This is an automated email from the ASF dual-hosted git repository.

jiafengzheng pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/doris.git


The following commit(s) were added to refs/heads/master by this push:
     new 85e67b04e2 fix-doc3 (#11587)
85e67b04e2 is described below

commit 85e67b04e2657a4a97de2d3063c5e58d10e0247c
Author: Liqf <109049295+lemonlit...@users.noreply.github.com>
AuthorDate: Tue Aug 9 13:35:32 2022 +0800

    fix-doc3 (#11587)
    
    bloomFilter   fix-doc
---
 docs/en/docs/data-table/index/bloomfilter.md    |  9 +++------
 docs/zh-CN/docs/data-table/index/bloomfilter.md | 12 ++++++------
 2 files changed, 9 insertions(+), 12 deletions(-)

diff --git a/docs/en/docs/data-table/index/bloomfilter.md 
b/docs/en/docs/data-table/index/bloomfilter.md
index c51450cc9d..e63fc5fd41 100644
--- a/docs/en/docs/data-table/index/bloomfilter.md
+++ b/docs/en/docs/data-table/index/bloomfilter.md
@@ -96,7 +96,7 @@ PROPERTIES (
 Check that the BloomFilter index we built on the table is to use:
 
 ```sql
-SHOW CREATE TABLE <table_name>
+SHOW CREATE TABLE <table_name>;
 ```
 
 ### Delete BloomFilter index
@@ -120,14 +120,11 @@ ALTER TABLE <db.table_name> SET ("bloom_filter_columns" = 
"k1,k3");
 You can consider establishing a Bloom Filter index for a column when the 
following conditions are met:
 
 1. First, BloomFilter is suitable for non-prefix filtering.
-
 2. The query will be filtered according to the high frequency of the column, 
and most of the query conditions are in and = filtering.
-
-3. Unlike Bitmap, BloomFilter is suitable for high cardinality columns. Such 
as UserID. Because if it is created on a low-cardinality column, such as a 
"gender" column, each Block will almost contain all values, causing the 
BloomFilter index to lose its meaning
+3. Unlike Bitmap, BloomFilter is suitable for high cardinality columns. Such 
as UserID. Because if it is created on a low-cardinality column, such as a 
"gender" column, each Block will almost contain all values, causing the 
BloomFilter index to lose its meaning.
 
 ### **Doris BloomFilter use precautions**
 
 1. It does not support the creation of Bloom Filter indexes for Tinyint, 
Float, and Double columns.
-
 2. The Bloom Filter index only has an acceleration effect on in and = 
filtering queries.
-3. If you want to check whether a query hits the Bloom Filter index, you can 
check the profile information of the query
+3. If you want to check whether a query hits the Bloom Filter index, you can 
check the profile information of the query.
diff --git a/docs/zh-CN/docs/data-table/index/bloomfilter.md 
b/docs/zh-CN/docs/data-table/index/bloomfilter.md
index cf18df47f9..3d15676616 100644
--- a/docs/zh-CN/docs/data-table/index/bloomfilter.md
+++ b/docs/zh-CN/docs/data-table/index/bloomfilter.md
@@ -93,7 +93,7 @@ PROPERTIES (
 查看我们在表上建立的BloomFilter索引是使用:
 
 ```sql
-SHOW CREATE TABLE <table_name>
+SHOW CREATE TABLE <table_name>;
 ```
 
 ## 删除BloomFilter索引
@@ -116,12 +116,12 @@ ALTER TABLE <db.table_name> SET ("bloom_filter_columns" = 
"k1,k3");
 
 满足以下几个条件时可以考虑对某列建立Bloom Filter 索引:
 
-1. 首先BloomFilter适用于非前缀过滤.
-2. 查询会根据该列高频过滤,而且查询条件大多是in和 = 过滤.
-3. 不同于Bitmap, 
BloomFilter适用于高基数列。比如UserID。因为如果创建在低基数的列上,比如”性别“列,则每个Block几乎都会包含所有取值,导致BloomFilter索引失去意义
+1. 首先BloomFilter适用于非前缀过滤。
+2. 查询会根据该列高频过滤,而且查询条件大多是 in 和 = 过滤。
+3. 不同于Bitmap, BloomFilter适用于高基数列。比如UserID。因为如果创建在低基数的列上,比如 “性别” 
列,则每个Block几乎都会包含所有取值,导致BloomFilter索引失去意义。
 
 ## **Doris BloomFilter使用注意事项**
 
 1. 不支持对Tinyint、Float、Double 类型的列建Bloom Filter索引。
-2. Bloom Filter索引只对in和 = 过滤查询有加速效果。
-3. 如果要查看某个查询是否命中了Bloom Filter索引,可以通过查询的Profile信息查看
+2. Bloom Filter索引只对 in 和 = 过滤查询有加速效果。
+3. 如果要查看某个查询是否命中了Bloom Filter索引,可以通过查询的Profile信息查看。


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscr...@doris.apache.org
For additional commands, e-mail: commits-h...@doris.apache.org

Reply via email to