This is an automated email from the ASF dual-hosted git repository. jianliangqi pushed a commit to branch clucene in repository https://gitbox.apache.org/repos/asf/doris-thirdparty.git
The following commit(s) were added to refs/heads/clucene by this push: new 486ce950 [unitest](tokenizer) fix chinese tokenizer unitest (#164) 486ce950 is described below commit 486ce95095a61f0251dc072dcf4b802ea560ff9e Author: airborne12 <airborn...@gmail.com> AuthorDate: Mon Dec 25 19:40:23 2023 +0800 [unitest](tokenizer) fix chinese tokenizer unitest (#164) --- .../CLucene/analysis/LanguageBasedAnalyzer.cpp | 5 +- .../CLucene/analysis/cjk/CJKAnalyzer.cpp | 122 +-- .../CLucene/analysis/cjk/CJKAnalyzer.h | 3 +- src/test/contribs-lib/analysis/testChinese.cpp | 844 ++++++++++++--------- src/test/tests.cpp | 2 +- 5 files changed, 568 insertions(+), 408 deletions(-) diff --git a/src/contribs-lib/CLucene/analysis/LanguageBasedAnalyzer.cpp b/src/contribs-lib/CLucene/analysis/LanguageBasedAnalyzer.cpp index 0bc03443..2a32ff04 100644 --- a/src/contribs-lib/CLucene/analysis/LanguageBasedAnalyzer.cpp +++ b/src/contribs-lib/CLucene/analysis/LanguageBasedAnalyzer.cpp @@ -43,10 +43,7 @@ LanguageBasedAnalyzer::~LanguageBasedAnalyzer() { } bool LanguageBasedAnalyzer::isSDocOpt() { - if (_tcscmp(lang, _T("chinese")) == 0) { - return true; - } - return false; + return true; } void LanguageBasedAnalyzer::setStopWords(const TCHAR** stopwords) { diff --git a/src/contribs-lib/CLucene/analysis/cjk/CJKAnalyzer.cpp b/src/contribs-lib/CLucene/analysis/cjk/CJKAnalyzer.cpp index b19ed77d..23d7b08c 100644 --- a/src/contribs-lib/CLucene/analysis/cjk/CJKAnalyzer.cpp +++ b/src/contribs-lib/CLucene/analysis/cjk/CJKAnalyzer.cpp @@ -8,26 +8,23 @@ #include "CJKAnalyzer.h" #include "CLucene/util/CLStreams.h" -CL_NS_DEF2(analysis,cjk) +CL_NS_DEF2(analysis, cjk) CL_NS_USE(analysis) CL_NS_USE(util) - const TCHAR* CJKTokenizer::tokenTypeSingle = _T("single"); const TCHAR* CJKTokenizer::tokenTypeDouble = _T("double"); -CJKTokenizer::CJKTokenizer(Reader* in): - Tokenizer(in) -{ - tokenType = Token::getDefaultType(); - offset = 0; - bufferIndex = 0; - dataLen = 0; - preIsTokened = false; - ignoreSurrogates = true; +CJKTokenizer::CJKTokenizer(Reader* in) : Tokenizer(in) { + tokenType = Token::getDefaultType(); + offset = 0; + bufferIndex = 0; + dataLen = 0; + preIsTokened = false; + ignoreSurrogates = true; } -CL_NS(analysis)::Token* CJKTokenizer::next(Token* token){ +CL_NS(analysis)::Token* CJKTokenizer::next(Token* token) { /** how many character(s) has been stored in buffer */ int32_t length = 0; @@ -37,13 +34,17 @@ CL_NS(analysis)::Token* CJKTokenizer::next(Token* token){ while (true) { /** current character */ clunichar c; - int charlen = 1; + int charlen = 1; offset++; if (bufferIndex >= dataLen) { - dataLen = input->read((const void**)&ioBuffer, 1, LUCENE_IO_BUFFER_SIZE); + dataLen = input->read((const void**)&cbuffer, 1, LUCENE_IO_BUFFER_SIZE); bufferIndex = 0; + if (dataLen > 0) { + lucene_utf8towcs(ioBuffer, cbuffer, LUCENE_MAX_WORD_LEN); + dataLen = _tcslen(ioBuffer); + } } if (dataLen == -1) { @@ -62,33 +63,33 @@ CL_NS(analysis)::Token* CJKTokenizer::next(Token* token){ c = ioBuffer[bufferIndex++]; } - //to support surrogates, we'll need to convert the incoming utf16 into - //ucs4(c variable). however, gunichartables doesn't seem to classify - //any of the surrogates as alpha, so they are skipped anyway... - //so for now we just convert to ucs4 so that we dont corrupt the input. - if ( c >= 0xd800 || c <= 0xdfff ){ - clunichar c2 = ioBuffer[bufferIndex]; - if ( c2 >= 0xdc00 && c2 <= 0xdfff ){ - bufferIndex++; - offset++; - charlen=2; - - c = (((c & 0x03ffL) << 10) | ((c2 & 0x03ffL) << 0)) + 0x00010000L; - } - } + //to support surrogates, we'll need to convert the incoming utf16 into + //ucs4(c variable). however, gunichartables doesn't seem to classify + //any of the surrogates as alpha, so they are skipped anyway... + //so for now we just convert to ucs4 so that we dont corrupt the input. + if (c >= 0xd800 || c <= 0xdfff) { + clunichar c2 = ioBuffer[bufferIndex]; + if (c2 >= 0xdc00 && c2 <= 0xdfff) { + bufferIndex++; + offset++; + charlen = 2; + + c = (((c & 0x03ffL) << 10) | ((c2 & 0x03ffL) << 0)) + 0x00010000L; + } + } //if the current character is ASCII or Extend ASCII - if ((c <= 0xFF) //is BASIC_LATIN - || (c>=0xFF00 && c<=0xFFEF) //ascii >0x74 cast to unsigned... - ) { + if ((c <= 0xFF) //is BASIC_LATIN + || (c >= 0xFF00 && c <= 0xFFEF) //ascii >0x74 cast to unsigned... + ) { if (c >= 0xFF00) { - //todo: test this... only happens on platforms where char is signed, i think... + //todo: test this... only happens on platforms where char is signed, i think... /** convert HALFWIDTH_AND_FULLWIDTH_FORMS to BASIC_LATIN */ c -= 0xFEE0; } // if the current character is a letter or "_" "+" "#" - if (_istalnum(c) || ((c == '_') || (c == '+') || (c == '#')) ) { + if (_istalnum(c) || ((c == '_') || (c == '+') || (c == '#'))) { if (length == 0) { // "javaC1C2C3C4linux" <br> // ^--: the current character begin to token the ASCII @@ -98,8 +99,8 @@ CL_NS(analysis)::Token* CJKTokenizer::next(Token* token){ // "javaC1C2C3C4linux" <br> // ^--: the previous non-ASCII // : the current character - offset-=charlen; - bufferIndex-=charlen; + offset -= charlen; + bufferIndex -= charlen; tokenType = tokenTypeSingle; if (preIsTokened == true) { @@ -115,7 +116,7 @@ CL_NS(analysis)::Token* CJKTokenizer::next(Token* token){ // store the LowerCase(c) in the buffer buffer[length++] = _totlower((TCHAR)c); - tokenType = tokenTypeSingle; + tokenType = tokenTypeSingle; // break the procedure if buffer overflowed! if (length == LUCENE_MAX_WORD_LEN) { @@ -131,39 +132,39 @@ CL_NS(analysis)::Token* CJKTokenizer::next(Token* token){ } } else { // non-ASCII letter, eg."C1C2C3C4" - if ( _istalpha(c) || (!ignoreSurrogates && c>=0x10000) ) { + if (_istalpha(c) || (!ignoreSurrogates && c >= 0x10000)) { if (length == 0) { start = offset - 1; - - if ( c < 0x00010000L ) - buffer[length++] = (TCHAR)c; - else{ - clunichar ucs4 = c - 0x00010000L; - buffer[length++] = (TCHAR)((ucs4 >> 10) & 0x3ff) | 0xd800; - buffer[length++] = (TCHAR)((ucs4 >> 0) & 0x3ff) | 0xdc00; - } + + if (c < 0x00010000L) + buffer[length++] = (TCHAR)c; + else { + clunichar ucs4 = c - 0x00010000L; + buffer[length++] = (TCHAR)((ucs4 >> 10) & 0x3ff) | 0xd800; + buffer[length++] = (TCHAR)((ucs4 >> 0) & 0x3ff) | 0xdc00; + } tokenType = tokenTypeDouble; } else { if (tokenType == tokenTypeSingle) { - offset-=charlen; - bufferIndex-=charlen; + offset -= charlen; + bufferIndex -= charlen; //return the previous ASCII characters break; } else { - if ( c < 0x00010000L ) - buffer[length++] = (TCHAR)c; - else{ - clunichar ucs4 = c - 0x00010000L; - buffer[length++] = (TCHAR)((ucs4 >> 10) & 0x3ff) | 0xd800; - buffer[length++] = (TCHAR)((ucs4 >> 0) & 0x3ff) | 0xdc00; - } - tokenType = tokenTypeDouble; + if (c < 0x00010000L) + buffer[length++] = (TCHAR)c; + else { + clunichar ucs4 = c - 0x00010000L; + buffer[length++] = (TCHAR)((ucs4 >> 10) & 0x3ff) | 0xd800; + buffer[length++] = (TCHAR)((ucs4 >> 0) & 0x3ff) | 0xdc00; + } + tokenType = tokenTypeDouble; if (length >= 2) { - offset-=charlen; - bufferIndex-=charlen; + offset -= charlen; + bufferIndex -= charlen; preIsTokened = true; break; @@ -182,9 +183,10 @@ CL_NS(analysis)::Token* CJKTokenizer::next(Token* token){ } } - buffer[length]='\0'; - token->set(buffer,start, start+length, tokenType); - return token; + buffer[length] = '\0'; + std::string term = lucene_wcstoutf8string(buffer, length); + token->set(term.c_str(), 0, term.length(), tokenType); + return token; } CL_NS_END2 diff --git a/src/contribs-lib/CLucene/analysis/cjk/CJKAnalyzer.h b/src/contribs-lib/CLucene/analysis/cjk/CJKAnalyzer.h index 978ad81a..ccba7080 100644 --- a/src/contribs-lib/CLucene/analysis/cjk/CJKAnalyzer.h +++ b/src/contribs-lib/CLucene/analysis/cjk/CJKAnalyzer.h @@ -40,12 +40,13 @@ private: * the returned Token */ TCHAR buffer[LUCENE_MAX_WORD_LEN]; + char* cbuffer; /** * I/O buffer, used to store the content of the input(one of the <br> * members of Tokenizer) */ - const TCHAR* ioBuffer; + TCHAR ioBuffer[LUCENE_MAX_WORD_LEN]{}; /** word type: single=>ASCII double=>non-ASCII word=>default */ const TCHAR* tokenType; diff --git a/src/test/contribs-lib/analysis/testChinese.cpp b/src/test/contribs-lib/analysis/testChinese.cpp index 2aeb0367..ab365895 100644 --- a/src/test/contribs-lib/analysis/testChinese.cpp +++ b/src/test/contribs-lib/analysis/testChinese.cpp @@ -4,6 +4,7 @@ * Distributable under the terms of either the Apache License (Version 2.0) or * the GNU Lesser General Public License, as specified in the COPYING file. ------------------------------------------------------------------------------*/ +#include <memory> #include "test.h" #include "CLucene/analysis/cjk/CJKAnalyzer.h" #include "CLucene/analysis/LanguageBasedAnalyzer.h" @@ -22,7 +23,7 @@ CL_NS_USE2(analysis, cjk) -void test(CuTest *tc, char* orig, Reader* reader, bool verbose, int64_t bytes) { +void test(CuTest* tc, char* orig, Reader* reader, bool verbose, int64_t bytes) { StandardAnalyzer analyzer; TokenStream* stream = analyzer.tokenStream(NULL, reader); @@ -34,7 +35,8 @@ void test(CuTest *tc, char* orig, Reader* reader, bool verbose, int64_t bytes) { TCHAR ttmp[LUCENE_MAX_WORD_LEN + 1]; for (; stream->next(&t);) { if (verbose) { - CuMessage(tc, _T("Text=%s start=%d end=%d\n"), t.termBuffer<TCHAR>(), t.startOffset(), t.endOffset()); + CuMessage(tc, _T("Text=%s start=%d end=%d\n"), t.termBuffer<TCHAR>(), t.startOffset(), + t.endOffset()); } int len = t.termLength<TCHAR>(); @@ -46,7 +48,8 @@ void test(CuTest *tc, char* orig, Reader* reader, bool verbose, int64_t bytes) { if (_tcsncmp(t.termBuffer<TCHAR>(), ttmp, len) != 0) { TCHAR err[1024]; - _sntprintf(err, 1024, _T("token '%s' didnt match original text at %d-%d"), t.termBuffer<TCHAR>(), t.startOffset(), t.endOffset()); + _sntprintf(err, 1024, _T("token '%s' didnt match original text at %d-%d"), + t.termBuffer<TCHAR>(), t.startOffset(), t.endOffset()); CuAssert(tc, err, false); } @@ -64,7 +67,7 @@ void test(CuTest *tc, char* orig, Reader* reader, bool verbose, int64_t bytes) { _CLDELETE(stream); } -void _testFile(CuTest *tc, const char* fname, bool verbose) { +void _testFile(CuTest* tc, const char* fname, bool verbose) { struct fileStat buf; fileStat(fname, &buf); int64_t bytes = buf.st_size; @@ -78,13 +81,12 @@ void _testFile(CuTest *tc, const char* fname, bool verbose) { CuMessageA(tc, " Reading test file containing %d bytes.\n", bytes); jstreams::FileReader fr(fname, "ASCII"); - const TCHAR *start; + const TCHAR* start; size_t total = 0; int32_t numRead; do { numRead = fr.read((const void**)&start, 1, 0); - if (numRead == -1) - break; + if (numRead == -1) break; total += numRead; } while (numRead >= 0); @@ -95,29 +97,32 @@ void _testFile(CuTest *tc, const char* fname, bool verbose) { _CLDELETE_CaARRAY(orig); } -void testFile(CuTest *tc) { +void testFile(CuTest* tc) { char loc[1024]; strcpy(loc, clucene_data_location); strcat(loc, "/reuters-21578/feldman-cia-worldfactbook-data.txt"); - CuAssert(tc, _T("reuters-21578/feldman-cia-worldfactbook-data.txt does not exist"), Misc::dir_Exists(loc)); + CuAssert(tc, _T("reuters-21578/feldman-cia-worldfactbook-data.txt does not exist"), + Misc::dir_Exists(loc)); _testFile(tc, loc, false); } -void _testCJK(CuTest *tc, const char* astr, const char** results, bool ignoreSurrogates = true) { - SimpleInputStreamReader r(new AStringReader(astr), SimpleInputStreamReader::UTF8); +void _testCJK(CuTest* tc, const char* astr, const char** results, bool ignoreSurrogates = true) { + //SimpleInputStreamReader r(new AStringReader(astr), SimpleInputStreamReader::UTF8); + auto r = std::make_unique<lucene::util::SStringReader<char>>(astr, strlen(astr), false); - CJKTokenizer* tokenizer = _CLNEW CJKTokenizer(&r); + CJKTokenizer* tokenizer = _CLNEW CJKTokenizer(r.get()); tokenizer->setIgnoreSurrogates(ignoreSurrogates); int pos = 0; Token tok; - TCHAR tres[LUCENE_MAX_WORD_LEN]; + //TCHAR tres[LUCENE_MAX_WORD_LEN]; while (results[pos] != NULL) { CLUCENE_ASSERT(tokenizer->next(&tok) != NULL); - lucene_utf8towcs(tres, results[pos], LUCENE_MAX_WORD_LEN); - //wcout << tres << " actual " << tok.termBuffer<TCHAR>() << std::endl; - CuAssertStrEquals(tc, _T("unexpected token value"), tres, tok.termBuffer<TCHAR>()); + //lucene_utf8towcs(tres, results[pos], LUCENE_MAX_WORD_LEN); + //cout << results[pos] << " actual " << std::string(tok.termBuffer<char>() ,tok.termLength<char>())<< std::endl; + CLUCENE_ASSERT(strncmp(tok.termBuffer<char>(), results[pos], tok.termLength<char>()) == 0); + //CuAssertStrEquals(tc, "unexpected token value", tres, tok.termBuffer<char>()); pos++; } CLUCENE_ASSERT(!tokenizer->next(&tok)); @@ -125,28 +130,30 @@ void _testCJK(CuTest *tc, const char* astr, const char** results, bool ignoreSur _CLDELETE(tokenizer); } -void testCJK(CuTest *tc) { +void testCJK(CuTest* tc) { //utf16 test //we have a very large unicode character: //xEFFFF = utf8(F3 AF BF BF) = utf16(DB7F DFFF) = utf8(ED AD BF, ED BF BF) - static const char* exp4[4] = {"我爱","爱你","", NULL}; - _testCJK(tc, "我爱你",exp4, false); + static const char* exp4[4] = {"我爱", "爱你", "", NULL}; + _testCJK(tc, "我爱你", exp4, false); - static const char* exp3[4] = {"\xED\xAD\xBF\xED\xBF\xBF\xe5\x95\xa4", "\xe5\x95\xa4\xED\xAD\xBF\xED\xBF\xBF", "", NULL}; + static const char* exp3[4] = {"\xED\xAD\xBF\xED\xBF\xBF\xe5\x95\xa4", + "\xe5\x95\xa4\xED\xAD\xBF\xED\xBF\xBF", "", NULL}; _testCJK(tc, "\xED\xAD\xBF\xED\xBF\xBF\xe5\x95\xa4\xED\xAD\xBF\xED\xBF\xBF", exp3, false); static const char* exp1[5] = {"test", "t\xc3\xbcrm", "values", NULL}; _testCJK(tc, "test t\xc3\xbcrm values", exp1); - static const char* exp2[6] = {"a", "\xe5\x95\xa4\xe9\x85\x92", "\xe9\x85\x92\xe5\x95\xa4", "", "x", NULL}; + static const char* exp2[6] = { + "a", "\xe5\x95\xa4\xe9\x85\x92", "\xe9\x85\x92\xe5\x95\xa4", "", "x", NULL}; _testCJK(tc, "a\xe5\x95\xa4\xe9\x85\x92\xe5\x95\xa4x", exp2); } void testSimpleJiebaSearchModeTokenizer2(CuTest* tc) { LanguageBasedAnalyzer a; const char* field_value_data = "冰咒龙"; - auto stringReader = - _CLNEW lucene::util::SStringReader<char>(field_value_data, strlen(field_value_data), false); + auto stringReader = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data, strlen(field_value_data), false); TokenStream* ts; Token t; @@ -155,12 +162,12 @@ void testSimpleJiebaSearchModeTokenizer2(CuTest* tc) { a.setStem(false); a.setMode(lucene::analysis::AnalyzerMode::Search); a.initDict("./dict"); - ts = a.tokenStream(_T("contents"), stringReader); + ts = a.tokenStream(_T("contents"), stringReader.get()); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("冰咒")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "冰咒", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("龙")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "龙", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) == NULL); _CLDELETE(ts); } @@ -168,8 +175,8 @@ void testSimpleJiebaSearchModeTokenizer2(CuTest* tc) { void testSimpleJiebaAllModeTokenizer2(CuTest* tc) { LanguageBasedAnalyzer a; const char* field_value_data = "冰咒龙"; - auto stringReader = - _CLNEW lucene::util::SStringReader<char>(field_value_data, strlen(field_value_data), false); + auto stringReader = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data, strlen(field_value_data), false); TokenStream* ts; Token t; @@ -178,14 +185,14 @@ void testSimpleJiebaAllModeTokenizer2(CuTest* tc) { a.setStem(false); a.setMode(lucene::analysis::AnalyzerMode::All); a.initDict("./dict"); - ts = a.tokenStream(_T("contents"), stringReader); + ts = a.tokenStream(_T("contents"), stringReader.get()); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("冰")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "冰", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("咒")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "咒", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("龙")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "龙", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) == NULL); _CLDELETE(ts); } @@ -193,8 +200,8 @@ void testSimpleJiebaAllModeTokenizer2(CuTest* tc) { void testSimpleJiebaAllModeTokenizer(CuTest* tc) { LanguageBasedAnalyzer a; const char* field_value_data = "我来到北京清华大学"; - auto stringReader = - _CLNEW lucene::util::SStringReader<char>(field_value_data, strlen(field_value_data), false); + auto stringReader = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data, strlen(field_value_data), false); TokenStream* ts; Token t; @@ -203,20 +210,22 @@ void testSimpleJiebaAllModeTokenizer(CuTest* tc) { a.setStem(false); a.setMode(lucene::analysis::AnalyzerMode::All); a.initDict("./dict"); - ts = a.tokenStream(_T("contents"), stringReader); + ts = a.tokenStream(_T("contents"), stringReader.get()); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("来到")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "我", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("北京")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "来到", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("清华")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "北京", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("清华大学")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "清华", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("华大")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "清华大学", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("大学")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "华大", t.termLength<char>()) == 0); + CLUCENE_ASSERT(ts->next(&t) != NULL); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "大学", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) == NULL); _CLDELETE(ts); } @@ -224,8 +233,8 @@ void testSimpleJiebaAllModeTokenizer(CuTest* tc) { void testSimpleJiebaDefaultModeTokenizer2(CuTest* tc) { LanguageBasedAnalyzer a; const char* field_value_data = "中国的科技发展在世界上处于领先"; - auto stringReader = - _CLNEW lucene::util::SStringReader<char>(field_value_data, strlen(field_value_data), false); + auto stringReader = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data, strlen(field_value_data), false); TokenStream* ts; Token t; @@ -234,7 +243,7 @@ void testSimpleJiebaDefaultModeTokenizer2(CuTest* tc) { a.setStem(false); a.setMode(lucene::analysis::AnalyzerMode::Default); a.initDict("./dict"); - ts = a.tokenStream(_T("contents"), stringReader); + ts = a.tokenStream(_T("contents"), stringReader.get()); /*char tmp[255] = {}; while(ts->next(&t) != nullptr) { @@ -243,17 +252,17 @@ void testSimpleJiebaDefaultModeTokenizer2(CuTest* tc) { }*/ CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("中国")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "中国", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("科技")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "科技", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("发展")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "发展", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("在世界上")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "在世界上", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("处于")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "处于", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("领先")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "领先", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) == NULL); _CLDELETE(ts); } @@ -261,8 +270,8 @@ void testSimpleJiebaDefaultModeTokenizer2(CuTest* tc) { void testSimpleJiebaDefaultModeTokenizer(CuTest* tc) { LanguageBasedAnalyzer a; const char* field_value_data = "我来到北京清华大学"; - auto stringReader = - _CLNEW lucene::util::SStringReader<char>(field_value_data, strlen(field_value_data), false); + auto stringReader = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data, strlen(field_value_data), false); TokenStream* ts; Token t; @@ -271,14 +280,16 @@ void testSimpleJiebaDefaultModeTokenizer(CuTest* tc) { a.setStem(false); a.setMode(lucene::analysis::AnalyzerMode::Default); a.initDict("./dict"); - ts = a.tokenStream(_T("contents"), stringReader); + ts = a.tokenStream(_T("contents"), stringReader.get()); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("来到")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "我", t.termLength<char>()) == 0); + CLUCENE_ASSERT(ts->next(&t) != NULL); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "来到", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("北京")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "北京", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("清华大学")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "清华大学", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) == NULL); _CLDELETE(ts); } @@ -286,8 +297,8 @@ void testSimpleJiebaDefaultModeTokenizer(CuTest* tc) { void testSimpleJiebaSearchModeTokenizer(CuTest* tc) { LanguageBasedAnalyzer a; const char* field_value_data = "我来到北京清华大学"; - auto stringReader = - _CLNEW lucene::util::SStringReader<char>(field_value_data, strlen(field_value_data), false); + auto stringReader = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data, strlen(field_value_data), false); TokenStream* ts; Token t; @@ -296,22 +307,22 @@ void testSimpleJiebaSearchModeTokenizer(CuTest* tc) { a.setStem(false); a.setMode(lucene::analysis::AnalyzerMode::Search); a.initDict("./dict"); - ts = a.tokenStream(_T("contents"), stringReader); + ts = a.tokenStream(_T("contents"), stringReader.get()); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("我")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "我", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("来到")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "来到", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("北京")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "北京", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("清华")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "清华", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("华大")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "华大", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("大学")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "大学", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("清华大学")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "清华大学", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) == NULL); _CLDELETE(ts); } @@ -319,8 +330,8 @@ void testSimpleJiebaSearchModeTokenizer(CuTest* tc) { void testSimpleJiebaTokenizer(CuTest* tc) { LanguageBasedAnalyzer a; const char* field_value_data = "我爱你中国"; - auto stringReader = - _CLNEW lucene::util::SStringReader<char>(field_value_data, strlen(field_value_data), false); + auto stringReader = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data, strlen(field_value_data), false); TokenStream* ts; Token t; @@ -329,12 +340,12 @@ void testSimpleJiebaTokenizer(CuTest* tc) { a.setStem(false); a.setMode(lucene::analysis::AnalyzerMode::Default); a.initDict("./dict"); - ts = a.tokenStream(_T("contents"), stringReader); + ts = a.tokenStream(_T("contents"), stringReader.get()); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("我爱你")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "我爱你", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("中国")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "中国", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) == NULL); _CLDELETE(ts); } @@ -342,8 +353,8 @@ void testSimpleJiebaTokenizer(CuTest* tc) { void testSimpleJiebaTokenizer2(CuTest* tc) { LanguageBasedAnalyzer a; const char* field_value_data = "人民可以得到更多实惠"; - auto stringReader = - _CLNEW lucene::util::SStringReader<char>(field_value_data, strlen(field_value_data), false); + auto stringReader = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data, strlen(field_value_data), false); TokenStream* ts; Token t; @@ -351,16 +362,20 @@ void testSimpleJiebaTokenizer2(CuTest* tc) { a.setLanguage(_T("chinese")); a.setStem(false); a.setMode(lucene::analysis::AnalyzerMode::Default); - ts = a.tokenStream(_T("contents"), stringReader); + ts = a.tokenStream(_T("contents"), stringReader.get()); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("人民")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "人民", t.termLength<char>()) == 0); + CLUCENE_ASSERT(ts->next(&t) != NULL); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "可以", t.termLength<char>()) == 0); + CLUCENE_ASSERT(ts->next(&t) != NULL); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "得到", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("得到")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "更", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("更")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "多", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("实惠")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "实惠", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) == NULL); _CLDELETE(ts); } @@ -368,8 +383,8 @@ void testSimpleJiebaTokenizer2(CuTest* tc) { void testSimpleJiebaTokenizer3(CuTest* tc) { LanguageBasedAnalyzer a; const char* field_value_data = "中国人民银行"; - auto stringReader = - _CLNEW lucene::util::SStringReader<char>(field_value_data, strlen(field_value_data), false); + auto stringReader = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data, strlen(field_value_data), false); TokenStream* ts; Token t; @@ -378,10 +393,10 @@ void testSimpleJiebaTokenizer3(CuTest* tc) { a.setLanguage(_T("chinese")); a.setStem(false); a.setMode(lucene::analysis::AnalyzerMode::Default); - ts = a.tokenStream(_T("contents"), stringReader); + ts = a.tokenStream(_T("contents"), stringReader.get()); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("中国人民银行")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "中国人民银行", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) == NULL); _CLDELETE(ts); } @@ -389,44 +404,46 @@ void testSimpleJiebaTokenizer3(CuTest* tc) { void testSimpleJiebaTokenizer4(CuTest* tc) { LanguageBasedAnalyzer a; const char* field_value_data = "人民,银行"; - auto stringReader = - _CLNEW lucene::util::SStringReader<char>(field_value_data, strlen(field_value_data), false); + auto stringReader = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data, strlen(field_value_data), false); TokenStream* ts; Token t; //test with chinese a.setLanguage(_T("chinese")); a.setStem(false); - ts = a.tokenStream(_T("contents"), stringReader); + ts = a.tokenStream(_T("contents"), stringReader.get()); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("人民")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "人民", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("银行")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "银行", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) == NULL); _CLDELETE(ts); } void testChineseAnalyzer(CuTest* tc) { LanguageBasedAnalyzer a; - CL_NS(util)::StringReader reader(_T("我爱你")); - reader.mark(50); + //CL_NS(util)::StringReader reader(_T("我爱你")); + auto reader = + std::make_unique<lucene::util::SStringReader<char>>("我爱你", strlen("我爱你"), false); + //reader->mark(50); TokenStream* ts; Token t; //test with cjk a.setLanguage(_T("cjk")); a.setStem(false); - ts = a.tokenStream(_T("contents"), &reader); + ts = a.tokenStream(_T("contents"), reader.get()); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("我爱")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "我爱", t.termLength<char>()) == 0); CLUCENE_ASSERT(ts->next(&t) != NULL); - CLUCENE_ASSERT(_tcscmp(t.termBuffer<TCHAR>(), _T("爱你")) == 0); + CLUCENE_ASSERT(strncmp(t.termBuffer<char>(), "爱你", t.termLength<char>()) == 0); _CLDELETE(ts); } -void testChinese(CuTest *tc) { +void testChinese(CuTest* tc) { RAMDirectory dir; auto analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer(); @@ -439,229 +456,260 @@ void testChinese(CuTest *tc) { auto field = _CLNEW Field(field_name, Field::INDEX_TOKENIZED | Field::STORE_NO); doc.add(*field); - const char* field_value_data = "人民可以得到更多实惠"; - auto stringReader = - _CLNEW lucene::util::SimpleInputStreamReader(new lucene::util::AStringReader(field_value_data), lucene::util::SimpleInputStreamReader::UTF8); + auto stringReader = _CLNEW lucene::util::SimpleInputStreamReader( + new lucene::util::AStringReader(field_value_data), + lucene::util::SimpleInputStreamReader::UTF8); field->setValue(stringReader); w.addDocument(&doc); const char* field_value_data1 = "中国人民银行"; - auto stringReader1 = - _CLNEW lucene::util::SimpleInputStreamReader(new lucene::util::AStringReader(field_value_data1), lucene::util::SimpleInputStreamReader::UTF8); + auto stringReader1 = _CLNEW lucene::util::SimpleInputStreamReader( + new lucene::util::AStringReader(field_value_data1), + lucene::util::SimpleInputStreamReader::UTF8); field->setValue(stringReader1); w.addDocument(&doc); const char* field_value_data2 = "洛杉矶人,洛杉矶居民"; - auto stringReader2 = - _CLNEW lucene::util::SimpleInputStreamReader(new lucene::util::AStringReader(field_value_data2), lucene::util::SimpleInputStreamReader::UTF8); + auto stringReader2 = _CLNEW lucene::util::SimpleInputStreamReader( + new lucene::util::AStringReader(field_value_data2), + lucene::util::SimpleInputStreamReader::UTF8); field->setValue(stringReader2); w.addDocument(&doc); const char* field_value_data3 = "民族,人民"; - auto stringReader3 = - _CLNEW lucene::util::SimpleInputStreamReader(new lucene::util::AStringReader(field_value_data3), lucene::util::SimpleInputStreamReader::UTF8); + auto stringReader3 = _CLNEW lucene::util::SimpleInputStreamReader( + new lucene::util::AStringReader(field_value_data3), + lucene::util::SimpleInputStreamReader::UTF8); field->setValue(stringReader3); w.addDocument(&doc); w.close(); IndexSearcher searcher(&dir); - Term *t1 = _CLNEW Term(_T("chinese"), _T("人民")); - auto *query1 = _CLNEW TermQuery(t1); - Hits *hits1 = searcher.search(query1); + Term* t1 = _CLNEW Term(_T("chinese"), _T("人民")); + auto* query1 = _CLNEW TermQuery(t1); + Hits* hits1 = searcher.search(query1); CLUCENE_ASSERT(3 == hits1->length()); - Term *t2 = _CLNEW Term(_T("chinese"), _T("民族")); - auto *query2 = _CLNEW TermQuery(t2); - Hits *hits2 = searcher.search(query2); + Term* t2 = _CLNEW Term(_T("chinese"), _T("民族")); + auto* query2 = _CLNEW TermQuery(t2); + Hits* hits2 = searcher.search(query2); CLUCENE_ASSERT(1 == hits2->length()); doc.clear(); //_CLDELETE(field) + _CLDELETE(hits1) + _CLDELETE(hits2) } void testJiebaMatch(CuTest* tc) { RAMDirectory dir; - - auto analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer(); - analyzer->setLanguage(L"chinese"); - analyzer->setMode(lucene::analysis::AnalyzerMode::Default); - IndexWriter w(&dir, analyzer, true); auto field_name = lucene::util::Misc::_charToWide("chinese"); - - Document doc; - auto field = _CLNEW Field(field_name, Field::INDEX_TOKENIZED | Field::STORE_NO); - doc.add(*field); - - - const char* field_value_data = "人民可以得到更多实惠"; - auto stringReader = - _CLNEW lucene::util::SStringReader<char>(field_value_data, strlen(field_value_data), false); - field->setValue(stringReader); - w.addDocument(&doc); - - const char* field_value_data1 = "中国人民银行"; - auto stringReader1 = - _CLNEW lucene::util::SStringReader<char>(field_value_data1, strlen(field_value_data1), false); - field->setValue(stringReader1); - w.addDocument(&doc); - - const char* field_value_data2 = "洛杉矶人,洛杉矶居民"; - auto stringReader2 = - _CLNEW lucene::util::SStringReader<char>(field_value_data2, strlen(field_value_data2), false); - field->setValue(stringReader2); - w.addDocument(&doc); - - const char* field_value_data3 = "民族,人民"; - auto stringReader3 = - _CLNEW lucene::util::SStringReader<char>(field_value_data3, strlen(field_value_data3), false); - field->setValue(stringReader3); - w.addDocument(&doc); - - w.close(); - + try { + auto analyzer = std::make_unique<lucene::analysis::LanguageBasedAnalyzer>(); + analyzer->setLanguage(L"chinese"); + analyzer->setMode(lucene::analysis::AnalyzerMode::Default); + IndexWriter w(&dir, analyzer.get(), true); + w.setUseCompoundFile(false); + + Document doc; + auto field = _CLNEW Field(field_name, Field::INDEX_TOKENIZED | Field::STORE_NO); + doc.add(*field); + + const char* field_value_data = "人民可以得到更多实惠"; + auto stringReader = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data, strlen(field_value_data), false); + auto* stream = analyzer->tokenStream(field->name(), stringReader.get()); + field->setValue(stream); + w.addDocument(&doc); + + const char* field_value_data1 = "中国人民银行"; + auto stringReader1 = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data1, strlen(field_value_data1), false); + auto* stream1 = analyzer->tokenStream(field->name(), stringReader1.get()); + field->setValue(stream1); + w.addDocument(&doc); + + const char* field_value_data2 = "洛杉矶人,洛杉矶居民"; + auto stringReader2 = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data2, strlen(field_value_data2), false); + auto* stream2 = analyzer->tokenStream(field->name(), stringReader2.get()); + field->setValue(stream2); + w.addDocument(&doc); + + const char* field_value_data3 = "民族,人民"; + auto stringReader3 = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data3, strlen(field_value_data3), false); + auto* stream3 = analyzer->tokenStream(field->name(), stringReader3.get()); + field->setValue(stream3); + w.addDocument(&doc); + + w.close(); + doc.clear(); + _CLDELETE(stream) + _CLDELETE(stream1) + _CLDELETE(stream2) + _CLDELETE(stream3) + } catch (CLuceneError& r) { + printf("clucene error in testJiebaMatch: %s\n", r.what()); + } IndexSearcher searcher(&dir); - lucene::util::Reader* reader = nullptr; - std::vector<std::wstring> analyse_result; + std::vector<std::string> analyse_result; const char* value = "民族"; - analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer(L"chinese", false); - reader = _CLNEW lucene::util::SStringReader<char>(value, strlen(value), false); + auto analyzer = std::make_unique<lucene::analysis::LanguageBasedAnalyzer>(L"chinese", false); + auto reader = std::make_unique<lucene::util::SStringReader<char>>(value, strlen(value), false); - lucene::analysis::TokenStream* token_stream = analyzer->tokenStream(field_name, reader); + lucene::analysis::TokenStream* token_stream = analyzer->tokenStream(field_name, reader.get()); lucene::analysis::Token token; while (token_stream->next(&token)) { - if(token.termLength<TCHAR>() != 0) { - analyse_result.emplace_back(token.termBuffer<TCHAR>(), token.termLength<TCHAR>()); + if (token.termLength<char>() != 0) { + analyse_result.emplace_back(token.termBuffer<char>(), token.termLength<char>()); } } if (token_stream != nullptr) { token_stream->close(); } + _CLDELETE(token_stream) - lucene::search::Query* query = _CLNEW lucene::search::BooleanQuery(); + auto query = std::make_unique<lucene::search::BooleanQuery>(); for (const auto& t : analyse_result) { - //std::wstring token_ws = std::wstring(token.begin(), token.end()); - auto* term = - _CLNEW lucene::index::Term(field_name, t.c_str()); - dynamic_cast<lucene::search::BooleanQuery*>(query) + std::wstring token_ws = StringUtil::string_to_wstring(t); + auto* term = _CLNEW lucene::index::Term(field_name, token_ws.c_str()); + dynamic_cast<lucene::search::BooleanQuery*>(query.get()) ->add(_CLNEW lucene::search::TermQuery(term), true, lucene::search::BooleanClause::SHOULD); _CLDECDELETE(term); } - - Hits *hits1 = searcher.search(query); + Hits* hits1 = searcher.search(query.get()); CLUCENE_ASSERT(1 == hits1->length()); - - doc.clear(); + _CLDELETE(hits1) + _CLDELETE_ARRAY(field_name) } void testJiebaMatch2(CuTest* tc) { RAMDirectory dir; - auto analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer(); + auto analyzer = std::make_unique<lucene::analysis::LanguageBasedAnalyzer>(); analyzer->setLanguage(L"chinese"); analyzer->setMode(lucene::analysis::AnalyzerMode::Default); - IndexWriter w(&dir, analyzer, true); + IndexWriter w(&dir, analyzer.get(), true); + w.setUseCompoundFile(false); auto field_name = lucene::util::Misc::_charToWide("chinese"); Document doc; auto field = _CLNEW Field(field_name, Field::INDEX_TOKENIZED | Field::STORE_NO); doc.add(*field); - - const char* field_value_data = "人民可以得到更多实惠"; - auto stringReader = - _CLNEW lucene::util::SStringReader<char>(field_value_data, strlen(field_value_data), false); - field->setValue(stringReader); - w.addDocument(&doc); - - const char* field_value_data1 = "中国人民银行"; - auto stringReader1 = - _CLNEW lucene::util::SStringReader<char>(field_value_data1, strlen(field_value_data1), false); - field->setValue(stringReader1); - w.addDocument(&doc); - - const char* field_value_data2 = "洛杉矶人,洛杉矶居民"; - auto stringReader2 = - _CLNEW lucene::util::SStringReader<char>(field_value_data2, strlen(field_value_data2), false); - field->setValue(stringReader2); - w.addDocument(&doc); - - const char* field_value_data3 = "民族,人民"; - auto stringReader3 = - _CLNEW lucene::util::SStringReader<char>(field_value_data3, strlen(field_value_data3), false); - field->setValue(stringReader3); - w.addDocument(&doc); - - w.close(); - + try { + const char* field_value_data = "人民可以得到更多实惠"; + auto stringReader = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data, strlen(field_value_data), false); + auto* stream = analyzer->tokenStream(field->name(), stringReader.get()); + field->setValue(stream); + w.addDocument(&doc); + + const char* field_value_data1 = "中国人民银行"; + auto stringReader1 = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data1, strlen(field_value_data1), false); + auto* stream1 = analyzer->tokenStream(field->name(), stringReader1.get()); + field->setValue(stream1); + w.addDocument(&doc); + + const char* field_value_data2 = "洛杉矶人,洛杉矶居民"; + auto stringReader2 = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data2, strlen(field_value_data2), false); + auto* stream2 = analyzer->tokenStream(field->name(), stringReader2.get()); + field->setValue(stream2); + w.addDocument(&doc); + + const char* field_value_data3 = "民族,人民"; + auto stringReader3 = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data3, strlen(field_value_data3), false); + auto* stream3 = analyzer->tokenStream(field->name(), stringReader3.get()); + field->setValue(stream3); + w.addDocument(&doc); + + w.close(); + doc.clear(); + _CLDELETE(stream) + _CLDELETE(stream1) + _CLDELETE(stream2) + _CLDELETE(stream3) + } catch (CLuceneError& r) { + printf("clucene error in testJiebaMatch2: %s\n", r.what()); + } IndexSearcher searcher(&dir); - lucene::util::Reader* reader = nullptr; - std::vector<std::wstring> analyse_result; + std::vector<std::string> analyse_result; const char* value = "人民"; - analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer(L"chinese", false); - reader = _CLNEW lucene::util::SStringReader<char>(value, strlen(value), false); + auto analyzer1 = std::make_unique<lucene::analysis::LanguageBasedAnalyzer>(L"chinese", false); + auto reader = std::make_unique<lucene::util::SStringReader<char>>(value, strlen(value), false); - lucene::analysis::TokenStream* token_stream = analyzer->tokenStream(field_name, reader); + lucene::analysis::TokenStream* token_stream = analyzer1->tokenStream(field_name, reader.get()); lucene::analysis::Token token; while (token_stream->next(&token)) { - if(token.termLength<TCHAR>() != 0) { - analyse_result.emplace_back(token.termBuffer<TCHAR>(), token.termLength<TCHAR>()); + if (token.termLength<char>() != 0) { + analyse_result.emplace_back(token.termBuffer<char>(), token.termLength<char>()); } } if (token_stream != nullptr) { token_stream->close(); } - - lucene::search::Query* query = _CLNEW lucene::search::BooleanQuery(); + _CLDELETE(token_stream) + auto query = std::make_unique<lucene::search::BooleanQuery>(); for (const auto& t : analyse_result) { - //std::wstring token_ws = std::wstring(token.begin(), token.end()); - auto* term = - _CLNEW lucene::index::Term(field_name, t.c_str()); - dynamic_cast<lucene::search::BooleanQuery*>(query) + std::wstring token_ws = StringUtil::string_to_wstring(t); + auto* term = _CLNEW lucene::index::Term(field_name, token_ws.c_str()); + dynamic_cast<lucene::search::BooleanQuery*>(query.get()) ->add(_CLNEW lucene::search::TermQuery(term), true, lucene::search::BooleanClause::SHOULD); _CLDECDELETE(term); } - Hits *hits1 = searcher.search(query); + Hits* hits1 = searcher.search(query.get()); CLUCENE_ASSERT(2 == hits1->length()); - - doc.clear(); + _CLDELETE(hits1) + _CLDELETE_ARRAY(field_name) } void testJiebaMatchHuge(CuTest* tc) { RAMDirectory dir; - auto analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer(); + auto analyzer = std::make_unique<lucene::analysis::LanguageBasedAnalyzer>(); analyzer->setLanguage(L"chinese"); analyzer->setMode(lucene::analysis::AnalyzerMode::Default); analyzer->initDict("./dict"); - IndexWriter w(&dir, analyzer, true); + IndexWriter w(&dir, analyzer.get(), true); + w.setUseCompoundFile(false); auto field_name = lucene::util::Misc::_charToWide("chinese"); Document doc; auto field = _CLNEW Field(field_name, Field::INDEX_TOKENIZED | Field::STORE_NO); doc.add(*field); - - const char* field_value_data = "数据模型\n" - "本文档主要从逻辑层面,描述 Doris 的数据模型,以帮助用户更好的使用 Doris 应对不同的业务场景。\n" + const char* field_value_data = + "数据模型\n" + "本文档主要从逻辑层面,描述 Doris 的数据模型,以帮助用户更好的使用 Doris " + "应对不同的业务场景。\n" "\n" "基本概念\n" - "在 Doris 中,数据以表(Table)的形式进行逻辑上的描述。 一张表包括行(Row)和列(Column)。Row 即用户的一行数据。Column 用于描述一行数据中不同的字段。\n" + "在 Doris 中,数据以表(Table)的形式进行逻辑上的描述。 " + "一张表包括行(Row)和列(Column)。Row 即用户的一行数据。Column " + "用于描述一行数据中不同的字段。\n" "\n" - "Column 可以分为两大类:Key 和 Value。从业务角度看,Key 和 Value 可以分别对应维度列和指标列。Doris的key列是建表语句中指定的列,建表语句中的关键字\\'unique key\\'或\\'aggregate key\\'或\\'duplicate key\\'后面的列就是 Key 列,除了 Key 列剩下的就是 Value a列。\n" + "Column 可以分为两大类:Key 和 Value。从业务角度看,Key 和 Value " + "可以分别对应维度列和指标列。Doris的key列是建表语句中指定的列,建表语句中的关键字\\'" + "unique key\\'或\\'aggregate key\\'或\\'duplicate key\\'后面的列就是 Key 列,除了 Key " + "列剩下的就是 Value a列。\n" "\n" "Doris 的数据模型主要分为3类:\n" "\n" @@ -695,7 +743,8 @@ void testJiebaMatchHuge(CuTest* tc) { "city VARCHAR(20) COMMENT \"用户所在城市\",\n" "age SMALLINT COMMENT \"用户年龄\",\n" "sex TINYINT COMMENT \"用户性别\",\n" - "last_visit_date DATETIME REPLACE DEFAULT \"1970-01-01 00:00:00\" COMMENT \"用户最后一次访问时间\",\n" + "last_visit_date DATETIME REPLACE DEFAULT \"1970-01-01 00:00:00\" COMMENT " + "\"用户最后一次访问时间\",\n" "cost BIGINT SUM DEFAULT \"0\" COMMENT \"用户总消费\",\n" "max_dwell_time INT MAX DEFAULT \"0\" COMMENT \"用户最大停留时间\",\n" "min_dwell_time INT MIN DEFAULT \"99999\" COMMENT \"用户最小停留时间\"\n" @@ -706,11 +755,16 @@ void testJiebaMatchHuge(CuTest* tc) { "\"replication_allocation\" = \"tag.location.default: 1\"\n" ");\n" "\n" - "可以看到,这是一个典型的用户信息和访问行为的事实表。 在一般星型模型中,用户信息和访问行为一般分别存放在维度表和事实表中。这里我们为了更加方便的解释 Doris 的数据模型,将两部分信息统一存放在一张表中。\n" + "可以看到,这是一个典型的用户信息和访问行为的事实表。 " + "在一般星型模型中,用户信息和访问行为一般分别存放在维度表和事实表中。这里我们为了更加方" + "便的解释 Doris 的数据模型,将两部分信息统一存放在一张表中。\n" "\n" - "表中的列按照是否设置了 AggregationType,分为 Key (维度列) 和 Value(指标列)。没有设置 AggregationType 的,如 user_id、date、age ... 等称为 Key,而设置了 AggregationType 的称为 Value。\n" + "表中的列按照是否设置了 AggregationType,分为 Key (维度列) 和 " + "Value(指标列)。没有设置 AggregationType 的,如 user_id、date、age ... 等称为 " + "Key,而设置了 AggregationType 的称为 Value。\n" "\n" - "当我们导入数据时,对于 Key 列相同的行会聚合成一行,而 Value 列会按照设置的 AggregationType 进行聚合。 AggregationType 目前有以下四种聚合方式:\n" + "当我们导入数据时,对于 Key 列相同的行会聚合成一行,而 Value 列会按照设置的 " + "AggregationType 进行聚合。 AggregationType 目前有以下四种聚合方式:\n" "\n" "SUM:求和,多行的 Value 进行累加。\n" "REPLACE:替代,下一批数据中的 Value 会替换之前导入过的行中的 Value。\n" @@ -758,13 +812,18 @@ void testJiebaMatchHuge(CuTest* tc) { "10003 2017-10-02 广州 32 0 2017-10-02 11:20:00 30 11 11\n" "10004 2017-10-01 深圳 35 0 2017-10-01 10:00:15 100 3 3\n" "10004 2017-10-03 深圳 35 0 2017-10-03 10:20:22 11 6 6\n" - "可以看到,用户 10000 只剩下了一行聚合后的数据。而其余用户的数据和原始数据保持一致。这里先解释下用户 10000 聚合后的数据:\n" + "可以看到,用户 10000 " + "只剩下了一行聚合后的数据。而其余用户的数据和原始数据保持一致。这里先解释下用户 10000 " + "聚合后的数据:\n" "\n" "前5列没有变化,从第6列 last_visit_date 开始:\n" "\n" - "2017-10-01 07:00:00:因为 last_visit_date 列的聚合方式为 REPLACE,所以 2017-10-01 07:00:00 替换了 2017-10-01 06:00:00 保存了下来。\n" + "2017-10-01 07:00:00:因为 last_visit_date 列的聚合方式为 REPLACE,所以 2017-10-01 " + "07:00:00 替换了 2017-10-01 06:00:00 保存了下来。\n" "\n" - "注:在同一个导入批次中的数据,对于 REPLACE 这种聚合方式,替换顺序不做保证。如在这个例子中,最终保存下来的,也有可能是 2017-10-01 06:00:00。而对于不同导入批次中的数据,可以保证,后一批次的数据会替换前一批次。\n" + "注:在同一个导入批次中的数据,对于 REPLACE " + "这种聚合方式,替换顺序不做保证。如在这个例子中,最终保存下来的,也有可能是 2017-10-01 " + "06:00:00。而对于不同导入批次中的数据,可以保证,后一批次的数据会替换前一批次。\n" "\n" "35:因为 cost 列的聚合类型为 SUM,所以由 20 + 15 累加获得 35。\n" "\n" @@ -772,7 +831,9 @@ void testJiebaMatchHuge(CuTest* tc) { "\n" "2:因为 min_dwell_time 列的聚合类型为 MIN,所以 10 和 2 取最小值,获得 2。\n" "\n" - "经过聚合,Doris 中最终只会存储聚合后的数据。换句话说,即明细数据会丢失,用户不能够再查询到聚合前的明细数据了。\n" + "经过聚合,Doris " + "中最终只会存储聚合后的数据。换句话说,即明细数据会丢失,用户不能够再查询到聚合前的明细" + "数据了。\n" "\n" "示例2:保留明细数据\n" "接示例1,我们将表结构修改如下:\n" @@ -788,11 +849,13 @@ void testJiebaMatchHuge(CuTest* tc) { "cost BIGINT SUM 用户总消费\n" "max_dwell_time INT MAX 用户最大停留时间\n" "min_dwell_time INT MIN 用户最小停留时间\n" - "即增加了一列 timestamp,记录精确到秒的数据灌入时间。 同时,将AGGREGATE KEY设置为AGGREGATE KEY(user_id, date, timestamp, city, age, sex)\n" + "即增加了一列 timestamp,记录精确到秒的数据灌入时间。 同时,将AGGREGATE " + "KEY设置为AGGREGATE KEY(user_id, date, timestamp, city, age, sex)\n" "\n" "导入数据如下:\n" "\n" - "user_id date timestamp city age sex last_visit_date cost max_dwell_time min_dwell_time\n" + "user_id date timestamp city age sex last_visit_date cost max_dwell_time " + "min_dwell_time\n" "10000 2017-10-01 2017-10-01 08:00:05 北京 20 0 2017-10-01 06:00:00 20 10 10\n" "10000 2017-10-01 2017-10-01 09:00:05 北京 20 0 2017-10-01 07:00:00 15 2 2\n" "10001 2017-10-01 2017-10-01 18:12:10 北京 30 1 2017-10-01 17:05:45 2 22 22\n" @@ -803,17 +866,25 @@ void testJiebaMatchHuge(CuTest* tc) { "通过sql导入数据:\n" "\n" "insert into example_db.example_tbl values\n" - "(10000,\"2017-10-01\",\"2017-10-01 08:00:05\",\"北京\",20,0,\"2017-10-01 06:00:00\",20,10,10),\n" - "(10000,\"2017-10-01\",\"2017-10-01 09:00:05\",\"北京\",20,0,\"2017-10-01 07:00:00\",15,2,2),\n" - "(10001,\"2017-10-01\",\"2017-10-01 18:12:10\",\"北京\",30,1,\"2017-10-01 17:05:45\",2,22,22),\n" - "(10002,\"2017-10-02\",\"2017-10-02 13:10:00\",\"上海\",20,1,\"2017-10-02 12:59:12\",200,5,5),\n" - "(10003,\"2017-10-02\",\"2017-10-02 13:15:00\",\"广州\",32,0,\"2017-10-02 11:20:00\",30,11,11),\n" - "(10004,\"2017-10-01\",\"2017-10-01 12:12:48\",\"深圳\",35,0,\"2017-10-01 10:00:15\",100,3,3),\n" - "(10004,\"2017-10-03\",\"2017-10-03 12:38:20\",\"深圳\",35,0,\"2017-10-03 10:20:22\",11,6,6);\n" + "(10000,\"2017-10-01\",\"2017-10-01 08:00:05\",\"北京\",20,0,\"2017-10-01 " + "06:00:00\",20,10,10),\n" + "(10000,\"2017-10-01\",\"2017-10-01 09:00:05\",\"北京\",20,0,\"2017-10-01 " + "07:00:00\",15,2,2),\n" + "(10001,\"2017-10-01\",\"2017-10-01 18:12:10\",\"北京\",30,1,\"2017-10-01 " + "17:05:45\",2,22,22),\n" + "(10002,\"2017-10-02\",\"2017-10-02 13:10:00\",\"上海\",20,1,\"2017-10-02 " + "12:59:12\",200,5,5),\n" + "(10003,\"2017-10-02\",\"2017-10-02 13:15:00\",\"广州\",32,0,\"2017-10-02 " + "11:20:00\",30,11,11),\n" + "(10004,\"2017-10-01\",\"2017-10-01 12:12:48\",\"深圳\",35,0,\"2017-10-01 " + "10:00:15\",100,3,3),\n" + "(10004,\"2017-10-03\",\"2017-10-03 12:38:20\",\"深圳\",35,0,\"2017-10-03 " + "10:20:22\",11,6,6);\n" "\n" "那么当这批数据正确导入到 Doris 中后,Doris 中最终存储如下:\n" "\n" - "user_id date timestamp city age sex last_visit_date cost max_dwell_time min_dwell_time\n" + "user_id date timestamp city age sex last_visit_date cost max_dwell_time " + "min_dwell_time\n" "10000 2017-10-01 2017-10-01 08:00:05 北京 20 0 2017-10-01 06:00:00 20 10 10\n" "10000 2017-10-01 2017-10-01 09:00:05 北京 20 0 2017-10-01 07:00:00 15 2 2\n" "10001 2017-10-01 2017-10-01 18:12:10 北京 30 1 2017-10-01 17:05:45 2 22 22\n" @@ -821,7 +892,10 @@ void testJiebaMatchHuge(CuTest* tc) { "10003 2017-10-02 2017-10-02 13:15:00 广州 32 0 2017-10-02 11:20:00 30 11 11\n" "10004 2017-10-01 2017-10-01 12:12:48 深圳 35 0 2017-10-01 10:00:15 100 3 3\n" "10004 2017-10-03 2017-10-03 12:38:20 深圳 35 0 2017-10-03 10:20:22 11 6 6\n" - "我们可以看到,存储的数据,和导入数据完全一样,没有发生任何聚合。这是因为,这批数据中,因为加入了 timestamp 列,所有行的 Key 都不完全相同。也就是说,只要保证导入的数据中,每一行的 Key 都不完全相同,那么即使在聚合模型下,Doris 也可以保存完整的明细数据。\n" + "我们可以看到,存储的数据,和导入数据完全一样,没有发生任何聚合。这是因为,这批数据中," + "因为加入了 timestamp 列,所有行的 Key " + "都不完全相同。也就是说,只要保证导入的数据中,每一行的 Key " + "都不完全相同,那么即使在聚合模型下,Doris 也可以保存完整的明细数据。\n" "\n" "示例3:导入数据与已有数据聚合\n" "接示例1。假设现在表中已有数据如下:\n" @@ -854,17 +928,31 @@ void testJiebaMatchHuge(CuTest* tc) { "10004 2017-10-01 深圳 35 0 2017-10-01 10:00:15 100 3 3\n" "10004 2017-10-03 深圳 35 0 2017-10-03 11:22:00 55 19 6\n" "10005 2017-10-03 长沙 29 1 2017-10-03 18:11:02 3 1 1\n" - "可以看到,用户 10004 的已有数据和新导入的数据发生了聚合。同时新增了 10005 用户的数据。\n" + "可以看到,用户 10004 的已有数据和新导入的数据发生了聚合。同时新增了 10005 " + "用户的数据。\n" "\n" "数据的聚合,在 Doris 中有如下三个阶段发生:\n" "\n" "每一批次数据导入的 ETL 阶段。该阶段会在每一批次导入的数据内部进行聚合。\n" - "底层 BE 进行数据 Compaction 的阶段。该阶段,BE 会对已导入的不同批次的数据进行进一步的聚合。\n" + "底层 BE 进行数据 Compaction 的阶段。该阶段,BE " + "会对已导入的不同批次的数据进行进一步的聚合。\n" "数据查询阶段。在数据查询时,对于查询涉及到的数据,会进行对应的聚合。\n" - "数据在不同时间,可能聚合的程度不一致。比如一批数据刚导入时,可能还未与之前已存在的数据进行聚合。但是对于用户而言,用户只能查询到聚合后的数据。即不同的聚合程度对于用户查询而言是透明的。用户需始终认为数据以最终的完成的聚合程度存在,而不应假设某些聚合还未发生。(可参阅聚合模型的局限性一节获得更多详情。)\n" + "数据在不同时间,可能聚合的程度不一致。比如一批数据刚导入时,可能还未与之前已存在的数据" + "进行聚合。但是对于用户而言,用户只能查询到聚合后的数据。即不同的聚合程度对于用户查询而" + "言是透明的。用户需始终认为数据以最终的完成的聚合程度存在,而不应假设某些聚合还未发生。" + "(可参阅聚合模型的局限性一节获得更多详情。)\n" "\n" "Unique 模型\n" - "在某些多维分析场景下,用户更关注的是如何保证 Key 的唯一性,即如何获得 Primary Key 唯一性约束。因此,我们引入了 /;·90Unique 数据模型。在1.2版本之前,该模型本质上是聚合模型的一个特例,也是一种简化的表结构表示方式。由于聚合模型的实现方式是读时合并(merge on read),因此在一些聚合查询上性能不佳(参考后续章节聚合模型的局限性的描述),在1.2版本我们引入了Unique模型新的实现方式,写时合并(merge on write),通过在写入时做一些额外的工作,实现了最优的查询性能。写时合并将在未来替换读时合并成为Unique模型的默认实现方式,两者将会短暂的共存一段时间。下面将对两种实现方式分别举例进行说明。\n" + "在某些多维分析场景下,用户更关注的是如何保证 Key 的唯一性,即如何获得 Primary Key " + "唯一性约束。因此,我们引入了 /;·90Unique " + "数据模型。在1." + "2版本之前,该模型本质上是聚合模型的一个特例,也是一种简化的表结构表示方式。由于聚合模" + "型的实现方式是读时合并(merge on " + "read),因此在一些聚合查询上性能不佳(参考后续章节聚合模型的局限性的描述),在1." + "2版本我们引入了Unique模型新的实现方式,写时合并(merge on " + "write),通过在写入时做一些额外的工作,实现了最优的查询性能。写时合并将在未来替换读时" + "合并成为Unique模型的默认实现方式,两者将会短暂的共存一段时间。下面将对两种实现方式分别" + "举例进行说明。\n" "\n" "读时合并(与聚合模型相同的实现方式)\n" "ColumnName Type IsKey Comment\n" @@ -876,7 +964,8 @@ void testJiebaMatchHuge(CuTest* tc) { "phone LARGEINT No 用户电话\n" "address VARCHAR(500) No 用户住址\n" "register_time DATETIME No 用户注册时间\n" - "这是一个典型的用户基础信息表。这类数据没有聚合需求,只需保证主键唯一性。(这里的主键为 user_id + username)。那么我们的建表语句如下:\n" + "这是一个典型的用户基础信息表。这类数据没有聚合需求,只需保证主键唯一性。(这里的主键为" + " user_id + username)。那么我们的建表语句如下:\n" "\n" "CREATE TABLE IF NOT EXISTS example_db.example_tbl\n" "(\n" @@ -925,13 +1014,17 @@ void testJiebaMatchHuge(CuTest* tc) { "\"replication_allocation\" = \"tag.location.default: 1\"\n" ");\n" "\n" - "即Unique 模型的读时合并实现完全可以用聚合模型中的 REPLACE 方式替代。其内部的实现方式和数据存储方式也完全一样。这里不再继续举例说明。\n" + "即Unique 模型的读时合并实现完全可以用聚合模型中的 REPLACE " + "方式替代。其内部的实现方式和数据存储方式也完全一样。这里不再继续举例说明。\n" "\n" "SinceVersion 1.2\n" "写时合并\n" - "Unqiue模型的写时合并实现,与聚合模型就是完全不同的两种模型了,查询性能更接近于duplicate模型,在有主键约束需求的场景上相比聚合模型有较大的查询性能优势,尤其是在聚合查询以及需要用索引过滤大量数据的查询中。\n" + "Unqiue模型的写时合并实现,与聚合模型就是完全不同的两种模型了,查询性能更接近于duplicat" + "e模型,在有主键约束需求的场景上相比聚合模型有较大的查询性能优势,尤其是在聚合查询以及" + "需要用索引过滤大量数据的查询中。\n" "\n" - "在 1.2.0 版本中,作为一个新的feature,写时合并默认关闭,用户可以通过添加下面的property来开启\n" + "在 1.2.0 " + "版本中,作为一个新的feature,写时合并默认关闭,用户可以通过添加下面的property来开启\n" "\n" "\"enable_unique_key_merge_on_write\" = \"true\"\n" "\n" @@ -966,15 +1059,23 @@ void testJiebaMatchHuge(CuTest* tc) { "phone LARGEINT NONE 用户电话\n" "address VARCHAR(500) NONE 用户住址\n" "register_time DATETIME NONE 用户注册时间\n" - "在开启了写时合并选项的Unique表上,数据在导入阶段就会去将被覆盖和被更新的数据进行标记删除,同时将新的数据写入新的文件。在查询的时候,所有被标记删除的数据都会在文件级别被过滤掉,读取出来的数据就都是最新的数据,消除掉了读时合并中的数据聚合过程,并且能够在很多情况下支持多种谓词的下推。因此在许多场景都能带来比较大的性能提升,尤其是在有聚合查询的情况下。\n" + "在开启了写时合并选项的Unique表上,数据在导入阶段就会去将被覆盖和被更新的数据进行标记删" + "除,同时将新的数据写入新的文件。在查询的时候,所有被标记删除的数据都会在文件级别被过滤" + "掉,读取出来的数据就都是最新的数据,消除掉了读时合并中的数据聚合过程,并且能够在很多情" + "况下支持多种谓词的下推。因此在许多场景都能带来比较大的性能提升,尤其是在有聚合查询的情" + "况下。\n" "\n" "【注意】\n" "\n" "新的Merge-on-write实现默认关闭,且只能在建表时通过指定property的方式打开。\n" - "旧的Merge-on-read的实现无法无缝升级到新版本的实现(数据组织方式完全不同),如果需要改为使用写时合并的实现版本,需要手动执行insert into unique-mow-table select * from source table.\n" - "在Unique模型上独有的delete sign 和 sequence col,在写时合并的新版实现中仍可以正常使用,用法没有变化。\n" + "旧的Merge-on-" + "read的实现无法无缝升级到新版本的实现(数据组织方式完全不同),如果需要改为使用写时合并" + "的实现版本,需要手动执行insert into unique-mow-table select * from source table.\n" + "在Unique模型上独有的delete sign 和 sequence " + "col,在写时合并的新版实现中仍可以正常使用,用法没有变化。\n" "Duplicate 模型\n" - "在某些多维分析场景下,数据既没有主键,也没有聚合需求。因此,我们引入 Duplicate 数据模型来满足这类需求。举例说明。\n" + "在某些多维分析场景下,数据既没有主键,也没有聚合需求。因此,我们引入 Duplicate " + "数据模型来满足这类需求。举例说明。\n" "\n" "ColumnName Type SortKey Comment\n" "timestamp DATETIME Yes 日志时间\n" @@ -1000,14 +1101,22 @@ void testJiebaMatchHuge(CuTest* tc) { "\"replication_allocation\" = \"tag.location.default: 1\"\n" ");\n" "\n" - "这种数据模型区别于 Aggregate 和 Unique 模型。数据完全按照导入文件中的数据进行存储,不会有任何聚合。即使两行数据完全相同,也都会保留。 而在建表语句中指定的 DUPLICATE KEY,只是用来指明底层数据按照那些列进行排序。(更贴切的名称应该为 “Sorted Column”,这里取名 “DUPLICATE KEY” 只是用以明确表示所用的数据模型。关于 “Sorted Column”的更多解释,可以参阅前缀索引)。在 DUPLICATE KEY 的选择上,我们建议适当的选择前 2-4 列就可以。\n" + "这种数据模型区别于 Aggregate 和 Unique " + "模型。数据完全按照导入文件中的数据进行存储,不会有任何聚合。即使两行数据完全相同,也都" + "会保留。 而在建表语句中指定的 DUPLICATE " + "KEY,只是用来指明底层数据按照那些列进行排序。(更贴切的名称应该为 “Sorted " + "Column”,这里取名 “DUPLICATE KEY” 只是用以明确表示所用的数据模型。关于 “Sorted " + "Column”的更多解释,可以参阅前缀索引)。在 DUPLICATE KEY " + "的选择上,我们建议适当的选择前 2-4 列就可以。\n" "\n" - "这种数据模型适用于既没有聚合需求,又没有主键唯一性约束的原始数据的存储。更多使用场景,可参阅聚合模型的局限性小节。\n" + "这种数据模型适用于既没有聚合需求,又没有主键唯一性约束的原始数据的存储。更多使用场景," + "可参阅聚合模型的局限性小节。\n" "\n" "聚合模型的局限性\n" "这里我们针对 Aggregate 模型,来介绍下聚合模型的局限性。\n" "\n" - "在聚合模型中,模型对外展现的,是最终聚合后的数据。也就是说,任何还未聚合的数据(比如说两个不同导入批次的数据),必须通过某种方式,以保证对外展示的一致性。我们举例说明。\n" + "在聚合模型中,模型对外展现的,是最终聚合后的数据。也就是说,任何还未聚合的数据(比如说" + "两个不同导入批次的数据),必须通过某种方式,以保证对外展示的一致性。我们举例说明。\n" "\n" "假设表结构如下:\n" "\n" @@ -1028,7 +1137,9 @@ void testJiebaMatchHuge(CuTest* tc) { "10001 2017-11-20 1\n" "10001 2017-11-21 5\n" "10003 2017-11-22 22\n" - "可以看到,用户 10001 分属在两个导入批次中的数据还没有聚合。但是为了保证用户只能查询到如下最终聚合后的数据:\n" + "可以看到,用户 10001 " + "分属在两个导入批次中的数据还没有聚合。但是为了保证用户只能查询到如下最终聚合后的数据:" + "\n" "\n" "user_id date cost\n" "10001 2017-11-20 51\n" @@ -1037,7 +1148,8 @@ void testJiebaMatchHuge(CuTest* tc) { "10003 2017-11-22 22\n" "我们在查询引擎中加入了聚合算子,来保证数据对外的一致性。\n" "\n" - "另外,在聚合列(Value)上,执行与聚合类型不一致的聚合类查询时,要注意语意。比如我们在如上示例中执行如下查询:\n" + "另外,在聚合列(Value)上,执行与聚合类型不一致的聚合类查询时,要注意语意。比如我们在" + "如上示例中执行如下查询:\n" "\n" "SELECT MIN(cost) FROM table;\n" "\n" @@ -1049,7 +1161,10 @@ void testJiebaMatchHuge(CuTest* tc) { "\n" "SELECT COUNT(*) FROM table;\n" "\n" - "在其他数据库中,这类查询都会很快的返回结果。因为在实现上,我们可以通过如“导入时对行进行计数,保存 count 的统计信息”,或者在查询时“仅扫描某一列数据,获得 count 值”的方式,只需很小的开销,即可获得查询结果。但是在 Doris 的聚合模型中,这种查询的开销非常大。\n" + "在其他数据库中,这类查询都会很快的返回结果。因为在实现上,我们可以通过如“导入时对行进" + "行计数,保存 count 的统计信息”,或者在查询时“仅扫描某一列数据,获得 count " + "值”的方式,只需很小的开销,即可获得查询结果。但是在 Doris " + "的聚合模型中,这种查询的开销非常大。\n" "\n" "我们以刚才的数据为例:\n" "\n" @@ -1071,23 +1186,39 @@ void testJiebaMatchHuge(CuTest* tc) { "10001 2017-11-21 5\n" "10002 2017-11-21 39\n" "10003 2017-11-22 22\n" - "所以,select count(*) from table; 的正确结果应该为 4。但如果我们只扫描 user_id 这一列,如果加上查询时聚合,最终得到的结果是 3(10001, 10002, 10003)。而如果不加查询时聚合,则得到的结果是 5(两批次一共5行数据)。可见这两个结果都是不对的。\n" + "所以,select count(*) from table; 的正确结果应该为 4。但如果我们只扫描 user_id " + "这一列,如果加上查询时聚合,最终得到的结果是 3(10001, 10002, " + "10003)。而如果不加查询时聚合,则得到的结果是 " + "5(两批次一共5行数据)。可见这两个结果都是不对的。\n" "\n" - "为了得到正确的结果,我们必须同时读取 user_id 和 date 这两列的数据,再加上查询时聚合,才能返回 4 这个正确的结果。也就是说,在 count() 查询中,Doris 必须扫描所有的 AGGREGATE KEY 列(这里就是 user_id 和 date),并且聚合后,才能得到语意正确的结果。当聚合列非常多时,count() 查询需要扫描大量的数据。\n" + "为了得到正确的结果,我们必须同时读取 user_id 和 date " + "这两列的数据,再加上查询时聚合,才能返回 4 这个正确的结果。也就是说,在 count() " + "查询中,Doris 必须扫描所有的 AGGREGATE KEY 列(这里就是 user_id 和 " + "date),并且聚合后,才能得到语意正确的结果。当聚合列非常多时,count() " + "查询需要扫描大量的数据。\n" "\n" - "因此,当业务上有频繁的 count() 查询时,我们建议用户通过增加一个值恒为 1 的,聚合类型为 SUM 的列来模拟 count()。如刚才的例子中的表结构,我们修改如下:\n" + "因此,当业务上有频繁的 count() 查询时,我们建议用户通过增加一个值恒为 1 " + "的,聚合类型为 SUM 的列来模拟 count()。如刚才的例子中的表结构,我们修改如下:\n" "\n" "ColumnName Type AggregateType Comment\n" "user_id BIGINT 用户id\n" "date DATE 数据灌入日期\n" "cost BIGINT SUM 用户总消费\n" "count BIGINT SUM 用于计算count\n" - "增加一个 count 列,并且导入数据中,该列值恒为 1。则 select count() from table; 的结果等价于 select sum(count) from table;。而后者的查询效率将远高于前者。不过这种方式也有使用限制,就是用户需要自行保证,不会重复导入 AGGREGATE KEY 列都相同的行。否则,select sum(count) from table; 只能表述原始导入的行数,而不是 select count() from table; 的语义。\n" + "增加一个 count 列,并且导入数据中,该列值恒为 1。则 select count() from table; " + "的结果等价于 select sum(count) from " + "table;" + "。而后者的查询效率将远高于前者。不过这种方式也有使用限制,就是用户需要自行保证,不会重" + "复导入 AGGREGATE KEY 列都相同的行。否则,select sum(count) from table; " + "只能表述原始导入的行数,而不是 select count() from table; 的语义。\n" "\n" - "另一种方式,就是 将如上的 count 列的聚合类型改为 REPLACE,且依然值恒为 1。那么 select sum(count) from table; 和 select count(*) from table; 的结果将是一致的。并且这种方式,没有导入重复行的限制。\n" + "另一种方式,就是 将如上的 count 列的聚合类型改为 REPLACE,且依然值恒为 1。那么 select " + "sum(count) from table; 和 select count(*) from table; " + "的结果将是一致的。并且这种方式,没有导入重复行的限制。\n" "\n" "Unique模型的写时合并实现\n" - "Unique模型的写时合并实现没有聚合模型的局限性,还是以刚才的数据为例,写时合并为每次导入的rowset增加了对应的delete bitmap,来标记哪些数据被覆盖。第一批数据导入后状态如下\n" + "Unique模型的写时合并实现没有聚合模型的局限性,还是以刚才的数据为例,写时合并为每次导入" + "的rowset增加了对应的delete bitmap,来标记哪些数据被覆盖。第一批数据导入后状态如下\n" "\n" "batch 1\n" "\n" @@ -1107,147 +1238,176 @@ void testJiebaMatchHuge(CuTest* tc) { "10001 2017-11-20 1 false\n" "10001 2017-11-21 5 false\n" "10003 2017-11-22 22 false\n" - "在查询时,所有在delete bitmap中被标记删除的数据都不会读出来,因此也无需进行做任何数据聚合,上述数据中有效的行数为4行,查询出的结果也应该是4行,也就可以采取开销最小的方式来获取结果,即前面提到的“仅扫描某一列数据,获得 count 值”的方式。\n" + "在查询时,所有在delete " + "bitmap中被标记删除的数据都不会读出来,因此也无需进行做任何数据聚合,上述数据中有效的行" + "数为4行,查询出的结果也应该是4行,也就可以采取开销最小的方式来获取结果,即前面提到的“" + "仅扫描某一列数据,获得 count 值”的方式。\n" "\n" - "在测试环境中,count(*) 查询在Unique模型的写时合并实现上的性能,相比聚合模型有10倍以上的提升。\n" + "在测试环境中,count(*) " + "查询在Unique模型的写时合并实现上的性能,相比聚合模型有10倍以上的提升。\n" "\n" "Duplicate 模型\n" - "Duplicate 模型没有聚合模型的这个局限性。因为该模型不涉及聚合语意,在做 count(*) 查询时,任意选择一列查询,即可得到语意正确的结果。\n" + "Duplicate 模型没有聚合模型的这个局限性。因为该模型不涉及聚合语意,在做 count(*) " + "查询时,任意选择一列查询,即可得到语意正确的结果。\n" "\n" "key 列\n" - "Duplicate、Aggregate、Unique 模型,都会在建表指定 key 列,然而实际上是有所区别的:对于 Duplicate 模型,表的key列,可以认为只是 “排序列”,并非起到唯一标识的作用。而 Aggregate、Unique 模型这种聚合类型的表,key 列是兼顾 “排序列” 和 “唯一标识列”,是真正意义上的“ key 列”。\n" + "Duplicate、Aggregate、Unique 模型,都会在建表指定 key " + "列,然而实际上是有所区别的:对于 Duplicate 模型,表的key列,可以认为只是 " + "“排序列”,并非起到唯一标识的作用。而 Aggregate、Unique 模型这种聚合类型的表,key " + "列是兼顾 “排序列” 和 “唯一标识列”,是真正意义上的“ key 列”。\n" "\n" "数据模型的选择建议\n" "因为数据模型在建表时就已经确定,且无法修改。所以,选择一个合适的数据模型非常重要。\n" "\n" - "Aggregate 模型可以通过预聚合,极大地降低聚合查询时所需扫描的数据量和查询的计算量,非常适合有固定模式的报表类查询场景。但是该模型对 count(*) 查询很不友好。同时因为固定了 Value 列上的聚合方式,在进行其他类型的聚合查询时,需要考虑语意正确性。\n" - "Unique 模型针对需要唯一主键约束的场景,可以保证主键唯一性约束。但是无法利用 ROLLUP 等预聚合带来的查询优势。\n" + "Aggregate " + "模型可以通过预聚合,极大地降低聚合查询时所需扫描的数据量和查询的计算量,非常适合有固定" + "模式的报表类查询场景。但是该模型对 count(*) 查询很不友好。同时因为固定了 Value " + "列上的聚合方式,在进行其他类型的聚合查询时,需要考虑语意正确性。\n" + "Unique 模型针对需要唯一主键约束的场景,可以保证主键唯一性约束。但是无法利用 ROLLUP " + "等预聚合带来的查询优势。\n" "对于聚合查询有较高性能需求的用户,推荐使用自1.2版本加入的写时合并实现。\n" - "Unique 模型仅支持整行更新,如果用户既需要唯一主键约束,又需要更新部分列(例如将多张源表导入到一张 doris 表的情形),则可以考虑使用 Aggregate 模型,同时将非主键列的聚合类型设置为 REPLACE_IF_NOT_NULL。具体的用法可以参考语法手册\n" - "Duplicate 适合任意维度的 Ad-hoc 查询。虽然同样无法利用预聚合的特性,但是不受聚合模型的约束,可以发挥列存模型的优势(只读取相关列,而不需要读取所有 Key 列)。"; - auto stringReader = - _CLNEW lucene::util::SStringReader<char>(field_value_data, strlen(field_value_data), false); - field->setValue(stringReader); - w.addDocument(&doc); - - w.close(); + "Unique " + "模型仅支持整行更新,如果用户既需要唯一主键约束,又需要更新部分列(例如将多张源表导入到" + "一张 doris 表的情形),则可以考虑使用 Aggregate 模型,同时将非主键列的聚合类型设置为 " + "REPLACE_IF_NOT_NULL。具体的用法可以参考语法手册\n" + "Duplicate 适合任意维度的 Ad-hoc " + "查询。虽然同样无法利用预聚合的特性,但是不受聚合模型的约束,可以发挥列存模型的优势(只" + "读取相关列,而不需要读取所有 Key 列)。"; + try { + auto stringReader = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data, strlen(field_value_data), false); + auto* stream = analyzer->tokenStream(field->name(), stringReader.get()); + field->setValue(stream); + w.addDocument(&doc); + + w.close(); + doc.clear(); + _CLDELETE(stream) + } catch (CLuceneError& r) { + printf("clucene error in testJiebaMatchHuge: %s\n", r.what()); + } IndexSearcher searcher(&dir); - lucene::util::Reader* reader = nullptr; - std::vector<std::wstring> analyse_result; + std::vector<std::string> analyse_result; const char* value = "相关"; - analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer(L"chinese", false); - reader = _CLNEW lucene::util::SStringReader<char>(value, strlen(value), false); + auto analyzer1 = std::make_unique<lucene::analysis::LanguageBasedAnalyzer>(L"chinese", false); + auto reader = std::make_unique<lucene::util::SStringReader<char>>(value, strlen(value), false); - lucene::analysis::TokenStream* token_stream = analyzer->tokenStream(field_name, reader); + lucene::analysis::TokenStream* token_stream = analyzer1->tokenStream(field_name, reader.get()); lucene::analysis::Token token; while (token_stream->next(&token)) { - if(token.termLength<TCHAR>() != 0) { - analyse_result.emplace_back(token.termBuffer<TCHAR>(), token.termLength<TCHAR>()); + if (token.termLength<char>() != 0) { + analyse_result.emplace_back(token.termBuffer<char>(), token.termLength<char>()); } } if (token_stream != nullptr) { token_stream->close(); } - - lucene::search::Query* query = _CLNEW lucene::search::BooleanQuery(); + _CLDELETE(token_stream) + auto query = std::make_unique<lucene::search::BooleanQuery>(); for (const auto& t : analyse_result) { - //std::wstring token_ws = std::wstring(token.begin(), token.end()); - auto* term = - _CLNEW lucene::index::Term(field_name, t.c_str()); - dynamic_cast<lucene::search::BooleanQuery*>(query) + std::wstring token_ws = StringUtil::string_to_wstring(t); + auto* term = _CLNEW lucene::index::Term(field_name, token_ws.c_str()); + dynamic_cast<lucene::search::BooleanQuery*>(query.get()) ->add(_CLNEW lucene::search::TermQuery(term), true, lucene::search::BooleanClause::SHOULD); _CLDECDELETE(term); } - Hits *hits1 = searcher.search(query); + Hits* hits1 = searcher.search(query.get()); CLUCENE_ASSERT(1 == hits1->length()); - - doc.clear(); + _CLDELETE(hits1) + _CLDELETE_ARRAY(field_name) } void testChineseMatch(CuTest* tc) { RAMDirectory dir; - - auto analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer(); + auto* field_name = lucene::util::Misc::_charToWide("chinese"); + auto analyzer = std::make_unique<lucene::analysis::LanguageBasedAnalyzer>(); analyzer->setLanguage(L"cjk"); - - IndexWriter w(&dir, analyzer, true); - auto field_name = lucene::util::Misc::_charToWide("chinese"); - - Document doc; - auto field = _CLNEW Field(field_name, Field::INDEX_TOKENIZED | Field::STORE_NO); - doc.add(*field); - - - const char* field_value_data = "人民可以得到更多实惠"; - auto stringReader = - _CLNEW lucene::util::SimpleInputStreamReader(new lucene::util::AStringReader(field_value_data), lucene::util::SimpleInputStreamReader::UTF8); - field->setValue(stringReader); - w.addDocument(&doc); - - const char* field_value_data1 = "中国人民银行"; - auto stringReader1 = - _CLNEW lucene::util::SimpleInputStreamReader(new lucene::util::AStringReader(field_value_data1), lucene::util::SimpleInputStreamReader::UTF8); - field->setValue(stringReader1); - w.addDocument(&doc); - - const char* field_value_data2 = "洛杉矶人,洛杉矶居民"; - auto stringReader2 = - _CLNEW lucene::util::SimpleInputStreamReader(new lucene::util::AStringReader(field_value_data2), lucene::util::SimpleInputStreamReader::UTF8); - field->setValue(stringReader2); - w.addDocument(&doc); - - const char* field_value_data3 = "民族,人民"; - auto stringReader3 = - _CLNEW lucene::util::SimpleInputStreamReader(new lucene::util::AStringReader(field_value_data3), lucene::util::SimpleInputStreamReader::UTF8); - field->setValue(stringReader3); - w.addDocument(&doc); - - w.close(); - + try { + IndexWriter w(&dir, analyzer.get(), true); + w.setUseCompoundFile(false); + + Document doc; + auto field = _CLNEW Field(field_name, Field::INDEX_TOKENIZED | Field::STORE_NO); + doc.add(*field); + + const char* field_value_data = "人民可以得到更多实惠"; + auto stringReader = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data, strlen(field_value_data), false); + auto* stream = analyzer->tokenStream(field->name(), stringReader.get()); + field->setValue(stream); + w.addDocument(&doc); + + const char* field_value_data1 = "中国人民银行"; + auto stringReader1 = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data1, strlen(field_value_data1), false); + auto* stream1 = analyzer->tokenStream(field->name(), stringReader1.get()); + field->setValue(stream1); + w.addDocument(&doc); + + const char* field_value_data2 = "洛杉矶人,洛杉矶居民"; + auto stringReader2 = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data2, strlen(field_value_data2), false); + auto* stream2 = analyzer->tokenStream(field->name(), stringReader2.get()); + field->setValue(stream2); + w.addDocument(&doc); + + const char* field_value_data3 = "民族,人民"; + auto stringReader3 = std::make_unique<lucene::util::SStringReader<char>>( + field_value_data3, strlen(field_value_data3), false); + auto* stream3 = analyzer->tokenStream(field->name(), stringReader3.get()); + field->setValue(stream3); + w.addDocument(&doc); + + w.close(); + doc.clear(); + _CLDELETE(stream) + _CLDELETE(stream1) + _CLDELETE(stream2) + _CLDELETE(stream3) + } catch (const CLuceneError& e) { + std::cout << "clucene error in testChineseMatch:" << e.what(); + } IndexSearcher searcher(&dir); - lucene::util::Reader* reader = nullptr; - std::vector<std::wstring> analyse_result; + std::vector<std::string> analyse_result; const char* value = "民族"; - analyzer = _CLNEW lucene::analysis::LanguageBasedAnalyzer(L"cjk", false); - reader = _CLNEW lucene::util::SimpleInputStreamReader(new lucene::util::AStringReader(value), lucene::util::SimpleInputStreamReader::UTF8); - - lucene::analysis::TokenStream* token_stream = analyzer->tokenStream(field_name, reader); + auto analyzer1 = std::make_unique<lucene::analysis::LanguageBasedAnalyzer>(L"cjk", false); + auto reader = std::make_unique<lucene::util::SStringReader<char>>(value, strlen(value), false); + lucene::analysis::TokenStream* token_stream = analyzer1->tokenStream(field_name, reader.get()); lucene::analysis::Token token; while (token_stream->next(&token)) { - if(token.termLength<TCHAR>() != 0) { - analyse_result.emplace_back(token.termBuffer<TCHAR>(), token.termLength<TCHAR>()); + if (token.termLength<char>() != 0) { + analyse_result.emplace_back(token.termBuffer<char>(), token.termLength<char>()); } } if (token_stream != nullptr) { token_stream->close(); } - - lucene::search::Query* query = _CLNEW lucene::search::BooleanQuery(); + _CLDELETE(token_stream) + auto query = std::make_unique<lucene::search::BooleanQuery>(); for (const auto& t : analyse_result) { - //std::wstring token_ws = std::wstring(token.begin(), token.end()); - auto* term = - _CLNEW lucene::index::Term(field_name, t.c_str()); - dynamic_cast<lucene::search::BooleanQuery*>(query) + std::wstring token_ws = StringUtil::string_to_wstring(t); + auto* term = _CLNEW lucene::index::Term(field_name, token_ws.c_str()); + dynamic_cast<lucene::search::BooleanQuery*>(query.get()) ->add(_CLNEW lucene::search::TermQuery(term), true, lucene::search::BooleanClause::SHOULD); _CLDECDELETE(term); } - Hits *hits1 = searcher.search(query); + Hits* hits1 = searcher.search(query.get()); CLUCENE_ASSERT(1 == hits1->length()); - - doc.clear(); + _CLDELETE(hits1) + _CLDELETE_ARRAY(field_name) } void testLanguageBasedAnalyzer(CuTest* tc) { @@ -1283,8 +1443,8 @@ void testLanguageBasedAnalyzer(CuTest* tc) { _CLDELETE(ts); } -CuSuite *testchinese(void) { - CuSuite *suite = CuSuiteNew(_T("CLucene chinese tokenizer Test")); +CuSuite* testchinese(void) { + CuSuite* suite = CuSuiteNew(_T("CLucene chinese tokenizer Test")); SUITE_ADD_TEST(suite, testFile); SUITE_ADD_TEST(suite, testCJK); diff --git a/src/test/tests.cpp b/src/test/tests.cpp index 372a4a28..d703e159 100644 --- a/src/test/tests.cpp +++ b/src/test/tests.cpp @@ -17,6 +17,6 @@ unittest tests[] = { {"strconvert", testStrConvert}, {"searchRange", testSearchRange}, #ifdef TEST_CONTRIB_LIBS - //{"chinese", testchinese}, + {"chinese", testchinese}, #endif {"LastTest", NULL}}; --------------------------------------------------------------------- To unsubscribe, e-mail: commits-unsubscr...@doris.apache.org For additional commands, e-mail: commits-h...@doris.apache.org