This is an automated email from the ASF dual-hosted git repository.

jianliangqi pushed a commit to branch clucene
in repository https://gitbox.apache.org/repos/asf/doris-thirdparty.git


The following commit(s) were added to refs/heads/clucene by this push:
     new 486ce950 [unitest](tokenizer) fix chinese tokenizer unitest (#164)
486ce950 is described below

commit 486ce95095a61f0251dc072dcf4b802ea560ff9e
Author: airborne12 <airborn...@gmail.com>
AuthorDate: Mon Dec 25 19:40:23 2023 +0800

    [unitest](tokenizer) fix chinese tokenizer unitest (#164)
---
 .../CLucene/analysis/LanguageBasedAnalyzer.cpp     |   5 +-
 .../CLucene/analysis/cjk/CJKAnalyzer.cpp           | 122 +--
 .../CLucene/analysis/cjk/CJKAnalyzer.h             |   3 +-
 src/test/contribs-lib/analysis/testChinese.cpp     | 844 ++++++++++++---------
 src/test/tests.cpp                                 |   2 +-
 5 files changed, 568 insertions(+), 408 deletions(-)

diff --git a/src/contribs-lib/CLucene/analysis/LanguageBasedAnalyzer.cpp 
b/src/contribs-lib/CLucene/analysis/LanguageBasedAnalyzer.cpp
index 0bc03443..2a32ff04 100644
--- a/src/contribs-lib/CLucene/analysis/LanguageBasedAnalyzer.cpp
+++ b/src/contribs-lib/CLucene/analysis/LanguageBasedAnalyzer.cpp
@@ -43,10 +43,7 @@ LanguageBasedAnalyzer::~LanguageBasedAnalyzer() {
 }
 
 bool LanguageBasedAnalyzer::isSDocOpt() {
-    if (_tcscmp(lang, _T("chinese")) == 0) {
-        return true;
-    }
-    return false;
+    return true;
 }
 
 void LanguageBasedAnalyzer::setStopWords(const TCHAR** stopwords) {
diff --git a/src/contribs-lib/CLucene/analysis/cjk/CJKAnalyzer.cpp 
b/src/contribs-lib/CLucene/analysis/cjk/CJKAnalyzer.cpp
index b19ed77d..23d7b08c 100644
--- a/src/contribs-lib/CLucene/analysis/cjk/CJKAnalyzer.cpp
+++ b/src/contribs-lib/CLucene/analysis/cjk/CJKAnalyzer.cpp
@@ -8,26 +8,23 @@
 #include "CJKAnalyzer.h"
 #include "CLucene/util/CLStreams.h"
 
-CL_NS_DEF2(analysis,cjk)
+CL_NS_DEF2(analysis, cjk)
 CL_NS_USE(analysis)
 CL_NS_USE(util)
 
-
 const TCHAR* CJKTokenizer::tokenTypeSingle = _T("single");
 const TCHAR* CJKTokenizer::tokenTypeDouble = _T("double");
 
-CJKTokenizer::CJKTokenizer(Reader* in):
-       Tokenizer(in)
-{
-       tokenType = Token::getDefaultType();
-       offset = 0;
-       bufferIndex = 0;
-       dataLen = 0;
-       preIsTokened = false;
-       ignoreSurrogates = true;
+CJKTokenizer::CJKTokenizer(Reader* in) : Tokenizer(in) {
+    tokenType = Token::getDefaultType();
+    offset = 0;
+    bufferIndex = 0;
+    dataLen = 0;
+    preIsTokened = false;
+    ignoreSurrogates = true;
 }
 
-CL_NS(analysis)::Token* CJKTokenizer::next(Token* token){
+CL_NS(analysis)::Token* CJKTokenizer::next(Token* token) {
     /** how many character(s) has been stored in buffer */
     int32_t length = 0;
 
@@ -37,13 +34,17 @@ CL_NS(analysis)::Token* CJKTokenizer::next(Token* token){
     while (true) {
         /** current character */
         clunichar c;
-       int charlen = 1;
+        int charlen = 1;
 
         offset++;
 
         if (bufferIndex >= dataLen) {
-            dataLen = input->read((const void**)&ioBuffer, 1, 
LUCENE_IO_BUFFER_SIZE);
+            dataLen = input->read((const void**)&cbuffer, 1, 
LUCENE_IO_BUFFER_SIZE);
             bufferIndex = 0;
+            if (dataLen > 0) {
+                lucene_utf8towcs(ioBuffer, cbuffer, LUCENE_MAX_WORD_LEN);
+                dataLen = _tcslen(ioBuffer);
+            }
         }
 
         if (dataLen == -1) {
@@ -62,33 +63,33 @@ CL_NS(analysis)::Token* CJKTokenizer::next(Token* token){
             c = ioBuffer[bufferIndex++];
         }
 
-               //to support surrogates, we'll need to convert the incoming 
utf16 into
-               //ucs4(c variable). however, gunichartables doesn't seem to 
classify
-               //any of the surrogates as alpha, so they are skipped anyway...
-               //so for now we just convert to ucs4 so that we dont corrupt 
the input.
-               if ( c >= 0xd800 || c <= 0xdfff ){
-                       clunichar c2 = ioBuffer[bufferIndex];
-                       if ( c2 >= 0xdc00 && c2 <= 0xdfff ){
-                               bufferIndex++;
-                               offset++;
-                               charlen=2;
-
-                               c = (((c & 0x03ffL) << 10) | ((c2 & 0x03ffL) << 
 0)) + 0x00010000L;
-                       }
-               }
+        //to support surrogates, we'll need to convert the incoming utf16 into
+        //ucs4(c variable). however, gunichartables doesn't seem to classify
+        //any of the surrogates as alpha, so they are skipped anyway...
+        //so for now we just convert to ucs4 so that we dont corrupt the input.
+        if (c >= 0xd800 || c <= 0xdfff) {
+            clunichar c2 = ioBuffer[bufferIndex];
+            if (c2 >= 0xdc00 && c2 <= 0xdfff) {
+                bufferIndex++;
+                offset++;
+                charlen = 2;
+
+                c = (((c & 0x03ffL) << 10) | ((c2 & 0x03ffL) << 0)) + 
0x00010000L;
+            }
+        }
 
         //if the current character is ASCII or Extend ASCII
-        if ((c <= 0xFF) //is BASIC_LATIN
-            || (c>=0xFF00 && c<=0xFFEF) //ascii >0x74 cast to unsigned...
-           ) {
+        if ((c <= 0xFF)                     //is BASIC_LATIN
+            || (c >= 0xFF00 && c <= 0xFFEF) //ascii >0x74 cast to unsigned...
+        ) {
             if (c >= 0xFF00) {
-                               //todo: test this... only happens on platforms 
where char is signed, i think...
+                //todo: test this... only happens on platforms where char is 
signed, i think...
                 /** convert  HALFWIDTH_AND_FULLWIDTH_FORMS to BASIC_LATIN */
                 c -= 0xFEE0;
             }
 
             // if the current character is a letter or "_" "+" "#"
-                       if (_istalnum(c) || ((c == '_') || (c == '+') || (c == 
'#')) ) {
+            if (_istalnum(c) || ((c == '_') || (c == '+') || (c == '#'))) {
                 if (length == 0) {
                     // "javaC1C2C3C4linux" <br>
                     //      ^--: the current character begin to token the ASCII
@@ -98,8 +99,8 @@ CL_NS(analysis)::Token* CJKTokenizer::next(Token* token){
                     // "javaC1C2C3C4linux" <br>
                     //              ^--: the previous non-ASCII
                     // : the current character
-                    offset-=charlen;
-                    bufferIndex-=charlen;
+                    offset -= charlen;
+                    bufferIndex -= charlen;
                     tokenType = tokenTypeSingle;
 
                     if (preIsTokened == true) {
@@ -115,7 +116,7 @@ CL_NS(analysis)::Token* CJKTokenizer::next(Token* token){
 
                 // store the LowerCase(c) in the buffer
                 buffer[length++] = _totlower((TCHAR)c);
-                               tokenType = tokenTypeSingle;
+                tokenType = tokenTypeSingle;
 
                 // break the procedure if buffer overflowed!
                 if (length == LUCENE_MAX_WORD_LEN) {
@@ -131,39 +132,39 @@ CL_NS(analysis)::Token* CJKTokenizer::next(Token* token){
             }
         } else {
             // non-ASCII letter, eg."C1C2C3C4"
-                       if ( _istalpha(c) || (!ignoreSurrogates && c>=0x10000) 
) {
+            if (_istalpha(c) || (!ignoreSurrogates && c >= 0x10000)) {
                 if (length == 0) {
                     start = offset - 1;
-                    
-                                       if ( c < 0x00010000L )
-                                               buffer[length++] = (TCHAR)c;
-                                       else{
-                                               clunichar ucs4 = c - 
0x00010000L;
-                                               buffer[length++] = 
(TCHAR)((ucs4 >> 10) & 0x3ff) | 0xd800;
-                                               buffer[length++] = 
(TCHAR)((ucs4 >>  0) & 0x3ff) | 0xdc00;
-                                       }
+
+                    if (c < 0x00010000L)
+                        buffer[length++] = (TCHAR)c;
+                    else {
+                        clunichar ucs4 = c - 0x00010000L;
+                        buffer[length++] = (TCHAR)((ucs4 >> 10) & 0x3ff) | 
0xd800;
+                        buffer[length++] = (TCHAR)((ucs4 >> 0) & 0x3ff) | 
0xdc00;
+                    }
 
                     tokenType = tokenTypeDouble;
                 } else {
                     if (tokenType == tokenTypeSingle) {
-                        offset-=charlen;
-                        bufferIndex-=charlen;
+                        offset -= charlen;
+                        bufferIndex -= charlen;
 
                         //return the previous ASCII characters
                         break;
                     } else {
-                                               if ( c < 0x00010000L )
-                                                       buffer[length++] = 
(TCHAR)c;
-                                               else{
-                                                       clunichar ucs4 = c - 
0x00010000L;
-                                                       buffer[length++] = 
(TCHAR)((ucs4 >> 10) & 0x3ff) | 0xd800;
-                                                       buffer[length++] = 
(TCHAR)((ucs4 >>  0) & 0x3ff) | 0xdc00;
-                                               }
-                                               tokenType = tokenTypeDouble;
+                        if (c < 0x00010000L)
+                            buffer[length++] = (TCHAR)c;
+                        else {
+                            clunichar ucs4 = c - 0x00010000L;
+                            buffer[length++] = (TCHAR)((ucs4 >> 10) & 0x3ff) | 
0xd800;
+                            buffer[length++] = (TCHAR)((ucs4 >> 0) & 0x3ff) | 
0xdc00;
+                        }
+                        tokenType = tokenTypeDouble;
 
                         if (length >= 2) {
-                            offset-=charlen;
-                            bufferIndex-=charlen;
+                            offset -= charlen;
+                            bufferIndex -= charlen;
                             preIsTokened = true;
 
                             break;
@@ -182,9 +183,10 @@ CL_NS(analysis)::Token* CJKTokenizer::next(Token* token){
         }
     }
 
-       buffer[length]='\0';
-       token->set(buffer,start, start+length, tokenType);
-       return token;
+    buffer[length] = '\0';
+    std::string term = lucene_wcstoutf8string(buffer, length);
+    token->set(term.c_str(), 0, term.length(), tokenType);
+    return token;
 }
 
 CL_NS_END2
diff --git a/src/contribs-lib/CLucene/analysis/cjk/CJKAnalyzer.h 
b/src/contribs-lib/CLucene/analysis/cjk/CJKAnalyzer.h
index 978ad81a..ccba7080 100644
--- a/src/contribs-lib/CLucene/analysis/cjk/CJKAnalyzer.h
+++ b/src/contribs-lib/CLucene/analysis/cjk/CJKAnalyzer.h
@@ -40,12 +40,13 @@ private:
      * the returned Token
      */
     TCHAR buffer[LUCENE_MAX_WORD_LEN];
+    char* cbuffer;
 
     /**
      * I/O buffer, used to store the content of the input(one of the <br>
      * members of Tokenizer)
      */
-    const TCHAR* ioBuffer;
+     TCHAR ioBuffer[LUCENE_MAX_WORD_LEN]{};
 
     /** word type: single=>ASCII  double=>non-ASCII word=>default */
     const TCHAR* tokenType;
diff --git a/src/test/contribs-lib/analysis/testChinese.cpp 
b/src/test/contribs-lib/analysis/testChinese.cpp
index 2aeb0367..ab365895 100644
--- a/src/test/contribs-lib/analysis/testChinese.cpp
+++ b/src/test/contribs-lib/analysis/testChinese.cpp
@@ -4,6 +4,7 @@
 * Distributable under the terms of either the Apache License (Version 2.0) or
 * the GNU Lesser General Public License, as specified in the COPYING file.
 
------------------------------------------------------------------------------*/
+#include <memory>
 #include "test.h"
 #include "CLucene/analysis/cjk/CJKAnalyzer.h"
 #include "CLucene/analysis/LanguageBasedAnalyzer.h"
@@ -22,7 +23,7 @@
 
 CL_NS_USE2(analysis, cjk)
 
-void test(CuTest *tc, char* orig, Reader* reader, bool verbose, int64_t bytes) 
{
+void test(CuTest* tc, char* orig, Reader* reader, bool verbose, int64_t bytes) 
{
     StandardAnalyzer analyzer;
     TokenStream* stream = analyzer.tokenStream(NULL, reader);
 
@@ -34,7 +35,8 @@ void test(CuTest *tc, char* orig, Reader* reader, bool 
verbose, int64_t bytes) {
     TCHAR ttmp[LUCENE_MAX_WORD_LEN + 1];
     for (; stream->next(&t);) {
         if (verbose) {
-            CuMessage(tc, _T("Text=%s start=%d end=%d\n"), 
t.termBuffer<TCHAR>(), t.startOffset(), t.endOffset());
+            CuMessage(tc, _T("Text=%s start=%d end=%d\n"), 
t.termBuffer<TCHAR>(), t.startOffset(),
+                      t.endOffset());
         }
         int len = t.termLength<TCHAR>();
 
@@ -46,7 +48,8 @@ void test(CuTest *tc, char* orig, Reader* reader, bool 
verbose, int64_t bytes) {
 
         if (_tcsncmp(t.termBuffer<TCHAR>(), ttmp, len) != 0) {
             TCHAR err[1024];
-            _sntprintf(err, 1024, _T("token '%s' didnt match original text at 
%d-%d"), t.termBuffer<TCHAR>(), t.startOffset(), t.endOffset());
+            _sntprintf(err, 1024, _T("token '%s' didnt match original text at 
%d-%d"),
+                       t.termBuffer<TCHAR>(), t.startOffset(), t.endOffset());
             CuAssert(tc, err, false);
         }
 
@@ -64,7 +67,7 @@ void test(CuTest *tc, char* orig, Reader* reader, bool 
verbose, int64_t bytes) {
     _CLDELETE(stream);
 }
 
-void _testFile(CuTest *tc, const char* fname, bool verbose) {
+void _testFile(CuTest* tc, const char* fname, bool verbose) {
     struct fileStat buf;
     fileStat(fname, &buf);
     int64_t bytes = buf.st_size;
@@ -78,13 +81,12 @@ void _testFile(CuTest *tc, const char* fname, bool verbose) 
{
 
     CuMessageA(tc, " Reading test file containing %d bytes.\n", bytes);
     jstreams::FileReader fr(fname, "ASCII");
-    const TCHAR *start;
+    const TCHAR* start;
     size_t total = 0;
     int32_t numRead;
     do {
         numRead = fr.read((const void**)&start, 1, 0);
-        if (numRead == -1)
-            break;
+        if (numRead == -1) break;
         total += numRead;
     } while (numRead >= 0);
 
@@ -95,29 +97,32 @@ void _testFile(CuTest *tc, const char* fname, bool verbose) 
{
     _CLDELETE_CaARRAY(orig);
 }
 
-void testFile(CuTest *tc) {
+void testFile(CuTest* tc) {
     char loc[1024];
     strcpy(loc, clucene_data_location);
     strcat(loc, "/reuters-21578/feldman-cia-worldfactbook-data.txt");
-    CuAssert(tc, _T("reuters-21578/feldman-cia-worldfactbook-data.txt does not 
exist"), Misc::dir_Exists(loc));
+    CuAssert(tc, _T("reuters-21578/feldman-cia-worldfactbook-data.txt does not 
exist"),
+             Misc::dir_Exists(loc));
     _testFile(tc, loc, false);
 }
 
-void _testCJK(CuTest *tc, const char* astr, const char** results, bool 
ignoreSurrogates = true) {
-    SimpleInputStreamReader r(new AStringReader(astr), 
SimpleInputStreamReader::UTF8);
+void _testCJK(CuTest* tc, const char* astr, const char** results, bool 
ignoreSurrogates = true) {
+    //SimpleInputStreamReader r(new AStringReader(astr), 
SimpleInputStreamReader::UTF8);
+    auto r = std::make_unique<lucene::util::SStringReader<char>>(astr, 
strlen(astr), false);
 
-    CJKTokenizer* tokenizer = _CLNEW CJKTokenizer(&r);
+    CJKTokenizer* tokenizer = _CLNEW CJKTokenizer(r.get());
     tokenizer->setIgnoreSurrogates(ignoreSurrogates);
     int pos = 0;
     Token tok;
-    TCHAR tres[LUCENE_MAX_WORD_LEN];
+    //TCHAR tres[LUCENE_MAX_WORD_LEN];
 
     while (results[pos] != NULL) {
         CLUCENE_ASSERT(tokenizer->next(&tok) != NULL);
 
-        lucene_utf8towcs(tres, results[pos], LUCENE_MAX_WORD_LEN);
-        //wcout << tres << "  actual " << tok.termBuffer<TCHAR>() << std::endl;
-        CuAssertStrEquals(tc, _T("unexpected token value"), tres, 
tok.termBuffer<TCHAR>());
+        //lucene_utf8towcs(tres, results[pos], LUCENE_MAX_WORD_LEN);
+        //cout << results[pos] << "  actual " << 
std::string(tok.termBuffer<char>() ,tok.termLength<char>())<< std::endl;
+        CLUCENE_ASSERT(strncmp(tok.termBuffer<char>(), results[pos], 
tok.termLength<char>()) == 0);
+        //CuAssertStrEquals(tc, "unexpected token value", tres, 
tok.termBuffer<char>());
         pos++;
     }
     CLUCENE_ASSERT(!tokenizer->next(&tok));
@@ -125,28 +130,30 @@ void _testCJK(CuTest *tc, const char* astr, const char** 
results, bool ignoreSur
     _CLDELETE(tokenizer);
 }
 
-void testCJK(CuTest *tc) {
+void testCJK(CuTest* tc) {
     //utf16 test
     //we have a very large unicode character:
     //xEFFFF = utf8(F3 AF BF BF) = utf16(DB7F DFFF) = utf8(ED AD BF, ED BF BF)
-    static const char* exp4[4] = {"我爱","爱你","", NULL};
-    _testCJK(tc, "我爱你",exp4, false);
+    static const char* exp4[4] = {"我爱", "爱你", "", NULL};
+    _testCJK(tc, "我爱你", exp4, false);
 
-    static const char* exp3[4] = {"\xED\xAD\xBF\xED\xBF\xBF\xe5\x95\xa4", 
"\xe5\x95\xa4\xED\xAD\xBF\xED\xBF\xBF", "", NULL};
+    static const char* exp3[4] = {"\xED\xAD\xBF\xED\xBF\xBF\xe5\x95\xa4",
+                                  "\xe5\x95\xa4\xED\xAD\xBF\xED\xBF\xBF", "", 
NULL};
     _testCJK(tc, 
"\xED\xAD\xBF\xED\xBF\xBF\xe5\x95\xa4\xED\xAD\xBF\xED\xBF\xBF", exp3, false);
 
     static const char* exp1[5] = {"test", "t\xc3\xbcrm", "values", NULL};
     _testCJK(tc, "test t\xc3\xbcrm values", exp1);
 
-    static const char* exp2[6] = {"a", "\xe5\x95\xa4\xe9\x85\x92", 
"\xe9\x85\x92\xe5\x95\xa4", "", "x", NULL};
+    static const char* exp2[6] = {
+            "a", "\xe5\x95\xa4\xe9\x85\x92", "\xe9\x85\x92\xe5\x95\xa4", "", 
"x", NULL};
     _testCJK(tc, "a\xe5\x95\xa4\xe9\x85\x92\xe5\x95\xa4x", exp2);
 }
 
 void testSimpleJiebaSearchModeTokenizer2(CuTest* tc) {
     LanguageBasedAnalyzer a;
     const char* field_value_data = "冰咒龙";
-    auto stringReader =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data, 
strlen(field_value_data), false);
+    auto stringReader = std::make_unique<lucene::util::SStringReader<char>>(
+            field_value_data, strlen(field_value_data), false);
     TokenStream* ts;
     Token t;
 
@@ -155,12 +162,12 @@ void testSimpleJiebaSearchModeTokenizer2(CuTest* tc) {
     a.setStem(false);
     a.setMode(lucene::analysis::AnalyzerMode::Search);
     a.initDict("./dict");
-    ts = a.tokenStream(_T("contents"), stringReader);
+    ts = a.tokenStream(_T("contents"), stringReader.get());
 
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("冰咒")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "冰咒", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("龙")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "龙", t.termLength<char>()) == 
0);
     CLUCENE_ASSERT(ts->next(&t) == NULL);
     _CLDELETE(ts);
 }
@@ -168,8 +175,8 @@ void testSimpleJiebaSearchModeTokenizer2(CuTest* tc) {
 void testSimpleJiebaAllModeTokenizer2(CuTest* tc) {
     LanguageBasedAnalyzer a;
     const char* field_value_data = "冰咒龙";
-    auto stringReader =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data, 
strlen(field_value_data), false);
+    auto stringReader = std::make_unique<lucene::util::SStringReader<char>>(
+            field_value_data, strlen(field_value_data), false);
     TokenStream* ts;
     Token t;
 
@@ -178,14 +185,14 @@ void testSimpleJiebaAllModeTokenizer2(CuTest* tc) {
     a.setStem(false);
     a.setMode(lucene::analysis::AnalyzerMode::All);
     a.initDict("./dict");
-    ts = a.tokenStream(_T("contents"), stringReader);
+    ts = a.tokenStream(_T("contents"), stringReader.get());
 
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("冰")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "冰", t.termLength<char>()) == 
0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("咒")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "咒", t.termLength<char>()) == 
0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("龙")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "龙", t.termLength<char>()) == 
0);
     CLUCENE_ASSERT(ts->next(&t) == NULL);
     _CLDELETE(ts);
 }
@@ -193,8 +200,8 @@ void testSimpleJiebaAllModeTokenizer2(CuTest* tc) {
 void testSimpleJiebaAllModeTokenizer(CuTest* tc) {
     LanguageBasedAnalyzer a;
     const char* field_value_data = "我来到北京清华大学";
-    auto stringReader =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data, 
strlen(field_value_data), false);
+    auto stringReader = std::make_unique<lucene::util::SStringReader<char>>(
+            field_value_data, strlen(field_value_data), false);
     TokenStream* ts;
     Token t;
 
@@ -203,20 +210,22 @@ void testSimpleJiebaAllModeTokenizer(CuTest* tc) {
     a.setStem(false);
     a.setMode(lucene::analysis::AnalyzerMode::All);
     a.initDict("./dict");
-    ts = a.tokenStream(_T("contents"), stringReader);
+    ts = a.tokenStream(_T("contents"), stringReader.get());
 
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("来到")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "我", t.termLength<char>()) == 
0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("北京")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "来到", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("清华")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "北京", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("清华大学")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "清华", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("华大")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "清华大学", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("大学")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "华大", t.termLength<char>()) 
== 0);
+    CLUCENE_ASSERT(ts->next(&t) != NULL);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "大学", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) == NULL);
     _CLDELETE(ts);
 }
@@ -224,8 +233,8 @@ void testSimpleJiebaAllModeTokenizer(CuTest* tc) {
 void testSimpleJiebaDefaultModeTokenizer2(CuTest* tc) {
     LanguageBasedAnalyzer a;
     const char* field_value_data = "中国的科技发展在世界上处于领先";
-    auto stringReader =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data, 
strlen(field_value_data), false);
+    auto stringReader = std::make_unique<lucene::util::SStringReader<char>>(
+            field_value_data, strlen(field_value_data), false);
     TokenStream* ts;
     Token t;
 
@@ -234,7 +243,7 @@ void testSimpleJiebaDefaultModeTokenizer2(CuTest* tc) {
     a.setStem(false);
     a.setMode(lucene::analysis::AnalyzerMode::Default);
     a.initDict("./dict");
-    ts = a.tokenStream(_T("contents"), stringReader);
+    ts = a.tokenStream(_T("contents"), stringReader.get());
 
     /*char tmp[255] = {};
     while(ts->next(&t) != nullptr) {
@@ -243,17 +252,17 @@ void testSimpleJiebaDefaultModeTokenizer2(CuTest* tc) {
     }*/
 
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("中国")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "中国", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("科技")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "科技", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("发展")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "发展", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("在世界上")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "在世界上", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("处于")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "处于", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("领先")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "领先", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) == NULL);
     _CLDELETE(ts);
 }
@@ -261,8 +270,8 @@ void testSimpleJiebaDefaultModeTokenizer2(CuTest* tc) {
 void testSimpleJiebaDefaultModeTokenizer(CuTest* tc) {
     LanguageBasedAnalyzer a;
     const char* field_value_data = "我来到北京清华大学";
-    auto stringReader =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data, 
strlen(field_value_data), false);
+    auto stringReader = std::make_unique<lucene::util::SStringReader<char>>(
+            field_value_data, strlen(field_value_data), false);
     TokenStream* ts;
     Token t;
 
@@ -271,14 +280,16 @@ void testSimpleJiebaDefaultModeTokenizer(CuTest* tc) {
     a.setStem(false);
     a.setMode(lucene::analysis::AnalyzerMode::Default);
     a.initDict("./dict");
-    ts = a.tokenStream(_T("contents"), stringReader);
+    ts = a.tokenStream(_T("contents"), stringReader.get());
 
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("来到")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "我", t.termLength<char>()) == 
0);
+    CLUCENE_ASSERT(ts->next(&t) != NULL);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "来到", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("北京")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "北京", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("清华大学")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "清华大学", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) == NULL);
     _CLDELETE(ts);
 }
@@ -286,8 +297,8 @@ void testSimpleJiebaDefaultModeTokenizer(CuTest* tc) {
 void testSimpleJiebaSearchModeTokenizer(CuTest* tc) {
     LanguageBasedAnalyzer a;
     const char* field_value_data = "我来到北京清华大学";
-    auto stringReader =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data, 
strlen(field_value_data), false);
+    auto stringReader = std::make_unique<lucene::util::SStringReader<char>>(
+            field_value_data, strlen(field_value_data), false);
     TokenStream* ts;
     Token t;
 
@@ -296,22 +307,22 @@ void testSimpleJiebaSearchModeTokenizer(CuTest* tc) {
     a.setStem(false);
     a.setMode(lucene::analysis::AnalyzerMode::Search);
     a.initDict("./dict");
-    ts = a.tokenStream(_T("contents"), stringReader);
+    ts = a.tokenStream(_T("contents"), stringReader.get());
 
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("我")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "我", t.termLength<char>()) == 
0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("来到")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "来到", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("北京")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "北京", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("清华")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "清华", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("华大")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "华大", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("大学")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "大学", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("清华大学")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "清华大学", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) == NULL);
     _CLDELETE(ts);
 }
@@ -319,8 +330,8 @@ void testSimpleJiebaSearchModeTokenizer(CuTest* tc) {
 void testSimpleJiebaTokenizer(CuTest* tc) {
     LanguageBasedAnalyzer a;
     const char* field_value_data = "我爱你中国";
-    auto stringReader =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data, 
strlen(field_value_data), false);
+    auto stringReader = std::make_unique<lucene::util::SStringReader<char>>(
+            field_value_data, strlen(field_value_data), false);
     TokenStream* ts;
     Token t;
 
@@ -329,12 +340,12 @@ void testSimpleJiebaTokenizer(CuTest* tc) {
     a.setStem(false);
     a.setMode(lucene::analysis::AnalyzerMode::Default);
     a.initDict("./dict");
-    ts = a.tokenStream(_T("contents"), stringReader);
+    ts = a.tokenStream(_T("contents"), stringReader.get());
 
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("我爱你")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "我爱你", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("中国")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "中国", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) == NULL);
     _CLDELETE(ts);
 }
@@ -342,8 +353,8 @@ void testSimpleJiebaTokenizer(CuTest* tc) {
 void testSimpleJiebaTokenizer2(CuTest* tc) {
     LanguageBasedAnalyzer a;
     const char* field_value_data = "人民可以得到更多实惠";
-    auto stringReader =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data, 
strlen(field_value_data), false);
+    auto stringReader = std::make_unique<lucene::util::SStringReader<char>>(
+            field_value_data, strlen(field_value_data), false);
     TokenStream* ts;
     Token t;
 
@@ -351,16 +362,20 @@ void testSimpleJiebaTokenizer2(CuTest* tc) {
     a.setLanguage(_T("chinese"));
     a.setStem(false);
     a.setMode(lucene::analysis::AnalyzerMode::Default);
-    ts = a.tokenStream(_T("contents"), stringReader);
+    ts = a.tokenStream(_T("contents"), stringReader.get());
 
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("人民")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "人民", t.termLength<char>()) 
== 0);
+    CLUCENE_ASSERT(ts->next(&t) != NULL);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "可以", t.termLength<char>()) 
== 0);
+    CLUCENE_ASSERT(ts->next(&t) != NULL);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "得到", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("得到")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "更", t.termLength<char>()) == 
0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("更")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "多", t.termLength<char>()) == 
0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("实惠")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "实惠", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) == NULL);
     _CLDELETE(ts);
 }
@@ -368,8 +383,8 @@ void testSimpleJiebaTokenizer2(CuTest* tc) {
 void testSimpleJiebaTokenizer3(CuTest* tc) {
     LanguageBasedAnalyzer a;
     const char* field_value_data = "中国人民银行";
-    auto stringReader =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data, 
strlen(field_value_data), false);
+    auto stringReader = std::make_unique<lucene::util::SStringReader<char>>(
+            field_value_data, strlen(field_value_data), false);
 
     TokenStream* ts;
     Token t;
@@ -378,10 +393,10 @@ void testSimpleJiebaTokenizer3(CuTest* tc) {
     a.setLanguage(_T("chinese"));
     a.setStem(false);
     a.setMode(lucene::analysis::AnalyzerMode::Default);
-    ts = a.tokenStream(_T("contents"), stringReader);
+    ts = a.tokenStream(_T("contents"), stringReader.get());
 
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("中国人民银行")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "中国人民银行", 
t.termLength<char>()) == 0);
     CLUCENE_ASSERT(ts->next(&t) == NULL);
     _CLDELETE(ts);
 }
@@ -389,44 +404,46 @@ void testSimpleJiebaTokenizer3(CuTest* tc) {
 void testSimpleJiebaTokenizer4(CuTest* tc) {
     LanguageBasedAnalyzer a;
     const char* field_value_data = "人民,银行";
-    auto stringReader =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data, 
strlen(field_value_data), false);
+    auto stringReader = std::make_unique<lucene::util::SStringReader<char>>(
+            field_value_data, strlen(field_value_data), false);
     TokenStream* ts;
     Token t;
 
     //test with chinese
     a.setLanguage(_T("chinese"));
     a.setStem(false);
-    ts = a.tokenStream(_T("contents"), stringReader);
+    ts = a.tokenStream(_T("contents"), stringReader.get());
 
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("人民")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "人民", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("银行")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "银行", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) == NULL);
     _CLDELETE(ts);
 }
 
 void testChineseAnalyzer(CuTest* tc) {
     LanguageBasedAnalyzer a;
-    CL_NS(util)::StringReader reader(_T("我爱你"));
-    reader.mark(50);
+    //CL_NS(util)::StringReader reader(_T("我爱你"));
+    auto reader =
+            std::make_unique<lucene::util::SStringReader<char>>("我爱你", 
strlen("我爱你"), false);
+    //reader->mark(50);
     TokenStream* ts;
     Token t;
 
     //test with cjk
     a.setLanguage(_T("cjk"));
     a.setStem(false);
-    ts = a.tokenStream(_T("contents"), &reader);
+    ts = a.tokenStream(_T("contents"), reader.get());
 
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("我爱")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "我爱", t.termLength<char>()) 
== 0);
     CLUCENE_ASSERT(ts->next(&t) != NULL);
-    CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("爱你")) == 0);
+    CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "爱你", t.termLength<char>()) 
== 0);
     _CLDELETE(ts);
 }
 
-void testChinese(CuTest *tc) {
+void testChinese(CuTest* tc) {
     RAMDirectory dir;
 
     auto analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer();
@@ -439,229 +456,260 @@ void testChinese(CuTest *tc) {
     auto field = _CLNEW Field(field_name, Field::INDEX_TOKENIZED | 
Field::STORE_NO);
     doc.add(*field);
 
-
     const char* field_value_data = "人民可以得到更多实惠";
-    auto stringReader =
-            _CLNEW lucene::util::SimpleInputStreamReader(new 
lucene::util::AStringReader(field_value_data), 
lucene::util::SimpleInputStreamReader::UTF8);
+    auto stringReader = _CLNEW lucene::util::SimpleInputStreamReader(
+            new lucene::util::AStringReader(field_value_data),
+            lucene::util::SimpleInputStreamReader::UTF8);
     field->setValue(stringReader);
     w.addDocument(&doc);
 
     const char* field_value_data1 = "中国人民银行";
-    auto stringReader1 =
-            _CLNEW lucene::util::SimpleInputStreamReader(new 
lucene::util::AStringReader(field_value_data1), 
lucene::util::SimpleInputStreamReader::UTF8);
+    auto stringReader1 = _CLNEW lucene::util::SimpleInputStreamReader(
+            new lucene::util::AStringReader(field_value_data1),
+            lucene::util::SimpleInputStreamReader::UTF8);
     field->setValue(stringReader1);
     w.addDocument(&doc);
 
     const char* field_value_data2 = "洛杉矶人,洛杉矶居民";
-    auto stringReader2 =
-            _CLNEW lucene::util::SimpleInputStreamReader(new 
lucene::util::AStringReader(field_value_data2), 
lucene::util::SimpleInputStreamReader::UTF8);
+    auto stringReader2 = _CLNEW lucene::util::SimpleInputStreamReader(
+            new lucene::util::AStringReader(field_value_data2),
+            lucene::util::SimpleInputStreamReader::UTF8);
     field->setValue(stringReader2);
     w.addDocument(&doc);
 
     const char* field_value_data3 = "民族,人民";
-    auto stringReader3 =
-            _CLNEW lucene::util::SimpleInputStreamReader(new 
lucene::util::AStringReader(field_value_data3), 
lucene::util::SimpleInputStreamReader::UTF8);
+    auto stringReader3 = _CLNEW lucene::util::SimpleInputStreamReader(
+            new lucene::util::AStringReader(field_value_data3),
+            lucene::util::SimpleInputStreamReader::UTF8);
     field->setValue(stringReader3);
     w.addDocument(&doc);
 
     w.close();
 
     IndexSearcher searcher(&dir);
-    Term *t1 = _CLNEW Term(_T("chinese"), _T("人民"));
-    auto *query1 = _CLNEW TermQuery(t1);
-    Hits *hits1 = searcher.search(query1);
+    Term* t1 = _CLNEW Term(_T("chinese"), _T("人民"));
+    auto* query1 = _CLNEW TermQuery(t1);
+    Hits* hits1 = searcher.search(query1);
     CLUCENE_ASSERT(3 == hits1->length());
-    Term *t2 = _CLNEW Term(_T("chinese"), _T("民族"));
-    auto *query2 = _CLNEW TermQuery(t2);
-    Hits *hits2 = searcher.search(query2);
+    Term* t2 = _CLNEW Term(_T("chinese"), _T("民族"));
+    auto* query2 = _CLNEW TermQuery(t2);
+    Hits* hits2 = searcher.search(query2);
     CLUCENE_ASSERT(1 == hits2->length());
 
     doc.clear();
     //_CLDELETE(field)
+    _CLDELETE(hits1)
+    _CLDELETE(hits2)
 }
 
 void testJiebaMatch(CuTest* tc) {
     RAMDirectory dir;
-
-    auto analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer();
-    analyzer->setLanguage(L"chinese");
-    analyzer->setMode(lucene::analysis::AnalyzerMode::Default);
-    IndexWriter w(&dir, analyzer, true);
     auto field_name = lucene::util::Misc::_charToWide("chinese");
-
-    Document doc;
-    auto field = _CLNEW Field(field_name, Field::INDEX_TOKENIZED | 
Field::STORE_NO);
-    doc.add(*field);
-
-
-    const char* field_value_data = "人民可以得到更多实惠";
-    auto stringReader =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data, 
strlen(field_value_data), false);
-    field->setValue(stringReader);
-    w.addDocument(&doc);
-
-    const char* field_value_data1 = "中国人民银行";
-    auto stringReader1 =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data1, 
strlen(field_value_data1), false);
-    field->setValue(stringReader1);
-    w.addDocument(&doc);
-
-    const char* field_value_data2 = "洛杉矶人,洛杉矶居民";
-    auto stringReader2 =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data2, 
strlen(field_value_data2), false);
-    field->setValue(stringReader2);
-    w.addDocument(&doc);
-
-    const char* field_value_data3 = "民族,人民";
-    auto stringReader3 =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data3, 
strlen(field_value_data3), false);
-    field->setValue(stringReader3);
-    w.addDocument(&doc);
-
-    w.close();
-
+    try {
+        auto analyzer = 
std::make_unique<lucene::analysis::LanguageBasedAnalyzer>();
+        analyzer->setLanguage(L"chinese");
+        analyzer->setMode(lucene::analysis::AnalyzerMode::Default);
+        IndexWriter w(&dir, analyzer.get(), true);
+        w.setUseCompoundFile(false);
+
+        Document doc;
+        auto field = _CLNEW Field(field_name, Field::INDEX_TOKENIZED | 
Field::STORE_NO);
+        doc.add(*field);
+
+        const char* field_value_data = "人民可以得到更多实惠";
+        auto stringReader = 
std::make_unique<lucene::util::SStringReader<char>>(
+                field_value_data, strlen(field_value_data), false);
+        auto* stream = analyzer->tokenStream(field->name(), 
stringReader.get());
+        field->setValue(stream);
+        w.addDocument(&doc);
+
+        const char* field_value_data1 = "中国人民银行";
+        auto stringReader1 = 
std::make_unique<lucene::util::SStringReader<char>>(
+                field_value_data1, strlen(field_value_data1), false);
+        auto* stream1 = analyzer->tokenStream(field->name(), 
stringReader1.get());
+        field->setValue(stream1);
+        w.addDocument(&doc);
+
+        const char* field_value_data2 = "洛杉矶人,洛杉矶居民";
+        auto stringReader2 = 
std::make_unique<lucene::util::SStringReader<char>>(
+                field_value_data2, strlen(field_value_data2), false);
+        auto* stream2 = analyzer->tokenStream(field->name(), 
stringReader2.get());
+        field->setValue(stream2);
+        w.addDocument(&doc);
+
+        const char* field_value_data3 = "民族,人民";
+        auto stringReader3 = 
std::make_unique<lucene::util::SStringReader<char>>(
+                field_value_data3, strlen(field_value_data3), false);
+        auto* stream3 = analyzer->tokenStream(field->name(), 
stringReader3.get());
+        field->setValue(stream3);
+        w.addDocument(&doc);
+
+        w.close();
+        doc.clear();
+        _CLDELETE(stream)
+        _CLDELETE(stream1)
+        _CLDELETE(stream2)
+        _CLDELETE(stream3)
+    } catch (CLuceneError& r) {
+        printf("clucene error in testJiebaMatch: %s\n", r.what());
+    }
     IndexSearcher searcher(&dir);
 
-    lucene::util::Reader* reader = nullptr;
-    std::vector<std::wstring> analyse_result;
+    std::vector<std::string> analyse_result;
     const char* value = "民族";
-    analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer(L"chinese", 
false);
-    reader = _CLNEW lucene::util::SStringReader<char>(value, strlen(value), 
false);
+    auto analyzer = 
std::make_unique<lucene::analysis::LanguageBasedAnalyzer>(L"chinese", false);
+    auto reader = std::make_unique<lucene::util::SStringReader<char>>(value, 
strlen(value), false);
 
-    lucene::analysis::TokenStream* token_stream = 
analyzer->tokenStream(field_name, reader);
+    lucene::analysis::TokenStream* token_stream = 
analyzer->tokenStream(field_name, reader.get());
 
     lucene::analysis::Token token;
 
     while (token_stream->next(&token)) {
-        if(token.termLength<TCHAR>() != 0) {
-            analyse_result.emplace_back(token.termBuffer<TCHAR>(), 
token.termLength<TCHAR>());
+        if (token.termLength<char>() != 0) {
+            analyse_result.emplace_back(token.termBuffer<char>(), 
token.termLength<char>());
         }
     }
 
     if (token_stream != nullptr) {
         token_stream->close();
     }
+    _CLDELETE(token_stream)
 
-    lucene::search::Query* query = _CLNEW lucene::search::BooleanQuery();
+    auto query = std::make_unique<lucene::search::BooleanQuery>();
     for (const auto& t : analyse_result) {
-        //std::wstring token_ws = std::wstring(token.begin(), token.end());
-        auto* term =
-                _CLNEW lucene::index::Term(field_name, t.c_str());
-        dynamic_cast<lucene::search::BooleanQuery*>(query)
+        std::wstring token_ws = StringUtil::string_to_wstring(t);
+        auto* term = _CLNEW lucene::index::Term(field_name, token_ws.c_str());
+        dynamic_cast<lucene::search::BooleanQuery*>(query.get())
                 ->add(_CLNEW lucene::search::TermQuery(term), true,
                       lucene::search::BooleanClause::SHOULD);
         _CLDECDELETE(term);
     }
-
-    Hits *hits1 = searcher.search(query);
+    Hits* hits1 = searcher.search(query.get());
     CLUCENE_ASSERT(1 == hits1->length());
-
-    doc.clear();
+    _CLDELETE(hits1)
+    _CLDELETE_ARRAY(field_name)
 }
 
 void testJiebaMatch2(CuTest* tc) {
     RAMDirectory dir;
 
-    auto analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer();
+    auto analyzer = 
std::make_unique<lucene::analysis::LanguageBasedAnalyzer>();
     analyzer->setLanguage(L"chinese");
     analyzer->setMode(lucene::analysis::AnalyzerMode::Default);
 
-    IndexWriter w(&dir, analyzer, true);
+    IndexWriter w(&dir, analyzer.get(), true);
+    w.setUseCompoundFile(false);
     auto field_name = lucene::util::Misc::_charToWide("chinese");
 
     Document doc;
     auto field = _CLNEW Field(field_name, Field::INDEX_TOKENIZED | 
Field::STORE_NO);
     doc.add(*field);
 
-
-    const char* field_value_data = "人民可以得到更多实惠";
-    auto stringReader =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data, 
strlen(field_value_data), false);
-    field->setValue(stringReader);
-    w.addDocument(&doc);
-
-    const char* field_value_data1 = "中国人民银行";
-    auto stringReader1 =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data1, 
strlen(field_value_data1), false);
-    field->setValue(stringReader1);
-    w.addDocument(&doc);
-
-    const char* field_value_data2 = "洛杉矶人,洛杉矶居民";
-    auto stringReader2 =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data2, 
strlen(field_value_data2), false);
-    field->setValue(stringReader2);
-    w.addDocument(&doc);
-
-    const char* field_value_data3 = "民族,人民";
-    auto stringReader3 =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data3, 
strlen(field_value_data3), false);
-    field->setValue(stringReader3);
-    w.addDocument(&doc);
-
-    w.close();
-
+    try {
+        const char* field_value_data = "人民可以得到更多实惠";
+        auto stringReader = 
std::make_unique<lucene::util::SStringReader<char>>(
+                field_value_data, strlen(field_value_data), false);
+        auto* stream = analyzer->tokenStream(field->name(), 
stringReader.get());
+        field->setValue(stream);
+        w.addDocument(&doc);
+
+        const char* field_value_data1 = "中国人民银行";
+        auto stringReader1 = 
std::make_unique<lucene::util::SStringReader<char>>(
+                field_value_data1, strlen(field_value_data1), false);
+        auto* stream1 = analyzer->tokenStream(field->name(), 
stringReader1.get());
+        field->setValue(stream1);
+        w.addDocument(&doc);
+
+        const char* field_value_data2 = "洛杉矶人,洛杉矶居民";
+        auto stringReader2 = 
std::make_unique<lucene::util::SStringReader<char>>(
+                field_value_data2, strlen(field_value_data2), false);
+        auto* stream2 = analyzer->tokenStream(field->name(), 
stringReader2.get());
+        field->setValue(stream2);
+        w.addDocument(&doc);
+
+        const char* field_value_data3 = "民族,人民";
+        auto stringReader3 = 
std::make_unique<lucene::util::SStringReader<char>>(
+                field_value_data3, strlen(field_value_data3), false);
+        auto* stream3 = analyzer->tokenStream(field->name(), 
stringReader3.get());
+        field->setValue(stream3);
+        w.addDocument(&doc);
+
+        w.close();
+        doc.clear();
+        _CLDELETE(stream)
+        _CLDELETE(stream1)
+        _CLDELETE(stream2)
+        _CLDELETE(stream3)
+    } catch (CLuceneError& r) {
+        printf("clucene error in testJiebaMatch2: %s\n", r.what());
+    }
     IndexSearcher searcher(&dir);
 
-    lucene::util::Reader* reader = nullptr;
-    std::vector<std::wstring> analyse_result;
+    std::vector<std::string> analyse_result;
     const char* value = "人民";
-    analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer(L"chinese", 
false);
-    reader = _CLNEW lucene::util::SStringReader<char>(value, strlen(value), 
false);
+    auto analyzer1 = 
std::make_unique<lucene::analysis::LanguageBasedAnalyzer>(L"chinese", false);
+    auto reader = std::make_unique<lucene::util::SStringReader<char>>(value, 
strlen(value), false);
 
-    lucene::analysis::TokenStream* token_stream = 
analyzer->tokenStream(field_name, reader);
+    lucene::analysis::TokenStream* token_stream = 
analyzer1->tokenStream(field_name, reader.get());
 
     lucene::analysis::Token token;
 
     while (token_stream->next(&token)) {
-        if(token.termLength<TCHAR>() != 0) {
-            analyse_result.emplace_back(token.termBuffer<TCHAR>(), 
token.termLength<TCHAR>());
+        if (token.termLength<char>() != 0) {
+            analyse_result.emplace_back(token.termBuffer<char>(), 
token.termLength<char>());
         }
     }
 
     if (token_stream != nullptr) {
         token_stream->close();
     }
-
-    lucene::search::Query* query = _CLNEW lucene::search::BooleanQuery();
+    _CLDELETE(token_stream)
+    auto query = std::make_unique<lucene::search::BooleanQuery>();
     for (const auto& t : analyse_result) {
-        //std::wstring token_ws = std::wstring(token.begin(), token.end());
-        auto* term =
-                _CLNEW lucene::index::Term(field_name, t.c_str());
-        dynamic_cast<lucene::search::BooleanQuery*>(query)
+        std::wstring token_ws = StringUtil::string_to_wstring(t);
+        auto* term = _CLNEW lucene::index::Term(field_name, token_ws.c_str());
+        dynamic_cast<lucene::search::BooleanQuery*>(query.get())
                 ->add(_CLNEW lucene::search::TermQuery(term), true,
                       lucene::search::BooleanClause::SHOULD);
         _CLDECDELETE(term);
     }
 
-    Hits *hits1 = searcher.search(query);
+    Hits* hits1 = searcher.search(query.get());
     CLUCENE_ASSERT(2 == hits1->length());
-
-    doc.clear();
+    _CLDELETE(hits1)
+    _CLDELETE_ARRAY(field_name)
 }
 
 void testJiebaMatchHuge(CuTest* tc) {
     RAMDirectory dir;
 
-    auto analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer();
+    auto analyzer = 
std::make_unique<lucene::analysis::LanguageBasedAnalyzer>();
     analyzer->setLanguage(L"chinese");
     analyzer->setMode(lucene::analysis::AnalyzerMode::Default);
     analyzer->initDict("./dict");
 
-    IndexWriter w(&dir, analyzer, true);
+    IndexWriter w(&dir, analyzer.get(), true);
+    w.setUseCompoundFile(false);
     auto field_name = lucene::util::Misc::_charToWide("chinese");
 
     Document doc;
     auto field = _CLNEW Field(field_name, Field::INDEX_TOKENIZED | 
Field::STORE_NO);
     doc.add(*field);
 
-
-    const char* field_value_data = "数据模型\n"
-            "本文档主要从逻辑层面,描述 Doris 的数据模型,以帮助用户更好的使用 Doris 应对不同的业务场景。\n"
+    const char* field_value_data =
+            "数据模型\n"
+            "本文档主要从逻辑层面,描述 Doris 的数据模型,以帮助用户更好的使用 Doris "
+            "应对不同的业务场景。\n"
             "\n"
             "基本概念\n"
-            "在 Doris 中,数据以表(Table)的形式进行逻辑上的描述。 一张表包括行(Row)和列(Column)。Row 
即用户的一行数据。Column 用于描述一行数据中不同的字段。\n"
+            "在 Doris 中,数据以表(Table)的形式进行逻辑上的描述。 "
+            "一张表包括行(Row)和列(Column)。Row 即用户的一行数据。Column "
+            "用于描述一行数据中不同的字段。\n"
             "\n"
-            "Column 可以分为两大类:Key 和 Value。从业务角度看,Key 和 Value 
可以分别对应维度列和指标列。Doris的key列是建表语句中指定的列,建表语句中的关键字\\'unique key\\'或\\'aggregate 
key\\'或\\'duplicate key\\'后面的列就是 Key 列,除了 Key 列剩下的就是 Value a列。\n"
+            "Column 可以分为两大类:Key 和 Value。从业务角度看,Key 和 Value "
+            "可以分别对应维度列和指标列。Doris的key列是建表语句中指定的列,建表语句中的关键字\\'"
+            "unique key\\'或\\'aggregate key\\'或\\'duplicate key\\'后面的列就是 Key 
列,除了 Key "
+            "列剩下的就是 Value a列。\n"
             "\n"
             "Doris 的数据模型主要分为3类:\n"
             "\n"
@@ -695,7 +743,8 @@ void testJiebaMatchHuge(CuTest* tc) {
             "city VARCHAR(20) COMMENT \"用户所在城市\",\n"
             "age SMALLINT COMMENT \"用户年龄\",\n"
             "sex TINYINT COMMENT \"用户性别\",\n"
-            "last_visit_date DATETIME REPLACE DEFAULT \"1970-01-01 00:00:00\" 
COMMENT \"用户最后一次访问时间\",\n"
+            "last_visit_date DATETIME REPLACE DEFAULT \"1970-01-01 00:00:00\" 
COMMENT "
+            "\"用户最后一次访问时间\",\n"
             "cost BIGINT SUM DEFAULT \"0\" COMMENT \"用户总消费\",\n"
             "max_dwell_time INT MAX DEFAULT \"0\" COMMENT \"用户最大停留时间\",\n"
             "min_dwell_time INT MIN DEFAULT \"99999\" COMMENT \"用户最小停留时间\"\n"
@@ -706,11 +755,16 @@ void testJiebaMatchHuge(CuTest* tc) {
             "\"replication_allocation\" = \"tag.location.default: 1\"\n"
             ");\n"
             "\n"
-            "可以看到,这是一个典型的用户信息和访问行为的事实表。 
在一般星型模型中,用户信息和访问行为一般分别存放在维度表和事实表中。这里我们为了更加方便的解释 Doris 的数据模型,将两部分信息统一存放在一张表中。\n"
+            "可以看到,这是一个典型的用户信息和访问行为的事实表。 "
+            "在一般星型模型中,用户信息和访问行为一般分别存放在维度表和事实表中。这里我们为了更加方"
+            "便的解释 Doris 的数据模型,将两部分信息统一存放在一张表中。\n"
             "\n"
-            "表中的列按照是否设置了 AggregationType,分为 Key (维度列) 和 Value(指标列)。没有设置 
AggregationType 的,如 user_id、date、age ... 等称为 Key,而设置了 AggregationType 的称为 
Value。\n"
+            "表中的列按照是否设置了 AggregationType,分为 Key (维度列) 和 "
+            "Value(指标列)。没有设置 AggregationType 的,如 user_id、date、age ... 等称为 "
+            "Key,而设置了 AggregationType 的称为 Value。\n"
             "\n"
-            "当我们导入数据时,对于 Key 列相同的行会聚合成一行,而 Value 列会按照设置的 AggregationType 进行聚合。 
AggregationType 目前有以下四种聚合方式:\n"
+            "当我们导入数据时,对于 Key 列相同的行会聚合成一行,而 Value 列会按照设置的 "
+            "AggregationType 进行聚合。 AggregationType 目前有以下四种聚合方式:\n"
             "\n"
             "SUM:求和,多行的 Value 进行累加。\n"
             "REPLACE:替代,下一批数据中的 Value 会替换之前导入过的行中的 Value。\n"
@@ -758,13 +812,18 @@ void testJiebaMatchHuge(CuTest* tc) {
             "10003 2017-10-02 广州 32 0 2017-10-02 11:20:00 30 11 11\n"
             "10004 2017-10-01 深圳 35 0 2017-10-01 10:00:15 100 3 3\n"
             "10004 2017-10-03 深圳 35 0 2017-10-03 10:20:22 11 6 6\n"
-            "可以看到,用户 10000 只剩下了一行聚合后的数据。而其余用户的数据和原始数据保持一致。这里先解释下用户 10000 
聚合后的数据:\n"
+            "可以看到,用户 10000 "
+            "只剩下了一行聚合后的数据。而其余用户的数据和原始数据保持一致。这里先解释下用户 10000 "
+            "聚合后的数据:\n"
             "\n"
             "前5列没有变化,从第6列 last_visit_date 开始:\n"
             "\n"
-            "2017-10-01 07:00:00:因为 last_visit_date 列的聚合方式为 REPLACE,所以 
2017-10-01 07:00:00 替换了 2017-10-01 06:00:00 保存了下来。\n"
+            "2017-10-01 07:00:00:因为 last_visit_date 列的聚合方式为 REPLACE,所以 
2017-10-01 "
+            "07:00:00 替换了 2017-10-01 06:00:00 保存了下来。\n"
             "\n"
-            "注:在同一个导入批次中的数据,对于 REPLACE 这种聚合方式,替换顺序不做保证。如在这个例子中,最终保存下来的,也有可能是 
2017-10-01 06:00:00。而对于不同导入批次中的数据,可以保证,后一批次的数据会替换前一批次。\n"
+            "注:在同一个导入批次中的数据,对于 REPLACE "
+            "这种聚合方式,替换顺序不做保证。如在这个例子中,最终保存下来的,也有可能是 2017-10-01 "
+            "06:00:00。而对于不同导入批次中的数据,可以保证,后一批次的数据会替换前一批次。\n"
             "\n"
             "35:因为 cost 列的聚合类型为 SUM,所以由 20 + 15 累加获得 35。\n"
             "\n"
@@ -772,7 +831,9 @@ void testJiebaMatchHuge(CuTest* tc) {
             "\n"
             "2:因为 min_dwell_time 列的聚合类型为 MIN,所以 10 和 2 取最小值,获得 2。\n"
             "\n"
-            "经过聚合,Doris 中最终只会存储聚合后的数据。换句话说,即明细数据会丢失,用户不能够再查询到聚合前的明细数据了。\n"
+            "经过聚合,Doris "
+            "中最终只会存储聚合后的数据。换句话说,即明细数据会丢失,用户不能够再查询到聚合前的明细"
+            "数据了。\n"
             "\n"
             "示例2:保留明细数据\n"
             "接示例1,我们将表结构修改如下:\n"
@@ -788,11 +849,13 @@ void testJiebaMatchHuge(CuTest* tc) {
             "cost BIGINT SUM 用户总消费\n"
             "max_dwell_time INT MAX 用户最大停留时间\n"
             "min_dwell_time INT MIN 用户最小停留时间\n"
-            "即增加了一列 timestamp,记录精确到秒的数据灌入时间。 同时,将AGGREGATE KEY设置为AGGREGATE 
KEY(user_id, date, timestamp, city, age, sex)\n"
+            "即增加了一列 timestamp,记录精确到秒的数据灌入时间。 同时,将AGGREGATE "
+            "KEY设置为AGGREGATE KEY(user_id, date, timestamp, city, age, sex)\n"
             "\n"
             "导入数据如下:\n"
             "\n"
-            "user_id date timestamp city age sex last_visit_date cost 
max_dwell_time min_dwell_time\n"
+            "user_id date timestamp city age sex last_visit_date cost 
max_dwell_time "
+            "min_dwell_time\n"
             "10000 2017-10-01 2017-10-01 08:00:05 北京 20 0 2017-10-01 06:00:00 
20 10 10\n"
             "10000 2017-10-01 2017-10-01 09:00:05 北京 20 0 2017-10-01 07:00:00 
15 2 2\n"
             "10001 2017-10-01 2017-10-01 18:12:10 北京 30 1 2017-10-01 17:05:45 
2 22 22\n"
@@ -803,17 +866,25 @@ void testJiebaMatchHuge(CuTest* tc) {
             "通过sql导入数据:\n"
             "\n"
             "insert into example_db.example_tbl values\n"
-            "(10000,\"2017-10-01\",\"2017-10-01 
08:00:05\",\"北京\",20,0,\"2017-10-01 06:00:00\",20,10,10),\n"
-            "(10000,\"2017-10-01\",\"2017-10-01 
09:00:05\",\"北京\",20,0,\"2017-10-01 07:00:00\",15,2,2),\n"
-            "(10001,\"2017-10-01\",\"2017-10-01 
18:12:10\",\"北京\",30,1,\"2017-10-01 17:05:45\",2,22,22),\n"
-            "(10002,\"2017-10-02\",\"2017-10-02 
13:10:00\",\"上海\",20,1,\"2017-10-02 12:59:12\",200,5,5),\n"
-            "(10003,\"2017-10-02\",\"2017-10-02 
13:15:00\",\"广州\",32,0,\"2017-10-02 11:20:00\",30,11,11),\n"
-            "(10004,\"2017-10-01\",\"2017-10-01 
12:12:48\",\"深圳\",35,0,\"2017-10-01 10:00:15\",100,3,3),\n"
-            "(10004,\"2017-10-03\",\"2017-10-03 
12:38:20\",\"深圳\",35,0,\"2017-10-03 10:20:22\",11,6,6);\n"
+            "(10000,\"2017-10-01\",\"2017-10-01 
08:00:05\",\"北京\",20,0,\"2017-10-01 "
+            "06:00:00\",20,10,10),\n"
+            "(10000,\"2017-10-01\",\"2017-10-01 
09:00:05\",\"北京\",20,0,\"2017-10-01 "
+            "07:00:00\",15,2,2),\n"
+            "(10001,\"2017-10-01\",\"2017-10-01 
18:12:10\",\"北京\",30,1,\"2017-10-01 "
+            "17:05:45\",2,22,22),\n"
+            "(10002,\"2017-10-02\",\"2017-10-02 
13:10:00\",\"上海\",20,1,\"2017-10-02 "
+            "12:59:12\",200,5,5),\n"
+            "(10003,\"2017-10-02\",\"2017-10-02 
13:15:00\",\"广州\",32,0,\"2017-10-02 "
+            "11:20:00\",30,11,11),\n"
+            "(10004,\"2017-10-01\",\"2017-10-01 
12:12:48\",\"深圳\",35,0,\"2017-10-01 "
+            "10:00:15\",100,3,3),\n"
+            "(10004,\"2017-10-03\",\"2017-10-03 
12:38:20\",\"深圳\",35,0,\"2017-10-03 "
+            "10:20:22\",11,6,6);\n"
             "\n"
             "那么当这批数据正确导入到 Doris 中后,Doris 中最终存储如下:\n"
             "\n"
-            "user_id date timestamp city age sex last_visit_date cost 
max_dwell_time min_dwell_time\n"
+            "user_id date timestamp city age sex last_visit_date cost 
max_dwell_time "
+            "min_dwell_time\n"
             "10000 2017-10-01 2017-10-01 08:00:05 北京 20 0 2017-10-01 06:00:00 
20 10 10\n"
             "10000 2017-10-01 2017-10-01 09:00:05 北京 20 0 2017-10-01 07:00:00 
15 2 2\n"
             "10001 2017-10-01 2017-10-01 18:12:10 北京 30 1 2017-10-01 17:05:45 
2 22 22\n"
@@ -821,7 +892,10 @@ void testJiebaMatchHuge(CuTest* tc) {
             "10003 2017-10-02 2017-10-02 13:15:00 广州 32 0 2017-10-02 11:20:00 
30 11 11\n"
             "10004 2017-10-01 2017-10-01 12:12:48 深圳 35 0 2017-10-01 10:00:15 
100 3 3\n"
             "10004 2017-10-03 2017-10-03 12:38:20 深圳 35 0 2017-10-03 10:20:22 
11 6 6\n"
-            "我们可以看到,存储的数据,和导入数据完全一样,没有发生任何聚合。这是因为,这批数据中,因为加入了 timestamp 列,所有行的 
Key 都不完全相同。也就是说,只要保证导入的数据中,每一行的 Key 都不完全相同,那么即使在聚合模型下,Doris 也可以保存完整的明细数据。\n"
+            "我们可以看到,存储的数据,和导入数据完全一样,没有发生任何聚合。这是因为,这批数据中,"
+            "因为加入了 timestamp 列,所有行的 Key "
+            "都不完全相同。也就是说,只要保证导入的数据中,每一行的 Key "
+            "都不完全相同,那么即使在聚合模型下,Doris 也可以保存完整的明细数据。\n"
             "\n"
             "示例3:导入数据与已有数据聚合\n"
             "接示例1。假设现在表中已有数据如下:\n"
@@ -854,17 +928,31 @@ void testJiebaMatchHuge(CuTest* tc) {
             "10004 2017-10-01 深圳 35 0 2017-10-01 10:00:15 100 3 3\n"
             "10004 2017-10-03 深圳 35 0 2017-10-03 11:22:00 55 19 6\n"
             "10005 2017-10-03 长沙 29 1 2017-10-03 18:11:02 3 1 1\n"
-            "可以看到,用户 10004 的已有数据和新导入的数据发生了聚合。同时新增了 10005 用户的数据。\n"
+            "可以看到,用户 10004 的已有数据和新导入的数据发生了聚合。同时新增了 10005 "
+            "用户的数据。\n"
             "\n"
             "数据的聚合,在 Doris 中有如下三个阶段发生:\n"
             "\n"
             "每一批次数据导入的 ETL 阶段。该阶段会在每一批次导入的数据内部进行聚合。\n"
-            "底层 BE 进行数据 Compaction 的阶段。该阶段,BE 会对已导入的不同批次的数据进行进一步的聚合。\n"
+            "底层 BE 进行数据 Compaction 的阶段。该阶段,BE "
+            "会对已导入的不同批次的数据进行进一步的聚合。\n"
             "数据查询阶段。在数据查询时,对于查询涉及到的数据,会进行对应的聚合。\n"
-            
"数据在不同时间,可能聚合的程度不一致。比如一批数据刚导入时,可能还未与之前已存在的数据进行聚合。但是对于用户而言,用户只能查询到聚合后的数据。即不同的聚合程度对于用户查询而言是透明的。用户需始终认为数据以最终的完成的聚合程度存在,而不应假设某些聚合还未发生。(可参阅聚合模型的局限性一节获得更多详情。)\n"
+            "数据在不同时间,可能聚合的程度不一致。比如一批数据刚导入时,可能还未与之前已存在的数据"
+            "进行聚合。但是对于用户而言,用户只能查询到聚合后的数据。即不同的聚合程度对于用户查询而"
+            "言是透明的。用户需始终认为数据以最终的完成的聚合程度存在,而不应假设某些聚合还未发生。"
+            "(可参阅聚合模型的局限性一节获得更多详情。)\n"
             "\n"
             "Unique 模型\n"
-            "在某些多维分析场景下,用户更关注的是如何保证 Key 的唯一性,即如何获得 Primary Key 唯一性约束。因此,我们引入了 
/;·90Unique 
数据模型。在1.2版本之前,该模型本质上是聚合模型的一个特例,也是一种简化的表结构表示方式。由于聚合模型的实现方式是读时合并(merge on 
read),因此在一些聚合查询上性能不佳(参考后续章节聚合模型的局限性的描述),在1.2版本我们引入了Unique模型新的实现方式,写时合并(merge on 
write),通过在写入时做一些额外的工作,实现了最优的查询性能。写时合并将在未来替换读时合并成为Unique模型的默认实现方式,两者将会短暂的共存一段时间。下面将对两种实现方式分别举例进行说明。\n"
+            "在某些多维分析场景下,用户更关注的是如何保证 Key 的唯一性,即如何获得 Primary Key "
+            "唯一性约束。因此,我们引入了 /;·90Unique "
+            "数据模型。在1."
+            "2版本之前,该模型本质上是聚合模型的一个特例,也是一种简化的表结构表示方式。由于聚合模"
+            "型的实现方式是读时合并(merge on "
+            "read),因此在一些聚合查询上性能不佳(参考后续章节聚合模型的局限性的描述),在1."
+            "2版本我们引入了Unique模型新的实现方式,写时合并(merge on "
+            "write),通过在写入时做一些额外的工作,实现了最优的查询性能。写时合并将在未来替换读时"
+            "合并成为Unique模型的默认实现方式,两者将会短暂的共存一段时间。下面将对两种实现方式分别"
+            "举例进行说明。\n"
             "\n"
             "读时合并(与聚合模型相同的实现方式)\n"
             "ColumnName Type IsKey Comment\n"
@@ -876,7 +964,8 @@ void testJiebaMatchHuge(CuTest* tc) {
             "phone LARGEINT No 用户电话\n"
             "address VARCHAR(500) No 用户住址\n"
             "register_time DATETIME No 用户注册时间\n"
-            "这是一个典型的用户基础信息表。这类数据没有聚合需求,只需保证主键唯一性。(这里的主键为 user_id + 
username)。那么我们的建表语句如下:\n"
+            "这是一个典型的用户基础信息表。这类数据没有聚合需求,只需保证主键唯一性。(这里的主键为"
+            " user_id + username)。那么我们的建表语句如下:\n"
             "\n"
             "CREATE TABLE IF NOT EXISTS example_db.example_tbl\n"
             "(\n"
@@ -925,13 +1014,17 @@ void testJiebaMatchHuge(CuTest* tc) {
             "\"replication_allocation\" = \"tag.location.default: 1\"\n"
             ");\n"
             "\n"
-            "即Unique 模型的读时合并实现完全可以用聚合模型中的 REPLACE 
方式替代。其内部的实现方式和数据存储方式也完全一样。这里不再继续举例说明。\n"
+            "即Unique 模型的读时合并实现完全可以用聚合模型中的 REPLACE "
+            "方式替代。其内部的实现方式和数据存储方式也完全一样。这里不再继续举例说明。\n"
             "\n"
             "SinceVersion 1.2\n"
             "写时合并\n"
-            
"Unqiue模型的写时合并实现,与聚合模型就是完全不同的两种模型了,查询性能更接近于duplicate模型,在有主键约束需求的场景上相比聚合模型有较大的查询性能优势,尤其是在聚合查询以及需要用索引过滤大量数据的查询中。\n"
+            "Unqiue模型的写时合并实现,与聚合模型就是完全不同的两种模型了,查询性能更接近于duplicat"
+            "e模型,在有主键约束需求的场景上相比聚合模型有较大的查询性能优势,尤其是在聚合查询以及"
+            "需要用索引过滤大量数据的查询中。\n"
             "\n"
-            "在 1.2.0 版本中,作为一个新的feature,写时合并默认关闭,用户可以通过添加下面的property来开启\n"
+            "在 1.2.0 "
+            "版本中,作为一个新的feature,写时合并默认关闭,用户可以通过添加下面的property来开启\n"
             "\n"
             "\"enable_unique_key_merge_on_write\" = \"true\"\n"
             "\n"
@@ -966,15 +1059,23 @@ void testJiebaMatchHuge(CuTest* tc) {
             "phone LARGEINT NONE 用户电话\n"
             "address VARCHAR(500) NONE 用户住址\n"
             "register_time DATETIME NONE 用户注册时间\n"
-            
"在开启了写时合并选项的Unique表上,数据在导入阶段就会去将被覆盖和被更新的数据进行标记删除,同时将新的数据写入新的文件。在查询的时候,所有被标记删除的数据都会在文件级别被过滤掉,读取出来的数据就都是最新的数据,消除掉了读时合并中的数据聚合过程,并且能够在很多情况下支持多种谓词的下推。因此在许多场景都能带来比较大的性能提升,尤其是在有聚合查询的情况下。\n"
+            "在开启了写时合并选项的Unique表上,数据在导入阶段就会去将被覆盖和被更新的数据进行标记删"
+            "除,同时将新的数据写入新的文件。在查询的时候,所有被标记删除的数据都会在文件级别被过滤"
+            "掉,读取出来的数据就都是最新的数据,消除掉了读时合并中的数据聚合过程,并且能够在很多情"
+            "况下支持多种谓词的下推。因此在许多场景都能带来比较大的性能提升,尤其是在有聚合查询的情"
+            "况下。\n"
             "\n"
             "【注意】\n"
             "\n"
             "新的Merge-on-write实现默认关闭,且只能在建表时通过指定property的方式打开。\n"
-            
"旧的Merge-on-read的实现无法无缝升级到新版本的实现(数据组织方式完全不同),如果需要改为使用写时合并的实现版本,需要手动执行insert 
into unique-mow-table select * from source table.\n"
-            "在Unique模型上独有的delete sign 和 sequence 
col,在写时合并的新版实现中仍可以正常使用,用法没有变化。\n"
+            "旧的Merge-on-"
+            "read的实现无法无缝升级到新版本的实现(数据组织方式完全不同),如果需要改为使用写时合并"
+            "的实现版本,需要手动执行insert into unique-mow-table select * from source 
table.\n"
+            "在Unique模型上独有的delete sign 和 sequence "
+            "col,在写时合并的新版实现中仍可以正常使用,用法没有变化。\n"
             "Duplicate 模型\n"
-            "在某些多维分析场景下,数据既没有主键,也没有聚合需求。因此,我们引入 Duplicate 数据模型来满足这类需求。举例说明。\n"
+            "在某些多维分析场景下,数据既没有主键,也没有聚合需求。因此,我们引入 Duplicate "
+            "数据模型来满足这类需求。举例说明。\n"
             "\n"
             "ColumnName Type SortKey Comment\n"
             "timestamp DATETIME Yes 日志时间\n"
@@ -1000,14 +1101,22 @@ void testJiebaMatchHuge(CuTest* tc) {
             "\"replication_allocation\" = \"tag.location.default: 1\"\n"
             ");\n"
             "\n"
-            "这种数据模型区别于 Aggregate 和 Unique 
模型。数据完全按照导入文件中的数据进行存储,不会有任何聚合。即使两行数据完全相同,也都会保留。 而在建表语句中指定的 DUPLICATE 
KEY,只是用来指明底层数据按照那些列进行排序。(更贴切的名称应该为 “Sorted Column”,这里取名 “DUPLICATE KEY” 
只是用以明确表示所用的数据模型。关于 “Sorted Column”的更多解释,可以参阅前缀索引)。在 DUPLICATE KEY 
的选择上,我们建议适当的选择前 2-4 列就可以。\n"
+            "这种数据模型区别于 Aggregate 和 Unique "
+            "模型。数据完全按照导入文件中的数据进行存储,不会有任何聚合。即使两行数据完全相同,也都"
+            "会保留。 而在建表语句中指定的 DUPLICATE "
+            "KEY,只是用来指明底层数据按照那些列进行排序。(更贴切的名称应该为 “Sorted "
+            "Column”,这里取名 “DUPLICATE KEY” 只是用以明确表示所用的数据模型。关于 “Sorted "
+            "Column”的更多解释,可以参阅前缀索引)。在 DUPLICATE KEY "
+            "的选择上,我们建议适当的选择前 2-4 列就可以。\n"
             "\n"
-            "这种数据模型适用于既没有聚合需求,又没有主键唯一性约束的原始数据的存储。更多使用场景,可参阅聚合模型的局限性小节。\n"
+            "这种数据模型适用于既没有聚合需求,又没有主键唯一性约束的原始数据的存储。更多使用场景,"
+            "可参阅聚合模型的局限性小节。\n"
             "\n"
             "聚合模型的局限性\n"
             "这里我们针对 Aggregate 模型,来介绍下聚合模型的局限性。\n"
             "\n"
-            
"在聚合模型中,模型对外展现的,是最终聚合后的数据。也就是说,任何还未聚合的数据(比如说两个不同导入批次的数据),必须通过某种方式,以保证对外展示的一致性。我们举例说明。\n"
+            "在聚合模型中,模型对外展现的,是最终聚合后的数据。也就是说,任何还未聚合的数据(比如说"
+            "两个不同导入批次的数据),必须通过某种方式,以保证对外展示的一致性。我们举例说明。\n"
             "\n"
             "假设表结构如下:\n"
             "\n"
@@ -1028,7 +1137,9 @@ void testJiebaMatchHuge(CuTest* tc) {
             "10001 2017-11-20 1\n"
             "10001 2017-11-21 5\n"
             "10003 2017-11-22 22\n"
-            "可以看到,用户 10001 分属在两个导入批次中的数据还没有聚合。但是为了保证用户只能查询到如下最终聚合后的数据:\n"
+            "可以看到,用户 10001 "
+            "分属在两个导入批次中的数据还没有聚合。但是为了保证用户只能查询到如下最终聚合后的数据:"
+            "\n"
             "\n"
             "user_id date cost\n"
             "10001 2017-11-20 51\n"
@@ -1037,7 +1148,8 @@ void testJiebaMatchHuge(CuTest* tc) {
             "10003 2017-11-22 22\n"
             "我们在查询引擎中加入了聚合算子,来保证数据对外的一致性。\n"
             "\n"
-            "另外,在聚合列(Value)上,执行与聚合类型不一致的聚合类查询时,要注意语意。比如我们在如上示例中执行如下查询:\n"
+            "另外,在聚合列(Value)上,执行与聚合类型不一致的聚合类查询时,要注意语意。比如我们在"
+            "如上示例中执行如下查询:\n"
             "\n"
             "SELECT MIN(cost) FROM table;\n"
             "\n"
@@ -1049,7 +1161,10 @@ void testJiebaMatchHuge(CuTest* tc) {
             "\n"
             "SELECT COUNT(*) FROM table;\n"
             "\n"
-            "在其他数据库中,这类查询都会很快的返回结果。因为在实现上,我们可以通过如“导入时对行进行计数,保存 count 
的统计信息”,或者在查询时“仅扫描某一列数据,获得 count 值”的方式,只需很小的开销,即可获得查询结果。但是在 Doris 
的聚合模型中,这种查询的开销非常大。\n"
+            "在其他数据库中,这类查询都会很快的返回结果。因为在实现上,我们可以通过如“导入时对行进"
+            "行计数,保存 count 的统计信息”,或者在查询时“仅扫描某一列数据,获得 count "
+            "值”的方式,只需很小的开销,即可获得查询结果。但是在 Doris "
+            "的聚合模型中,这种查询的开销非常大。\n"
             "\n"
             "我们以刚才的数据为例:\n"
             "\n"
@@ -1071,23 +1186,39 @@ void testJiebaMatchHuge(CuTest* tc) {
             "10001 2017-11-21 5\n"
             "10002 2017-11-21 39\n"
             "10003 2017-11-22 22\n"
-            "所以,select count(*) from table; 的正确结果应该为 4。但如果我们只扫描 user_id 
这一列,如果加上查询时聚合,最终得到的结果是 3(10001, 10002, 10003)。而如果不加查询时聚合,则得到的结果是 
5(两批次一共5行数据)。可见这两个结果都是不对的。\n"
+            "所以,select count(*) from table; 的正确结果应该为 4。但如果我们只扫描 user_id "
+            "这一列,如果加上查询时聚合,最终得到的结果是 3(10001, 10002, "
+            "10003)。而如果不加查询时聚合,则得到的结果是 "
+            "5(两批次一共5行数据)。可见这两个结果都是不对的。\n"
             "\n"
-            "为了得到正确的结果,我们必须同时读取 user_id 和 date 这两列的数据,再加上查询时聚合,才能返回 4 
这个正确的结果。也就是说,在 count() 查询中,Doris 必须扫描所有的 AGGREGATE KEY 列(这里就是 user_id 和 
date),并且聚合后,才能得到语意正确的结果。当聚合列非常多时,count() 查询需要扫描大量的数据。\n"
+            "为了得到正确的结果,我们必须同时读取 user_id 和 date "
+            "这两列的数据,再加上查询时聚合,才能返回 4 这个正确的结果。也就是说,在 count() "
+            "查询中,Doris 必须扫描所有的 AGGREGATE KEY 列(这里就是 user_id 和 "
+            "date),并且聚合后,才能得到语意正确的结果。当聚合列非常多时,count() "
+            "查询需要扫描大量的数据。\n"
             "\n"
-            "因此,当业务上有频繁的 count() 查询时,我们建议用户通过增加一个值恒为 1 的,聚合类型为 SUM 的列来模拟 
count()。如刚才的例子中的表结构,我们修改如下:\n"
+            "因此,当业务上有频繁的 count() 查询时,我们建议用户通过增加一个值恒为 1 "
+            "的,聚合类型为 SUM 的列来模拟 count()。如刚才的例子中的表结构,我们修改如下:\n"
             "\n"
             "ColumnName Type AggregateType Comment\n"
             "user_id BIGINT 用户id\n"
             "date DATE 数据灌入日期\n"
             "cost BIGINT SUM 用户总消费\n"
             "count BIGINT SUM 用于计算count\n"
-            "增加一个 count 列,并且导入数据中,该列值恒为 1。则 select count() from table; 的结果等价于 
select sum(count) from table;。而后者的查询效率将远高于前者。不过这种方式也有使用限制,就是用户需要自行保证,不会重复导入 
AGGREGATE KEY 列都相同的行。否则,select sum(count) from table; 只能表述原始导入的行数,而不是 select 
count() from table; 的语义。\n"
+            "增加一个 count 列,并且导入数据中,该列值恒为 1。则 select count() from table; "
+            "的结果等价于 select sum(count) from "
+            "table;"
+            "。而后者的查询效率将远高于前者。不过这种方式也有使用限制,就是用户需要自行保证,不会重"
+            "复导入 AGGREGATE KEY 列都相同的行。否则,select sum(count) from table; "
+            "只能表述原始导入的行数,而不是 select count() from table; 的语义。\n"
             "\n"
-            "另一种方式,就是 将如上的 count 列的聚合类型改为 REPLACE,且依然值恒为 1。那么 select 
sum(count) from table; 和 select count(*) from table; 
的结果将是一致的。并且这种方式,没有导入重复行的限制。\n"
+            "另一种方式,就是 将如上的 count 列的聚合类型改为 REPLACE,且依然值恒为 1。那么 select "
+            "sum(count) from table; 和 select count(*) from table; "
+            "的结果将是一致的。并且这种方式,没有导入重复行的限制。\n"
             "\n"
             "Unique模型的写时合并实现\n"
-            "Unique模型的写时合并实现没有聚合模型的局限性,还是以刚才的数据为例,写时合并为每次导入的rowset增加了对应的delete 
bitmap,来标记哪些数据被覆盖。第一批数据导入后状态如下\n"
+            "Unique模型的写时合并实现没有聚合模型的局限性,还是以刚才的数据为例,写时合并为每次导入"
+            "的rowset增加了对应的delete bitmap,来标记哪些数据被覆盖。第一批数据导入后状态如下\n"
             "\n"
             "batch 1\n"
             "\n"
@@ -1107,147 +1238,176 @@ void testJiebaMatchHuge(CuTest* tc) {
             "10001 2017-11-20 1 false\n"
             "10001 2017-11-21 5 false\n"
             "10003 2017-11-22 22 false\n"
-            "在查询时,所有在delete 
bitmap中被标记删除的数据都不会读出来,因此也无需进行做任何数据聚合,上述数据中有效的行数为4行,查询出的结果也应该是4行,也就可以采取开销最小的方式来获取结果,即前面提到的“仅扫描某一列数据,获得
 count 值”的方式。\n"
+            "在查询时,所有在delete "
+            "bitmap中被标记删除的数据都不会读出来,因此也无需进行做任何数据聚合,上述数据中有效的行"
+            "数为4行,查询出的结果也应该是4行,也就可以采取开销最小的方式来获取结果,即前面提到的“"
+            "仅扫描某一列数据,获得 count 值”的方式。\n"
             "\n"
-            "在测试环境中,count(*) 查询在Unique模型的写时合并实现上的性能,相比聚合模型有10倍以上的提升。\n"
+            "在测试环境中,count(*) "
+            "查询在Unique模型的写时合并实现上的性能,相比聚合模型有10倍以上的提升。\n"
             "\n"
             "Duplicate 模型\n"
-            "Duplicate 模型没有聚合模型的这个局限性。因为该模型不涉及聚合语意,在做 count(*) 
查询时,任意选择一列查询,即可得到语意正确的结果。\n"
+            "Duplicate 模型没有聚合模型的这个局限性。因为该模型不涉及聚合语意,在做 count(*) "
+            "查询时,任意选择一列查询,即可得到语意正确的结果。\n"
             "\n"
             "key 列\n"
-            "Duplicate、Aggregate、Unique 模型,都会在建表指定 key 列,然而实际上是有所区别的:对于 
Duplicate 模型,表的key列,可以认为只是 “排序列”,并非起到唯一标识的作用。而 Aggregate、Unique 模型这种聚合类型的表,key 
列是兼顾 “排序列” 和 “唯一标识列”,是真正意义上的“ key 列”。\n"
+            "Duplicate、Aggregate、Unique 模型,都会在建表指定 key "
+            "列,然而实际上是有所区别的:对于 Duplicate 模型,表的key列,可以认为只是 "
+            "“排序列”,并非起到唯一标识的作用。而 Aggregate、Unique 模型这种聚合类型的表,key "
+            "列是兼顾 “排序列” 和 “唯一标识列”,是真正意义上的“ key 列”。\n"
             "\n"
             "数据模型的选择建议\n"
             "因为数据模型在建表时就已经确定,且无法修改。所以,选择一个合适的数据模型非常重要。\n"
             "\n"
-            "Aggregate 
模型可以通过预聚合,极大地降低聚合查询时所需扫描的数据量和查询的计算量,非常适合有固定模式的报表类查询场景。但是该模型对 count(*) 
查询很不友好。同时因为固定了 Value 列上的聚合方式,在进行其他类型的聚合查询时,需要考虑语意正确性。\n"
-            "Unique 模型针对需要唯一主键约束的场景,可以保证主键唯一性约束。但是无法利用 ROLLUP 等预聚合带来的查询优势。\n"
+            "Aggregate "
+            "模型可以通过预聚合,极大地降低聚合查询时所需扫描的数据量和查询的计算量,非常适合有固定"
+            "模式的报表类查询场景。但是该模型对 count(*) 查询很不友好。同时因为固定了 Value "
+            "列上的聚合方式,在进行其他类型的聚合查询时,需要考虑语意正确性。\n"
+            "Unique 模型针对需要唯一主键约束的场景,可以保证主键唯一性约束。但是无法利用 ROLLUP "
+            "等预聚合带来的查询优势。\n"
             "对于聚合查询有较高性能需求的用户,推荐使用自1.2版本加入的写时合并实现。\n"
-            "Unique 模型仅支持整行更新,如果用户既需要唯一主键约束,又需要更新部分列(例如将多张源表导入到一张 doris 
表的情形),则可以考虑使用 Aggregate 模型,同时将非主键列的聚合类型设置为 REPLACE_IF_NOT_NULL。具体的用法可以参考语法手册\n"
-            "Duplicate 适合任意维度的 Ad-hoc 
查询。虽然同样无法利用预聚合的特性,但是不受聚合模型的约束,可以发挥列存模型的优势(只读取相关列,而不需要读取所有 Key 列)。";
-    auto stringReader =
-            _CLNEW lucene::util::SStringReader<char>(field_value_data, 
strlen(field_value_data), false);
-    field->setValue(stringReader);
-    w.addDocument(&doc);
-
-    w.close();
+            "Unique "
+            "模型仅支持整行更新,如果用户既需要唯一主键约束,又需要更新部分列(例如将多张源表导入到"
+            "一张 doris 表的情形),则可以考虑使用 Aggregate 模型,同时将非主键列的聚合类型设置为 "
+            "REPLACE_IF_NOT_NULL。具体的用法可以参考语法手册\n"
+            "Duplicate 适合任意维度的 Ad-hoc "
+            "查询。虽然同样无法利用预聚合的特性,但是不受聚合模型的约束,可以发挥列存模型的优势(只"
+            "读取相关列,而不需要读取所有 Key 列)。";
+    try {
+        auto stringReader = 
std::make_unique<lucene::util::SStringReader<char>>(
+                field_value_data, strlen(field_value_data), false);
+        auto* stream = analyzer->tokenStream(field->name(), 
stringReader.get());
+        field->setValue(stream);
+        w.addDocument(&doc);
+
+        w.close();
+        doc.clear();
+        _CLDELETE(stream)
+    } catch (CLuceneError& r) {
+        printf("clucene error in testJiebaMatchHuge: %s\n", r.what());
+    }
 
     IndexSearcher searcher(&dir);
 
-    lucene::util::Reader* reader = nullptr;
-    std::vector<std::wstring> analyse_result;
+    std::vector<std::string> analyse_result;
     const char* value = "相关";
-    analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer(L"chinese", 
false);
-    reader = _CLNEW lucene::util::SStringReader<char>(value, strlen(value), 
false);
+    auto analyzer1 = 
std::make_unique<lucene::analysis::LanguageBasedAnalyzer>(L"chinese", false);
+    auto reader = std::make_unique<lucene::util::SStringReader<char>>(value, 
strlen(value), false);
 
-    lucene::analysis::TokenStream* token_stream = 
analyzer->tokenStream(field_name, reader);
+    lucene::analysis::TokenStream* token_stream = 
analyzer1->tokenStream(field_name, reader.get());
 
     lucene::analysis::Token token;
 
     while (token_stream->next(&token)) {
-        if(token.termLength<TCHAR>() != 0) {
-            analyse_result.emplace_back(token.termBuffer<TCHAR>(), 
token.termLength<TCHAR>());
+        if (token.termLength<char>() != 0) {
+            analyse_result.emplace_back(token.termBuffer<char>(), 
token.termLength<char>());
         }
     }
 
     if (token_stream != nullptr) {
         token_stream->close();
     }
-
-    lucene::search::Query* query = _CLNEW lucene::search::BooleanQuery();
+    _CLDELETE(token_stream)
+    auto query = std::make_unique<lucene::search::BooleanQuery>();
     for (const auto& t : analyse_result) {
-        //std::wstring token_ws = std::wstring(token.begin(), token.end());
-        auto* term =
-                _CLNEW lucene::index::Term(field_name, t.c_str());
-        dynamic_cast<lucene::search::BooleanQuery*>(query)
+        std::wstring token_ws = StringUtil::string_to_wstring(t);
+        auto* term = _CLNEW lucene::index::Term(field_name, token_ws.c_str());
+        dynamic_cast<lucene::search::BooleanQuery*>(query.get())
                 ->add(_CLNEW lucene::search::TermQuery(term), true,
                       lucene::search::BooleanClause::SHOULD);
         _CLDECDELETE(term);
     }
 
-    Hits *hits1 = searcher.search(query);
+    Hits* hits1 = searcher.search(query.get());
     CLUCENE_ASSERT(1 == hits1->length());
-
-    doc.clear();
+    _CLDELETE(hits1)
+    _CLDELETE_ARRAY(field_name)
 }
 
 void testChineseMatch(CuTest* tc) {
     RAMDirectory dir;
-
-    auto analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer();
+    auto* field_name = lucene::util::Misc::_charToWide("chinese");
+    auto analyzer = 
std::make_unique<lucene::analysis::LanguageBasedAnalyzer>();
     analyzer->setLanguage(L"cjk");
-
-    IndexWriter w(&dir, analyzer, true);
-    auto field_name = lucene::util::Misc::_charToWide("chinese");
-
-    Document doc;
-    auto field = _CLNEW Field(field_name, Field::INDEX_TOKENIZED | 
Field::STORE_NO);
-    doc.add(*field);
-
-
-    const char* field_value_data = "人民可以得到更多实惠";
-    auto stringReader =
-            _CLNEW lucene::util::SimpleInputStreamReader(new 
lucene::util::AStringReader(field_value_data), 
lucene::util::SimpleInputStreamReader::UTF8);
-    field->setValue(stringReader);
-    w.addDocument(&doc);
-
-    const char* field_value_data1 = "中国人民银行";
-    auto stringReader1 =
-            _CLNEW lucene::util::SimpleInputStreamReader(new 
lucene::util::AStringReader(field_value_data1), 
lucene::util::SimpleInputStreamReader::UTF8);
-    field->setValue(stringReader1);
-    w.addDocument(&doc);
-
-    const char* field_value_data2 = "洛杉矶人,洛杉矶居民";
-    auto stringReader2 =
-            _CLNEW lucene::util::SimpleInputStreamReader(new 
lucene::util::AStringReader(field_value_data2), 
lucene::util::SimpleInputStreamReader::UTF8);
-    field->setValue(stringReader2);
-    w.addDocument(&doc);
-
-    const char* field_value_data3 = "民族,人民";
-    auto stringReader3 =
-            _CLNEW lucene::util::SimpleInputStreamReader(new 
lucene::util::AStringReader(field_value_data3), 
lucene::util::SimpleInputStreamReader::UTF8);
-    field->setValue(stringReader3);
-    w.addDocument(&doc);
-
-    w.close();
-
+    try {
+        IndexWriter w(&dir, analyzer.get(), true);
+        w.setUseCompoundFile(false);
+
+        Document doc;
+        auto field = _CLNEW Field(field_name, Field::INDEX_TOKENIZED | 
Field::STORE_NO);
+        doc.add(*field);
+
+        const char* field_value_data = "人民可以得到更多实惠";
+        auto stringReader = 
std::make_unique<lucene::util::SStringReader<char>>(
+                field_value_data, strlen(field_value_data), false);
+        auto* stream = analyzer->tokenStream(field->name(), 
stringReader.get());
+        field->setValue(stream);
+        w.addDocument(&doc);
+
+        const char* field_value_data1 = "中国人民银行";
+        auto stringReader1 = 
std::make_unique<lucene::util::SStringReader<char>>(
+                field_value_data1, strlen(field_value_data1), false);
+        auto* stream1 = analyzer->tokenStream(field->name(), 
stringReader1.get());
+        field->setValue(stream1);
+        w.addDocument(&doc);
+
+        const char* field_value_data2 = "洛杉矶人,洛杉矶居民";
+        auto stringReader2 = 
std::make_unique<lucene::util::SStringReader<char>>(
+                field_value_data2, strlen(field_value_data2), false);
+        auto* stream2 = analyzer->tokenStream(field->name(), 
stringReader2.get());
+        field->setValue(stream2);
+        w.addDocument(&doc);
+
+        const char* field_value_data3 = "民族,人民";
+        auto stringReader3 = 
std::make_unique<lucene::util::SStringReader<char>>(
+                field_value_data3, strlen(field_value_data3), false);
+        auto* stream3 = analyzer->tokenStream(field->name(), 
stringReader3.get());
+        field->setValue(stream3);
+        w.addDocument(&doc);
+
+        w.close();
+        doc.clear();
+        _CLDELETE(stream)
+        _CLDELETE(stream1)
+        _CLDELETE(stream2)
+        _CLDELETE(stream3)
+    } catch (const CLuceneError& e) {
+        std::cout << "clucene error in testChineseMatch:" << e.what();
+    }
     IndexSearcher searcher(&dir);
 
-    lucene::util::Reader* reader = nullptr;
-    std::vector<std::wstring> analyse_result;
+    std::vector<std::string> analyse_result;
     const char* value = "民族";
-    analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer(L"cjk", false);
-    reader = _CLNEW lucene::util::SimpleInputStreamReader(new 
lucene::util::AStringReader(value), 
lucene::util::SimpleInputStreamReader::UTF8);
-
-    lucene::analysis::TokenStream* token_stream = 
analyzer->tokenStream(field_name, reader);
+    auto analyzer1 = 
std::make_unique<lucene::analysis::LanguageBasedAnalyzer>(L"cjk", false);
+    auto reader = std::make_unique<lucene::util::SStringReader<char>>(value, 
strlen(value), false);
+    lucene::analysis::TokenStream* token_stream = 
analyzer1->tokenStream(field_name, reader.get());
 
     lucene::analysis::Token token;
 
     while (token_stream->next(&token)) {
-        if(token.termLength<TCHAR>() != 0) {
-            analyse_result.emplace_back(token.termBuffer<TCHAR>(), 
token.termLength<TCHAR>());
+        if (token.termLength<char>() != 0) {
+            analyse_result.emplace_back(token.termBuffer<char>(), 
token.termLength<char>());
         }
     }
 
     if (token_stream != nullptr) {
         token_stream->close();
     }
-
-    lucene::search::Query* query = _CLNEW lucene::search::BooleanQuery();
+    _CLDELETE(token_stream)
+    auto query = std::make_unique<lucene::search::BooleanQuery>();
     for (const auto& t : analyse_result) {
-        //std::wstring token_ws = std::wstring(token.begin(), token.end());
-        auto* term =
-                _CLNEW lucene::index::Term(field_name, t.c_str());
-        dynamic_cast<lucene::search::BooleanQuery*>(query)
+        std::wstring token_ws = StringUtil::string_to_wstring(t);
+        auto* term = _CLNEW lucene::index::Term(field_name, token_ws.c_str());
+        dynamic_cast<lucene::search::BooleanQuery*>(query.get())
                 ->add(_CLNEW lucene::search::TermQuery(term), true,
                       lucene::search::BooleanClause::SHOULD);
         _CLDECDELETE(term);
     }
 
-    Hits *hits1 = searcher.search(query);
+    Hits* hits1 = searcher.search(query.get());
     CLUCENE_ASSERT(1 == hits1->length());
-
-    doc.clear();
+    _CLDELETE(hits1)
+    _CLDELETE_ARRAY(field_name)
 }
 
 void testLanguageBasedAnalyzer(CuTest* tc) {
@@ -1283,8 +1443,8 @@ void testLanguageBasedAnalyzer(CuTest* tc) {
     _CLDELETE(ts);
 }
 
-CuSuite *testchinese(void) {
-    CuSuite *suite = CuSuiteNew(_T("CLucene chinese tokenizer Test"));
+CuSuite* testchinese(void) {
+    CuSuite* suite = CuSuiteNew(_T("CLucene chinese tokenizer Test"));
 
     SUITE_ADD_TEST(suite, testFile);
     SUITE_ADD_TEST(suite, testCJK);
diff --git a/src/test/tests.cpp b/src/test/tests.cpp
index 372a4a28..d703e159 100644
--- a/src/test/tests.cpp
+++ b/src/test/tests.cpp
@@ -17,6 +17,6 @@ unittest tests[] = {
         {"strconvert", testStrConvert},
         {"searchRange", testSearchRange},
 #ifdef TEST_CONTRIB_LIBS
-        //{"chinese", testchinese},
+        {"chinese", testchinese},
 #endif
         {"LastTest", NULL}};


---------------------------------------------------------------------
To unsubscribe, e-mail: commits-unsubscr...@doris.apache.org
For additional commands, e-mail: commits-h...@doris.apache.org


Reply via email to