This is an automated email from the ASF dual-hosted git repository. jiafengzheng pushed a commit to branch master in repository https://gitbox.apache.org/repos/asf/doris.git
The following commit(s) were added to refs/heads/master by this push: new 85e67b04e2 fix-doc3 (#11587) 85e67b04e2 is described below commit 85e67b04e2657a4a97de2d3063c5e58d10e0247c Author: Liqf <109049295+lemonlit...@users.noreply.github.com> AuthorDate: Tue Aug 9 13:35:32 2022 +0800 fix-doc3 (#11587) bloomFilter fix-doc --- docs/en/docs/data-table/index/bloomfilter.md | 9 +++------ docs/zh-CN/docs/data-table/index/bloomfilter.md | 12 ++++++------ 2 files changed, 9 insertions(+), 12 deletions(-) diff --git a/docs/en/docs/data-table/index/bloomfilter.md b/docs/en/docs/data-table/index/bloomfilter.md index c51450cc9d..e63fc5fd41 100644 --- a/docs/en/docs/data-table/index/bloomfilter.md +++ b/docs/en/docs/data-table/index/bloomfilter.md @@ -96,7 +96,7 @@ PROPERTIES ( Check that the BloomFilter index we built on the table is to use: ```sql -SHOW CREATE TABLE <table_name> +SHOW CREATE TABLE <table_name>; ``` ### Delete BloomFilter index @@ -120,14 +120,11 @@ ALTER TABLE <db.table_name> SET ("bloom_filter_columns" = "k1,k3"); You can consider establishing a Bloom Filter index for a column when the following conditions are met: 1. First, BloomFilter is suitable for non-prefix filtering. - 2. The query will be filtered according to the high frequency of the column, and most of the query conditions are in and = filtering. - -3. Unlike Bitmap, BloomFilter is suitable for high cardinality columns. Such as UserID. Because if it is created on a low-cardinality column, such as a "gender" column, each Block will almost contain all values, causing the BloomFilter index to lose its meaning +3. Unlike Bitmap, BloomFilter is suitable for high cardinality columns. Such as UserID. Because if it is created on a low-cardinality column, such as a "gender" column, each Block will almost contain all values, causing the BloomFilter index to lose its meaning. ### **Doris BloomFilter use precautions** 1. It does not support the creation of Bloom Filter indexes for Tinyint, Float, and Double columns. - 2. The Bloom Filter index only has an acceleration effect on in and = filtering queries. -3. If you want to check whether a query hits the Bloom Filter index, you can check the profile information of the query +3. If you want to check whether a query hits the Bloom Filter index, you can check the profile information of the query. diff --git a/docs/zh-CN/docs/data-table/index/bloomfilter.md b/docs/zh-CN/docs/data-table/index/bloomfilter.md index cf18df47f9..3d15676616 100644 --- a/docs/zh-CN/docs/data-table/index/bloomfilter.md +++ b/docs/zh-CN/docs/data-table/index/bloomfilter.md @@ -93,7 +93,7 @@ PROPERTIES ( 查看我们在表上建立的BloomFilter索引是使用: ```sql -SHOW CREATE TABLE <table_name> +SHOW CREATE TABLE <table_name>; ``` ## 删除BloomFilter索引 @@ -116,12 +116,12 @@ ALTER TABLE <db.table_name> SET ("bloom_filter_columns" = "k1,k3"); 满足以下几个条件时可以考虑对某列建立Bloom Filter 索引: -1. 首先BloomFilter适用于非前缀过滤. -2. 查询会根据该列高频过滤,而且查询条件大多是in和 = 过滤. -3. 不同于Bitmap, BloomFilter适用于高基数列。比如UserID。因为如果创建在低基数的列上,比如”性别“列,则每个Block几乎都会包含所有取值,导致BloomFilter索引失去意义 +1. 首先BloomFilter适用于非前缀过滤。 +2. 查询会根据该列高频过滤,而且查询条件大多是 in 和 = 过滤。 +3. 不同于Bitmap, BloomFilter适用于高基数列。比如UserID。因为如果创建在低基数的列上,比如 “性别” 列,则每个Block几乎都会包含所有取值,导致BloomFilter索引失去意义。 ## **Doris BloomFilter使用注意事项** 1. 不支持对Tinyint、Float、Double 类型的列建Bloom Filter索引。 -2. Bloom Filter索引只对in和 = 过滤查询有加速效果。 -3. 如果要查看某个查询是否命中了Bloom Filter索引,可以通过查询的Profile信息查看 +2. Bloom Filter索引只对 in 和 = 过滤查询有加速效果。 +3. 如果要查看某个查询是否命中了Bloom Filter索引,可以通过查询的Profile信息查看。 --------------------------------------------------------------------- To unsubscribe, e-mail: commits-unsubscr...@doris.apache.org For additional commands, e-mail: commits-h...@doris.apache.org