).rstrip('\n') + '\n') + s = str(obj).rstrip('\n') + '\n' + out.write(s.encode('utf-8')) out.close() Thread(target=pipe_objs, args=[pipe.stdin]).start() - return (x.rstrip('\n') for x in iter(pipe.stdout.readline, '')) + return (x.rstrip(b'\n').decode('utf-8') for x in iter(pipe.stdout.readline, b'')) return self.mapPartitions(func) def foreach(self, f): """ Applies a function to all elements of this RDD. - >>> def f(x): print x + >>> def f(x): print(x) >>> sc.parallelize([1, 2, 3, 4, 5]).foreach(f) """ def processPartition(iterator): @@ -700,7 +726,7 @@ class RDD(object): >>> def f(iterator): ... for x in iterator: - ... print x + ... print(x) >>> sc.parallelize([1, 2, 3, 4, 5]).foreachPartition(f) """ def func(it): @@ -874,7 +900,7 @@ class RDD(object): # aggregation. while numPartitions > scale + numPartitions / scale: numPartitions /= scale - curNumPartitions = numPartitions + curNumPartitions = int(numPartitions) def mapPartition(i, iterator): for obj in iterator: @@ -984,7 +1010,7 @@ class RDD(object): (('a', 'b', 'c'), [2, 2]) """ - if isinstance(buckets, (int, long)): + if isinstance(buckets, int): if buckets < 1: raise ValueError("number of buckets must be >= 1") @@ -1020,6 +1046,7 @@ class RDD(object): raise ValueError("Can not generate buckets with infinite value") # keep them as integer if possible + inc = int(inc) if inc * buckets != maxv - minv: inc = (maxv - minv) * 1.0 / buckets @@ -1137,7 +1164,7 @@ class RDD(object): yield counts def mergeMaps(m1, m2): - for k, v in m2.iteritems(): + for k, v in m2.items(): m1[k] += v return m1 return self.mapPartitions(countPartition).reduce(mergeMaps) @@ -1378,8 +1405,8 @@ class RDD(object): >>> tmpFile = NamedTemporaryFile(delete=True) >>> tmpFile.close() >>> sc.parallelize([1, 2, 'spark', 'rdd']).saveAsPickleFile(tmpFile.name, 3) - >>> sorted(sc.pickleFile(tmpFile.name, 5).collect()) - [1, 2, 'rdd', 'spark'] + >>> sorted(sc.pickleFile(tmpFile.name, 5).map(str).collect()) + ['1', '2', 'rdd', 'spark'] """ if batchSize == 0: ser = AutoBatchedSerializer(PickleSerializer()) @@ -1387,6 +1414,7 @@ class RDD(object): ser = BatchedSerializer(PickleSerializer(), batchSize) self._reserialize(ser)._jrdd.saveAsObjectFile(path) + @ignore_unicode_prefix def saveAsTextFile(self, path, compressionCodecClass=None): """ Save this RDD as a text file, using string representations of elements. @@ -1418,12 +1446,13 @@ class RDD(object): >>> codec = "org.apache.hadoop.io.compress.GzipCodec" >>> sc.parallelize(['foo', 'bar']).saveAsTextFile(tempFile3.name, codec) >>> from fileinput import input, hook_compressed - >>> ''.join(sorted(input(glob(tempFile3.name + "/part*.gz"), openhook=hook_compressed))) - 'bar\\nfoo\\n' + >>> result = sorted(input(glob(tempFile3.name + "/part*.gz"), openhook=hook_compressed)) + >>> b''.join(result).decode('utf-8') + u'bar\\nfoo\\n' """ def func(split, iterator): for x in iterator: - if not isinstance(x, basestring): + if not isinstance(x, (unicode, bytes)): x = unicode(x) if isinstance(x, unicode): x = x.encode("utf-8") @@ -1458,7 +1487,7 @@ class RDD(object): >>> m.collect() [1, 3] """ - return self.map(lambda (k, v): k) + return self.map(lambda x: x[0]) def values(self): """ @@ -1468,7 +1497,7 @@ class RDD(object): >>> m.collect() [2, 4] """ - return self.map(lambda (k, v): v) + return self.map(lambda x: x[1]) def reduceByKey(self, func, numPartitions=None): """ @@ -1507,7 +1536,7 @@ class RDD(object): yield m def mergeMaps(m1, m2): - for k, v in m2.iteritems(): + for k, v in m2.items(): m1[k] = func(m1[k], v) if k in m1 else v return m1 return self.mapPartitions(reducePartition).reduce(mergeMaps) @@ -1604,8 +1633,8 @@ class RDD(object): >>> pairs = sc.parallelize([1, 2, 3, 4, 2, 4, 1]).map(lambda x: (x, x)) >>> sets = pairs.partitionBy(2).glom().collect() - >>> set(sets[0]).intersection(set(sets[1])) - set([]) + >>> len(set(sets[0]).intersection(set(sets[1]))) + 0 """ if numPartitions is None: numPartitions = self._defaultReducePartitions() @@ -1637,22 +1666,22 @@ class RDD(object): if (c % 1000 == 0 and get_used_memory() > limit or c > batch): n, size = len(buckets), 0 - for split in buckets.keys(): + for split in list(buckets.keys()): yield pack_long(split) d = outputSerializer.dumps(buckets[split]) del buckets[split] yield d size += len(d) - avg = (size / n) >> 20 + avg = int(size / n) >> 20 # let 1M < avg < 10M if avg < 1: batch *= 1.5 elif avg > 10: - batch = max(batch / 1.5, 1) + batch = max(int(batch / 1.5), 1) c = 0 - for split, items in buckets.iteritems(): + for split, items in buckets.items(): yield pack_long(split) yield outputSerializer.dumps(items) @@ -1707,7 +1736,7 @@ class RDD(object): merger = ExternalMerger(agg, memory * 0.9, serializer) \ if spill else InMemoryMerger(agg) merger.mergeValues(iterator) - return merger.iteritems() + return merger.items() locally_combined = self.mapPartitions(combineLocally, preservesPartitioning=True) shuffled = locally_combined.partitionBy(numPartitions) @@ -1716,7 +1745,7 @@ class RDD(object): merger = ExternalMerger(agg, memory, serializer) \ if spill else InMemoryMerger(agg) merger.mergeCombiners(iterator) - return merger.iteritems() + return merger.items() return shuffled.mapPartitions(_mergeCombiners, preservesPartitioning=True) @@ -1745,7 +1774,7 @@ class RDD(object): >>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) >>> from operator import add - >>> rdd.foldByKey(0, add).collect() + >>> sorted(rdd.foldByKey(0, add).collect()) [('a', 2), ('b', 1)] """ def createZero(): @@ -1769,10 +1798,10 @@ class RDD(object): sum or average) over each key, using reduceByKey or aggregateByKey will provide much better performance. - >>> x = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) - >>> sorted(x.groupByKey().mapValues(len).collect()) + >>> rdd = sc.parallelize([("a", 1), ("b", 1), ("a", 1)]) + >>> sorted(rdd.groupByKey().mapValues(len).collect()) [('a', 2), ('b', 1)] - >>> sorted(x.groupByKey().mapValues(list).collect()) + >>> sorted(rdd.groupByKey().mapValues(list).collect()) [('a', [1, 1]), ('b', [1])] """ def createCombiner(x): @@ -1795,7 +1824,7 @@ class RDD(object): merger = ExternalMerger(agg, memory * 0.9, serializer) \ if spill else InMemoryMerger(agg) merger.mergeValues(iterator) - return merger.iteritems() + return merger.items() locally_combined = self.mapPartitions(combine, preservesPartitioning=True) shuffled = locally_combined.partitionBy(numPartitions) @@ -1804,7 +1833,7 @@ class RDD(object): merger = ExternalGroupBy(agg, memory, serializer)\ if spill else InMemoryMerger(agg) merger.mergeCombiners(it) - return merger.iteritems() + return merger.items() return shuffled.mapPartitions(groupByKey, True).mapValues(ResultIterable) @@ -1819,7 +1848,7 @@ class RDD(object): >>> x.flatMapValues(f).collect() [('a', 'x'), ('a', 'y'), ('a', 'z'), ('b', 'p'), ('b', 'r')] """ - flat_map_fn = lambda (k, v): ((k, x) for x in f(v)) + flat_map_fn = lambda kv: ((kv[0], x) for x in f(kv[1])) return self.flatMap(flat_map_fn, preservesPartitioning=True) def mapValues(self, f): @@ -1833,7 +1862,7 @@ class RDD(object): >>> x.mapValues(f).collect() [('a', 3), ('b', 1)] """ - map_values_fn = lambda (k, v): (k, f(v)) + map_values_fn = lambda kv: (kv[0], f(kv[1])) return self.map(map_values_fn, preservesPartitioning=True) def groupWith(self, other, *others): @@ -1844,8 +1873,7 @@ class RDD(object): >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2)]) >>> z = sc.parallelize([("b", 42)]) - >>> map((lambda (x,y): (x, (list(y[0]), list(y[1]), list(y[2]), list(y[3])))), \ - sorted(list(w.groupWith(x, y, z).collect()))) + >>> [(x, tuple(map(list, y))) for x, y in sorted(list(w.groupWith(x, y, z).collect()))] [('a', ([5], [1], [2], [])), ('b', ([6], [4], [], [42]))] """ @@ -1860,7 +1888,7 @@ class RDD(object): >>> x = sc.parallelize([("a", 1), ("b", 4)]) >>> y = sc.parallelize([("a", 2)]) - >>> map((lambda (x,y): (x, (list(y[0]), list(y[1])))), sorted(list(x.cogroup(y).collect()))) + >>> [(x, tuple(map(list, y))) for x, y in sorted(list(x.cogroup(y).collect()))] [('a', ([1], [2])), ('b', ([4], []))] """ return python_cogroup((self, other), numPartitions) @@ -1896,8 +1924,9 @@ class RDD(object): >>> sorted(x.subtractByKey(y).collect()) [('b', 4), ('b', 5)] """ - def filter_func((key, vals)): - return vals[0] and not vals[1] + def filter_func(pair): + key, (val1, val2) = pair + return val1 and not val2 return self.cogroup(other, numPartitions).filter(filter_func).flatMapValues(lambda x: x[0]) def subtract(self, other, numPartitions=None): @@ -1919,8 +1948,8 @@ class RDD(object): >>> x = sc.parallelize(range(0,3)).keyBy(lambda x: x*x) >>> y = sc.parallelize(zip(range(0,5), range(0,5))) - >>> map((lambda (x,y): (x, (list(y[0]), (list(y[1]))))), sorted(x.cogroup(y).collect())) - [(0, ([0], [0])), (1, ([1], [1])), (2, ([], [2])), (3, ([], [3])), (4, ([2], [4]))] + >>> [(x, list(map(list, y))) for x, y in sorted(x.cogroup(y).collect())] + [(0, [[0], [0]]), (1, [[1], [1]]), (2, [[], [2]]), (3, [[], [3]]), (4, [[2], [4]])] """ return self.map(lambda x: (f(x), x)) @@ -2049,17 +2078,18 @@ class RDD(object): """ Return the name of this RDD. """ - name_ = self._jrdd.name() - if name_: - return name_.encode('utf-8') + n = self._jrdd.name() + if n: + return n + @ignore_unicode_prefix def setName(self, name): """ Assign a name to this RDD. - >>> rdd1 = sc.parallelize([1,2]) + >>> rdd1 = sc.parallelize([1, 2]) >>> rdd1.setName('RDD1').name() - 'RDD1' + u'RDD1' """ self._jrdd.setName(name) return self @@ -2121,7 +2151,7 @@ class RDD(object): >>> sorted.lookup(1024) [] """ - values = self.filter(lambda (k, v): k == key).values() + values = self.filter(lambda kv: kv[0] == key).values() if self.partitioner is not None: return self.ctx.runJob(values, lambda x: x, [self.partitioner(key)], False) @@ -2159,7 +2189,7 @@ class RDD(object): or meet the confidence. >>> rdd = sc.parallelize(range(1000), 10) - >>> r = sum(xrange(1000)) + >>> r = sum(range(1000)) >>> (rdd.sumApprox(1000) - r) / r < 0.05 True """ @@ -2176,7 +2206,7 @@ class RDD(object): or meet the confidence. >>> rdd = sc.parallelize(range(1000), 10) - >>> r = sum(xrange(1000)) / 1000.0 + >>> r = sum(range(1000)) / 1000.0 >>> (rdd.meanApprox(1000) - r) / r < 0.05 True """ @@ -2201,10 +2231,10 @@ class RDD(object): It must be greater than 0.000017. >>> n = sc.parallelize(range(1000)).map(str).countApproxDistinct() - >>> 950 < n < 1050 + >>> 900 < n < 1100 True >>> n = sc.parallelize([i % 20 for i in range(1000)]).countApproxDistinct() - >>> 18 < n < 22 + >>> 16 < n < 24 True """ if relativeSD < 0.000017: @@ -2223,8 +2253,7 @@ class RDD(object): >>> [x for x in rdd.toLocalIterator()] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] """ - partitions = xrange(self.getNumPartitions()) - for partition in partitions: + for partition in range(self.getNumPartitions()): rows = self.context.runJob(self, lambda x: x, [partition]) for row in rows: yield row http://git-wip-us.apache.org/repos/asf/spark/blob/04e44b37/python/pyspark/rddsampler.py ---------------------------------------------------------------------- diff --git a/python/pyspark/rddsampler.py b/python/pyspark/rddsampler.py index 459e142..fe8f873 100644 --- a/python/pyspark/rddsampler.py +++ b/python/pyspark/rddsampler.py @@ -23,7 +23,7 @@ import math class RDDSamplerBase(object): def __init__(self, withReplacement, seed=None): - self._seed = seed if seed is not None else random.randint(0, sys.maxint) + self._seed = seed if seed is not None else random.randint(0, sys.maxsize) self._withReplacement = withReplacement self._random = None @@ -31,7 +31,7 @@ class RDDSamplerBase(object): self._random = random.Random(self._seed ^ split) # mixing because the initial seeds are close to each other - for _ in xrange(10): + for _ in range(10): self._random.randint(0, 1) def getUniformSample(self): http://git-wip-us.apache.org/repos/asf/spark/blob/04e44b37/python/pyspark/serializers.py ---------------------------------------------------------------------- diff --git a/python/pyspark/serializers.py b/python/pyspark/serializers.py index 4afa82f..d8cdcda 100644 --- a/python/pyspark/serializers.py +++ b/python/pyspark/serializers.py @@ -49,16 +49,24 @@ which contains two batches of two objects: >>> sc.stop() """ -import cPickle -from itertools import chain, izip, product +import sys +from itertools import chain, product import marshal import struct -import sys import types import collections import zlib import itertools +if sys.version < '3': + import cPickle as pickle + protocol = 2 + from itertools import izip as zip +else: + import pickle + protocol = 3 + xrange = range + from pyspark import cloudpickle @@ -97,7 +105,7 @@ class Serializer(object): # subclasses should override __eq__ as appropriate. def __eq__(self, other): - return isinstance(other, self.__class__) + return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not self.__eq__(other) @@ -212,10 +220,6 @@ class BatchedSerializer(Serializer): def _load_stream_without_unbatching(self, stream): return self.serializer.load_stream(stream) - def __eq__(self, other): - return (isinstance(other, BatchedSerializer) and - other.serializer == self.serializer and other.batchSize == self.batchSize) - def __repr__(self): return "BatchedSerializer(%s, %d)" % (str(self.serializer), self.batchSize) @@ -233,14 +237,14 @@ class FlattenedValuesSerializer(BatchedSerializer): def _batched(self, iterator): n = self.batchSize for key, values in iterator: - for i in xrange(0, len(values), n): + for i in range(0, len(values), n): yield key, values[i:i + n] def load_stream(self, stream): return self.serializer.load_stream(stream) def __repr__(self): - return "FlattenedValuesSerializer(%d)" % self.batchSize + return "FlattenedValuesSerializer(%s, %d)" % (self.serializer, self.batchSize) class AutoBatchedSerializer(BatchedSerializer): @@ -270,12 +274,8 @@ class AutoBatchedSerializer(BatchedSerializer): elif size > best * 10 and batch > 1: batch /= 2 - def __eq__(self, other): - return (isinstance(other, AutoBatchedSerializer) and - other.serializer == self.serializer and other.bestSize == self.bestSize) - def __repr__(self): - return "AutoBatchedSerializer(%s)" % str(self.serializer) + return "AutoBatchedSerializer(%s)" % self.serializer class CartesianDeserializer(FramedSerializer): @@ -285,6 +285,7 @@ class CartesianDeserializer(FramedSerializer): """ def __init__(self, key_ser, val_ser): + FramedSerializer.__init__(self) self.key_ser = key_ser self.val_ser = val_ser @@ -293,7 +294,7 @@ class CartesianDeserializer(FramedSerializer): val_stream = self.val_ser._load_stream_without_unbatching(stream) key_is_batched = isinstance(self.key_ser, BatchedSerializer) val_is_batched = isinstance(self.val_ser, BatchedSerializer) - for (keys, vals) in izip(key_stream, val_stream): + for (keys, vals) in zip(key_stream, val_stream): keys = keys if key_is_batched else [keys] vals = vals if val_is_batched else [vals] yield (keys, vals) @@ -303,10 +304,6 @@ class CartesianDeserializer(FramedSerializer): for pair in product(keys, vals): yield pair - def __eq__(self, other): - return (isinstance(other, CartesianDeserializer) and - self.key_ser == other.key_ser and self.val_ser == other.val_ser) - def __repr__(self): return "CartesianDeserializer(%s, %s)" % \ (str(self.key_ser), str(self.val_ser)) @@ -318,22 +315,14 @@ class PairDeserializer(CartesianDeserializer): Deserializes the JavaRDD zip() of two PythonRDDs. """ - def __init__(self, key_ser, val_ser): - self.key_ser = key_ser - self.val_ser = val_ser - def load_stream(self, stream): for (keys, vals) in self.prepare_keys_values(stream): if len(keys) != len(vals): raise ValueError("Can not deserialize RDD with different number of items" " in pair: (%d, %d)" % (len(keys), len(vals))) - for pair in izip(keys, vals): + for pair in zip(keys, vals): yield pair - def __eq__(self, other): - return (isinstance(other, PairDeserializer) and - self.key_ser == other.key_ser and self.val_ser == other.val_ser) - def __repr__(self): return "PairDeserializer(%s, %s)" % (str(self.key_ser), str(self.val_ser)) @@ -382,8 +371,8 @@ def _hijack_namedtuple(): global _old_namedtuple # or it will put in closure def _copy_func(f): - return types.FunctionType(f.func_code, f.func_globals, f.func_name, - f.func_defaults, f.func_closure) + return types.FunctionType(f.__code__, f.__globals__, f.__name__, + f.__defaults__, f.__closure__) _old_namedtuple = _copy_func(collections.namedtuple) @@ -392,15 +381,15 @@ def _hijack_namedtuple(): return _hack_namedtuple(cls) # replace namedtuple with new one - collections.namedtuple.func_globals["_old_namedtuple"] = _old_namedtuple - collections.namedtuple.func_globals["_hack_namedtuple"] = _hack_namedtuple - collections.namedtuple.func_code = namedtuple.func_code + collections.namedtuple.__globals__["_old_namedtuple"] = _old_namedtuple + collections.namedtuple.__globals__["_hack_namedtuple"] = _hack_namedtuple + collections.namedtuple.__code__ = namedtuple.__code__ collections.namedtuple.__hijack = 1 # hack the cls already generated by namedtuple # those created in other module can be pickled as normal, # so only hack those in __main__ module - for n, o in sys.modules["__main__"].__dict__.iteritems(): + for n, o in sys.modules["__main__"].__dict__.items(): if (type(o) is type and o.__base__ is tuple and hasattr(o, "_fields") and "__reduce__" not in o.__dict__): @@ -413,7 +402,7 @@ _hijack_namedtuple() class PickleSerializer(FramedSerializer): """ - Serializes objects using Python's cPickle serializer: + Serializes objects using Python's pickle serializer: http://docs.python.org/2/library/pickle.html @@ -422,10 +411,14 @@ class PickleSerializer(FramedSerializer): """ def dumps(self, obj): - return cPickle.dumps(obj, 2) + return pickle.dumps(obj, protocol) - def loads(self, obj): - return cPickle.loads(obj) + if sys.version >= '3': + def loads(self, obj, encoding="bytes"): + return pickle.loads(obj, encoding=encoding) + else: + def loads(self, obj, encoding=None): + return pickle.loads(obj) class CloudPickleSerializer(PickleSerializer): @@ -454,7 +447,7 @@ class MarshalSerializer(FramedSerializer): class AutoSerializer(FramedSerializer): """ - Choose marshal or cPickle as serialization protocol automatically + Choose marshal or pickle as serialization protocol automatically """ def __init__(self): @@ -463,19 +456,19 @@ class AutoSerializer(FramedSerializer): def dumps(self, obj): if self._type is not None: - return 'P' + cPickle.dumps(obj, -1) + return b'P' + pickle.dumps(obj, -1) try: - return 'M' + marshal.dumps(obj) + return b'M' + marshal.dumps(obj) except Exception: - self._type = 'P' - return 'P' + cPickle.dumps(obj, -1) + self._type = b'P' + return b'P' + pickle.dumps(obj, -1) def loads(self, obj): _type = obj[0] - if _type == 'M': + if _type == b'M': return marshal.loads(obj[1:]) - elif _type == 'P': - return cPickle.loads(obj[1:]) + elif _type == b'P': + return pickle.loads(obj[1:]) else: raise ValueError("invalid sevialization type: %s" % _type) @@ -495,8 +488,8 @@ class CompressedSerializer(FramedSerializer): def loads(self, obj): return self.serializer.loads(zlib.decompress(obj)) - def __eq__(self, other): - return isinstance(other, CompressedSerializer) and self.serializer == other.serializer + def __repr__(self): + return "CompressedSerializer(%s)" % self.serializer class UTF8Deserializer(Serializer): @@ -505,7 +498,7 @@ class UTF8Deserializer(Serializer): Deserializes streams written by String.getBytes. """ - def __init__(self, use_unicode=False): + def __init__(self, use_unicode=True): self.use_unicode = use_unicode def loads(self, stream): @@ -526,13 +519,13 @@ class UTF8Deserializer(Serializer): except EOFError: return - def __eq__(self, other): - return isinstance(other, UTF8Deserializer) and self.use_unicode == other.use_unicode + def __repr__(self): + return "UTF8Deserializer(%s)" % self.use_unicode def read_long(stream): length = stream.read(8) - if length == "": + if not length: raise EOFError return struct.unpack("!q", length)[0] @@ -547,7 +540,7 @@ def pack_long(value): def read_int(stream): length = stream.read(4) - if length == "": + if not length: raise EOFError return struct.unpack("!i", length)[0] http://git-wip-us.apache.org/repos/asf/spark/blob/04e44b37/python/pyspark/shell.py ---------------------------------------------------------------------- diff --git a/python/pyspark/shell.py b/python/pyspark/shell.py index 81aa970..144cdf0 100644 --- a/python/pyspark/shell.py +++ b/python/pyspark/shell.py @@ -21,13 +21,6 @@ An interactive shell. This file is designed to be launched as a PYTHONSTARTUP script. """ -import sys -if sys.version_info[0] != 2: - print("Error: Default Python used is Python%s" % sys.version_info.major) - print("\tSet env variable PYSPARK_PYTHON to Python2 binary and re-run it.") - sys.exit(1) - - import atexit import os import platform @@ -53,9 +46,14 @@ atexit.register(lambda: sc.stop()) try: # Try to access HiveConf, it will raise exception if Hive is not added sc._jvm.org.apache.hadoop.hive.conf.HiveConf() - sqlCtx = sqlContext = HiveContext(sc) + sqlContext = HiveContext(sc) except py4j.protocol.Py4JError: - sqlCtx = sqlContext = SQLContext(sc) + sqlContext = SQLContext(sc) +except TypeError: + sqlContext = SQLContext(sc) + +# for compatibility +sqlCtx = sqlContext print("""Welcome to ____ __ http://git-wip-us.apache.org/repos/asf/spark/blob/04e44b37/python/pyspark/shuffle.py ---------------------------------------------------------------------- diff --git a/python/pyspark/shuffle.py b/python/pyspark/shuffle.py index 8a6fc62..b54baa5 100644 --- a/python/pyspark/shuffle.py +++ b/python/pyspark/shuffle.py @@ -78,8 +78,8 @@ def _get_local_dirs(sub): # global stats -MemoryBytesSpilled = 0L -DiskBytesSpilled = 0L +MemoryBytesSpilled = 0 +DiskBytesSpilled = 0 class Aggregator(object): @@ -126,7 +126,7 @@ class Merger(object): """ Merge the combined items by mergeCombiner """ raise NotImplementedError - def iteritems(self): + def items(self): """ Return the merged items ad iterator """ raise NotImplementedError @@ -156,9 +156,9 @@ class InMemoryMerger(Merger): for k, v in iterator: d[k] = comb(d[k], v) if k in d else v - def iteritems(self): - """ Return the merged items as iterator """ - return self.data.iteritems() + def items(self): + """ Return the merged items ad iterator """ + return iter(self.data.items()) def _compressed_serializer(self, serializer=None): @@ -208,15 +208,15 @@ class ExternalMerger(Merger): >>> agg = SimpleAggregator(lambda x, y: x + y) >>> merger = ExternalMerger(agg, 10) >>> N = 10000 - >>> merger.mergeValues(zip(xrange(N), xrange(N))) + >>> merger.mergeValues(zip(range(N), range(N))) >>> assert merger.spills > 0 - >>> sum(v for k,v in merger.iteritems()) + >>> sum(v for k,v in merger.items()) 49995000 >>> merger = ExternalMerger(agg, 10) - >>> merger.mergeCombiners(zip(xrange(N), xrange(N))) + >>> merger.mergeCombiners(zip(range(N), range(N))) >>> assert merger.spills > 0 - >>> sum(v for k,v in merger.iteritems()) + >>> sum(v for k,v in merger.items()) 49995000 """ @@ -335,10 +335,10 @@ class ExternalMerger(Merger): # above limit at the first time. # open all the files for writing - streams = [open(os.path.join(path, str(i)), 'w') + streams = [open(os.path.join(path, str(i)), 'wb') for i in range(self.partitions)] - for k, v in self.data.iteritems(): + for k, v in self.data.items(): h = self._partition(k) # put one item in batch, make it compatible with load_stream # it will increase the memory if dump them in batch @@ -354,9 +354,9 @@ class ExternalMerger(Merger): else: for i in range(self.partitions): p = os.path.join(path, str(i)) - with open(p, "w") as f: + with open(p, "wb") as f: # dump items in batch - self.serializer.dump_stream(self.pdata[i].iteritems(), f) + self.serializer.dump_stream(iter(self.pdata[i].items()), f) self.pdata[i].clear() DiskBytesSpilled += os.path.getsize(p) @@ -364,10 +364,10 @@ class ExternalMerger(Merger): gc.collect() # release the memory as much as possible MemoryBytesSpilled += (used_memory - get_used_memory()) << 20 - def iteritems(self): + def items(self): """ Return all merged items as iterator """ if not self.pdata and not self.spills: - return self.data.iteritems() + return iter(self.data.items()) return self._external_items() def _external_items(self): @@ -398,7 +398,8 @@ class ExternalMerger(Merger): path = self._get_spill_dir(j) p = os.path.join(path, str(index)) # do not check memory during merging - self.mergeCombiners(self.serializer.load_stream(open(p)), 0) + with open(p, "rb") as f: + self.mergeCombiners(self.serializer.load_stream(f), 0) # limit the total partitions if (self.scale * self.partitions < self.MAX_TOTAL_PARTITIONS @@ -408,7 +409,7 @@ class ExternalMerger(Merger): gc.collect() # release the memory as much as possible return self._recursive_merged_items(index) - return self.data.iteritems() + return self.data.items() def _recursive_merged_items(self, index): """ @@ -426,7 +427,8 @@ class ExternalMerger(Merger): for j in range(self.spills): path = self._get_spill_dir(j) p = os.path.join(path, str(index)) - m.mergeCombiners(self.serializer.load_stream(open(p)), 0) + with open(p, 'rb') as f: + m.mergeCombiners(self.serializer.load_stream(f), 0) if get_used_memory() > limit: m._spill() @@ -451,7 +453,7 @@ class ExternalSorter(object): >>> sorter = ExternalSorter(1) # 1M >>> import random - >>> l = range(1024) + >>> l = list(range(1024)) >>> random.shuffle(l) >>> sorted(l) == list(sorter.sorted(l)) True @@ -499,9 +501,16 @@ class ExternalSorter(object): # sort them inplace will save memory current_chunk.sort(key=key, reverse=reverse) path = self._get_path(len(chunks)) - with open(path, 'w') as f: + with open(path, 'wb') as f: self.serializer.dump_stream(current_chunk, f) - chunks.append(self.serializer.load_stream(open(path))) + + def load(f): + for v in self.serializer.load_stream(f): + yield v + # close the file explicit once we consume all the items + # to avoid ResourceWarning in Python3 + f.close() + chunks.append(load(open(path, 'rb'))) current_chunk = [] gc.collect() limit = self._next_limit() @@ -527,7 +536,7 @@ class ExternalList(object): ExternalList can have many items which cannot be hold in memory in the same time. - >>> l = ExternalList(range(100)) + >>> l = ExternalList(list(range(100))) >>> len(l) 100 >>> l.append(10) @@ -555,11 +564,11 @@ class ExternalList(object): def __getstate__(self): if self._file is not None: self._file.flush() - f = os.fdopen(os.dup(self._file.fileno())) - f.seek(0) - serialized = f.read() + with os.fdopen(os.dup(self._file.fileno()), "rb") as f: + f.seek(0) + serialized = f.read() else: - serialized = '' + serialized = b'' return self.values, self.count, serialized def __setstate__(self, item): @@ -575,7 +584,7 @@ class ExternalList(object): if self._file is not None: self._file.flush() # read all items from disks first - with os.fdopen(os.dup(self._file.fileno()), 'r') as f: + with os.fdopen(os.dup(self._file.fileno()), 'rb') as f: f.seek(0) for v in self._ser.load_stream(f): yield v @@ -598,11 +607,16 @@ class ExternalList(object): d = dirs[id(self) % len(dirs)] if not os.path.exists(d): os.makedirs(d) - p = os.path.join(d, str(id)) - self._file = open(p, "w+", 65536) + p = os.path.join(d, str(id(self))) + self._file = open(p, "wb+", 65536) self._ser = BatchedSerializer(CompressedSerializer(PickleSerializer()), 1024) os.unlink(p) + def __del__(self): + if self._file: + self._file.close() + self._file = None + def _spill(self): """ dump the values into disk """ global MemoryBytesSpilled, DiskBytesSpilled @@ -651,33 +665,28 @@ class GroupByKey(object): """ Group a sorted iterator as [(k1, it1), (k2, it2), ...] - >>> k = [i/3 for i in range(6)] + >>> k = [i // 3 for i in range(6)] >>> v = [[i] for i in range(6)] - >>> g = GroupByKey(iter(zip(k, v))) + >>> g = GroupByKey(zip(k, v)) >>> [(k, list(it)) for k, it in g] [(0, [0, 1, 2]), (1, [3, 4, 5])] """ def __init__(self, iterator): - self.iterator = iter(iterator) - self.next_item = None + self.iterator = iterator def __iter__(self): - return self - - def next(self): - key, value = self.next_item if self.next_item else next(self.iterator) - values = ExternalListOfList([value]) - try: - while True: - k, v = next(self.iterator) - if k != key: - self.next_item = (k, v) - break + key, values = None, None + for k, v in self.iterator: + if values is not None and k == key: values.append(v) - except StopIteration: - self.next_item = None - return key, values + else: + if values is not None: + yield (key, values) + key = k + values = ExternalListOfList([v]) + if values is not None: + yield (key, values) class ExternalGroupBy(ExternalMerger): @@ -744,7 +753,7 @@ class ExternalGroupBy(ExternalMerger): # above limit at the first time. # open all the files for writing - streams = [open(os.path.join(path, str(i)), 'w') + streams = [open(os.path.join(path, str(i)), 'wb') for i in range(self.partitions)] # If the number of keys is small, then the overhead of sort is small @@ -756,7 +765,7 @@ class ExternalGroupBy(ExternalMerger): h = self._partition(k) self.serializer.dump_stream([(k, self.data[k])], streams[h]) else: - for k, v in self.data.iteritems(): + for k, v in self.data.items(): h = self._partition(k) self.serializer.dump_stream([(k, v)], streams[h]) @@ -771,14 +780,14 @@ class ExternalGroupBy(ExternalMerger): else: for i in range(self.partitions): p = os.path.join(path, str(i)) - with open(p, "w") as f: + with open(p, "wb") as f: # dump items in batch if self._sorted: # sort by key only (stable) - sorted_items = sorted(self.pdata[i].iteritems(), key=operator.itemgetter(0)) + sorted_items = sorted(self.pdata[i].items(), key=operator.itemgetter(0)) self.serializer.dump_stream(sorted_items, f) else: - self.serializer.dump_stream(self.pdata[i].iteritems(), f) + self.serializer.dump_stream(self.pdata[i].items(), f) self.pdata[i].clear() DiskBytesSpilled += os.path.getsize(p) @@ -792,7 +801,7 @@ class ExternalGroupBy(ExternalMerger): # if the memory can not hold all the partition, # then use sort based merge. Because of compression, # the data on disks will be much smaller than needed memory - if (size >> 20) >= self.memory_limit / 10: + if size >= self.memory_limit << 17: # * 1M / 8 return self._merge_sorted_items(index) self.data = {} @@ -800,15 +809,18 @@ class ExternalGroupBy(ExternalMerger): path = self._get_spill_dir(j) p = os.path.join(path, str(index)) # do not check memory during merging - self.mergeCombiners(self.serializer.load_stream(open(p)), 0) - return self.data.iteritems() + with open(p, "rb") as f: + self.mergeCombiners(self.serializer.load_stream(f), 0) + return self.data.items() def _merge_sorted_items(self, index): """ load a partition from disk, then sort and group by key """ def load_partition(j): path = self._get_spill_dir(j) p = os.path.join(path, str(index)) - return self.serializer.load_stream(open(p, 'r', 65536)) + with open(p, 'rb', 65536) as f: + for v in self.serializer.load_stream(f): + yield v disk_items = [load_partition(j) for j in range(self.spills)] http://git-wip-us.apache.org/repos/asf/spark/blob/04e44b37/python/pyspark/sql/__init__.py ---------------------------------------------------------------------- diff --git a/python/pyspark/sql/__init__.py b/python/pyspark/sql/__init__.py index 65abb24..6d54b9e 100644 --- a/python/pyspark/sql/__init__.py +++ b/python/pyspark/sql/__init__.py @@ -37,9 +37,22 @@ Important classes of Spark SQL and DataFrames: - L{types} List of data types available. """ +from __future__ import absolute_import + +# fix the module name conflict for Python 3+ +import sys +from . import _types as types +modname = __name__ + '.types' +types.__name__ = modname +# update the __module__ for all objects, make them picklable +for v in types.__dict__.values(): + if hasattr(v, "__module__") and v.__module__.endswith('._types'): + v.__module__ = modname +sys.modules[modname] = types +del modname, sys -from pyspark.sql.context import SQLContext, HiveContext from pyspark.sql.types import Row +from pyspark.sql.context import SQLContext, HiveContext from pyspark.sql.dataframe import DataFrame, GroupedData, Column, SchemaRDD, DataFrameNaFunctions __all__ = [ --------------------------------------------------------------------- To unsubscribe, e-mail: [email protected] For additional commands, e-mail: [email protected]
