Added: 
dev/commons/statistics/1.0-RC1/site/xref-test/org/apache/commons/statistics/distribution/TruncatedNormalDistributionTest.html
==============================================================================
--- 
dev/commons/statistics/1.0-RC1/site/xref-test/org/apache/commons/statistics/distribution/TruncatedNormalDistributionTest.html
 (added)
+++ 
dev/commons/statistics/1.0-RC1/site/xref-test/org/apache/commons/statistics/distribution/TruncatedNormalDistributionTest.html
 Thu Dec  1 16:47:12 2022
@@ -0,0 +1,412 @@
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";>
+<html xmlns="http://www.w3.org/1999/xhtml"; xml:lang="en" lang="en">
+<head><meta http-equiv="content-type" content="text/html; charset=UTF-8" />
+<title>TruncatedNormalDistributionTest xref</title>
+<link type="text/css" rel="stylesheet" href="../../../../../stylesheet.css" />
+</head>
+<body>
+<div id="overview"><a 
href="../../../../../../testapidocs/org/apache/commons/statistics/distribution/TruncatedNormalDistributionTest.html">View
 Javadoc</a></div><pre>
+<a class="jxr_linenumber" name="L1" href="#L1">1</a>   <em 
class="jxr_comment">/*</em>
+<a class="jxr_linenumber" name="L2" href="#L2">2</a>   <em 
class="jxr_comment"> * Licensed to the Apache Software Foundation (ASF) under 
one or more</em>
+<a class="jxr_linenumber" name="L3" href="#L3">3</a>   <em 
class="jxr_comment"> * contributor license agreements.  See the NOTICE file 
distributed with</em>
+<a class="jxr_linenumber" name="L4" href="#L4">4</a>   <em 
class="jxr_comment"> * this work for additional information regarding copyright 
ownership.</em>
+<a class="jxr_linenumber" name="L5" href="#L5">5</a>   <em 
class="jxr_comment"> * The ASF licenses this file to You under the Apache 
License, Version 2.0</em>
+<a class="jxr_linenumber" name="L6" href="#L6">6</a>   <em 
class="jxr_comment"> * (the "License"); you may not use this file except in 
compliance with</em>
+<a class="jxr_linenumber" name="L7" href="#L7">7</a>   <em 
class="jxr_comment"> * the License.  You may obtain a copy of the License 
at</em>
+<a class="jxr_linenumber" name="L8" href="#L8">8</a>   <em 
class="jxr_comment"> *</em>
+<a class="jxr_linenumber" name="L9" href="#L9">9</a>   <em 
class="jxr_comment"> *      <a 
href="http://www.apache.org/licenses/LICENSE-2.0"; 
target="alexandria_uri">http://www.apache.org/licenses/LICENSE-2.0</a></em>
+<a class="jxr_linenumber" name="L10" href="#L10">10</a>  <em 
class="jxr_comment"> *</em>
+<a class="jxr_linenumber" name="L11" href="#L11">11</a>  <em 
class="jxr_comment"> * Unless required by applicable law or agreed to in 
writing, software</em>
+<a class="jxr_linenumber" name="L12" href="#L12">12</a>  <em 
class="jxr_comment"> * distributed under the License is distributed on an "AS 
IS" BASIS,</em>
+<a class="jxr_linenumber" name="L13" href="#L13">13</a>  <em 
class="jxr_comment"> * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either 
express or implied.</em>
+<a class="jxr_linenumber" name="L14" href="#L14">14</a>  <em 
class="jxr_comment"> * See the License for the specific language governing 
permissions and</em>
+<a class="jxr_linenumber" name="L15" href="#L15">15</a>  <em 
class="jxr_comment"> * limitations under the License.</em>
+<a class="jxr_linenumber" name="L16" href="#L16">16</a>  <em 
class="jxr_comment"> */</em>
+<a class="jxr_linenumber" name="L17" href="#L17">17</a>  
+<a class="jxr_linenumber" name="L18" href="#L18">18</a>  <strong 
class="jxr_keyword">package</strong> org.apache.commons.statistics.distribution;
+<a class="jxr_linenumber" name="L19" href="#L19">19</a>  
+<a class="jxr_linenumber" name="L20" href="#L20">20</a>  <strong 
class="jxr_keyword">import</strong> org.apache.commons.numbers.gamma.Erf;
+<a class="jxr_linenumber" name="L21" href="#L21">21</a>  <strong 
class="jxr_keyword">import</strong> org.apache.commons.numbers.gamma.Erfcx;
+<a class="jxr_linenumber" name="L22" href="#L22">22</a>  <strong 
class="jxr_keyword">import</strong> org.junit.jupiter.api.Assertions;
+<a class="jxr_linenumber" name="L23" href="#L23">23</a>  <strong 
class="jxr_keyword">import</strong> org.junit.jupiter.api.Test;
+<a class="jxr_linenumber" name="L24" href="#L24">24</a>  <strong 
class="jxr_keyword">import</strong> org.junit.jupiter.params.ParameterizedTest;
+<a class="jxr_linenumber" name="L25" href="#L25">25</a>  <strong 
class="jxr_keyword">import</strong> org.junit.jupiter.params.provider.CsvSource;
+<a class="jxr_linenumber" name="L26" href="#L26">26</a>  
+<a class="jxr_linenumber" name="L27" href="#L27">27</a>  <em 
class="jxr_javadoccomment">/**</em>
+<a class="jxr_linenumber" name="L28" href="#L28">28</a>  <em 
class="jxr_javadoccomment"> * Test class for {@link 
TruncatedNormalDistribution}.</em>
+<a class="jxr_linenumber" name="L29" href="#L29">29</a>  <em 
class="jxr_javadoccomment"> * Extends {@link BaseContinuousDistributionTest}. 
See javadoc of that class for details.</em>
+<a class="jxr_linenumber" name="L30" href="#L30">30</a>  <em 
class="jxr_javadoccomment"> * All test values were computed using Python with 
SciPy v1.6.0.</em>
+<a class="jxr_linenumber" name="L31" href="#L31">31</a>  <em 
class="jxr_javadoccomment"> */</em>
+<a class="jxr_linenumber" name="L32" href="#L32">32</a>  <strong 
class="jxr_keyword">class</strong> <a name="TruncatedNormalDistributionTest" 
href="../../../../../org/apache/commons/statistics/distribution/TruncatedNormalDistributionTest.html#TruncatedNormalDistributionTest">TruncatedNormalDistributionTest</a>
 <strong class="jxr_keyword">extends</strong> <a 
name="BaseContinuousDistributionTest" 
href="../../../../../org/apache/commons/statistics/distribution/BaseContinuousDistributionTest.html#BaseContinuousDistributionTest">BaseContinuousDistributionTest</a>
 {
+<a class="jxr_linenumber" name="L33" href="#L33">33</a>      @Override
+<a class="jxr_linenumber" name="L34" href="#L34">34</a>      
ContinuousDistribution makeDistribution(Object... parameters) {
+<a class="jxr_linenumber" name="L35" href="#L35">35</a>          <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
mean = (Double) parameters[0];
+<a class="jxr_linenumber" name="L36" href="#L36">36</a>          <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
sd = (Double) parameters[1];
+<a class="jxr_linenumber" name="L37" href="#L37">37</a>          <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
upper = (Double) parameters[2];
+<a class="jxr_linenumber" name="L38" href="#L38">38</a>          <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
lower = (Double) parameters[3];
+<a class="jxr_linenumber" name="L39" href="#L39">39</a>          <strong 
class="jxr_keyword">return</strong> TruncatedNormalDistribution.of(mean, sd, 
upper, lower);
+<a class="jxr_linenumber" name="L40" href="#L40">40</a>      }
+<a class="jxr_linenumber" name="L41" href="#L41">41</a>  
+<a class="jxr_linenumber" name="L42" href="#L42">42</a>      @Override
+<a class="jxr_linenumber" name="L43" href="#L43">43</a>      Object[][] 
makeInvalidParameters() {
+<a class="jxr_linenumber" name="L44" href="#L44">44</a>          <strong 
class="jxr_keyword">return</strong> <strong class="jxr_keyword">new</strong> 
Object[][] {
+<a class="jxr_linenumber" name="L45" href="#L45">45</a>              {0.0, 
0.0, -1.0, 1.0},
+<a class="jxr_linenumber" name="L46" href="#L46">46</a>              {0.0, 
-0.1, -1.0, 1.0},
+<a class="jxr_linenumber" name="L47" href="#L47">47</a>              {0.0, 
1.0, 1.0, -1.0},
+<a class="jxr_linenumber" name="L48" href="#L48">48</a>              <em 
class="jxr_comment">// No usable probability range</em>
+<a class="jxr_linenumber" name="L49" href="#L49">49</a>              {0.0, 
1.0, 100.0, 101.0},
+<a class="jxr_linenumber" name="L50" href="#L50">50</a>          };
+<a class="jxr_linenumber" name="L51" href="#L51">51</a>      }
+<a class="jxr_linenumber" name="L52" href="#L52">52</a>  
+<a class="jxr_linenumber" name="L53" href="#L53">53</a>      @Override
+<a class="jxr_linenumber" name="L54" href="#L54">54</a>      String[] 
getParameterNames() {
+<a class="jxr_linenumber" name="L55" href="#L55">55</a>          <em 
class="jxr_comment">// Input mean and standard deviation refer to the 
underlying normal distribution.</em>
+<a class="jxr_linenumber" name="L56" href="#L56">56</a>          <em 
class="jxr_comment">// The constructor arguments do not match the mean and SD 
of the truncated distribution.</em>
+<a class="jxr_linenumber" name="L57" href="#L57">57</a>          <strong 
class="jxr_keyword">return</strong> <strong class="jxr_keyword">new</strong> 
String[] {<strong class="jxr_keyword">null</strong>, <strong 
class="jxr_keyword">null</strong>, <span 
class="jxr_string">"SupportLowerBound"</span>, <span 
class="jxr_string">"SupportUpperBound"</span>};
+<a class="jxr_linenumber" name="L58" href="#L58">58</a>      }
+<a class="jxr_linenumber" name="L59" href="#L59">59</a>  
+<a class="jxr_linenumber" name="L60" href="#L60">60</a>      @Override
+<a class="jxr_linenumber" name="L61" href="#L61">61</a>      <strong 
class="jxr_keyword">protected</strong> <strong 
class="jxr_keyword">double</strong> getRelativeTolerance() {
+<a class="jxr_linenumber" name="L62" href="#L62">62</a>          <strong 
class="jxr_keyword">return</strong> 1e-14;
+<a class="jxr_linenumber" name="L63" href="#L63">63</a>      }
+<a class="jxr_linenumber" name="L64" href="#L64">64</a>  
+<a class="jxr_linenumber" name="L65" href="#L65">65</a>      <em 
class="jxr_comment">//-------------------- Additional test cases 
-------------------------------</em>
+<a class="jxr_linenumber" name="L66" href="#L66">66</a>  
+<a class="jxr_linenumber" name="L67" href="#L67">67</a>      <em 
class="jxr_javadoccomment">/**</em>
+<a class="jxr_linenumber" name="L68" href="#L68">68</a>  <em 
class="jxr_javadoccomment">     * Hit the edge cases where the lower and upper 
bound are not infinite but the</em>
+<a class="jxr_linenumber" name="L69" href="#L69">69</a>  <em 
class="jxr_javadoccomment">     * CDF of the parent distribution is either 0 or 
1. This is effectively no truncation.</em>
+<a class="jxr_linenumber" name="L70" href="#L70">70</a>  <em 
class="jxr_javadoccomment">     * Big finite bounds should be handled as if 
infinite when computing the moments.</em>
+<a class="jxr_linenumber" name="L71" href="#L71">71</a>  <em 
class="jxr_javadoccomment">     *</em>
+<a class="jxr_linenumber" name="L72" href="#L72">72</a>  <em 
class="jxr_javadoccomment">     * @param mean Mean for the parent 
distribution.</em>
+<a class="jxr_linenumber" name="L73" href="#L73">73</a>  <em 
class="jxr_javadoccomment">     * @param sd Standard deviation for the parent 
distribution.</em>
+<a class="jxr_linenumber" name="L74" href="#L74">74</a>  <em 
class="jxr_javadoccomment">     * @param lower Lower bound (inclusive) of the 
distribution, can be {@link Double#NEGATIVE_INFINITY}.</em>
+<a class="jxr_linenumber" name="L75" href="#L75">75</a>  <em 
class="jxr_javadoccomment">     * @param upper Upper bound (inclusive) of the 
distribution, can be {@link Double#POSITIVE_INFINITY}.</em>
+<a class="jxr_linenumber" name="L76" href="#L76">76</a>  <em 
class="jxr_javadoccomment">     */</em>
+<a class="jxr_linenumber" name="L77" href="#L77">77</a>      @ParameterizedTest
+<a class="jxr_linenumber" name="L78" href="#L78">78</a>      @CsvSource({
+<a class="jxr_linenumber" name="L79" href="#L79">79</a>          <span 
class="jxr_string">"0.0, 1.0, -4, 6"</span>,
+<a class="jxr_linenumber" name="L80" href="#L80">80</a>          <span 
class="jxr_string">"1.0, 2.0, -4, 6"</span>,
+<a class="jxr_linenumber" name="L81" href="#L81">81</a>          <span 
class="jxr_string">"3.45, 6.78, -8, 10"</span>,
+<a class="jxr_linenumber" name="L82" href="#L82">82</a>      })
+<a class="jxr_linenumber" name="L83" href="#L83">83</a>      <strong 
class="jxr_keyword">void</strong> testMomentsEffectivelyNoTruncation(<strong 
class="jxr_keyword">double</strong> mean, <strong 
class="jxr_keyword">double</strong> sd, <strong 
class="jxr_keyword">double</strong> lower, <strong 
class="jxr_keyword">double</strong> upper) {
+<a class="jxr_linenumber" name="L84" href="#L84">84</a>          <strong 
class="jxr_keyword">double</strong> inf = Double.POSITIVE_INFINITY;
+<a class="jxr_linenumber" name="L85" href="#L85">85</a>          <strong 
class="jxr_keyword">double</strong> max = Double.MAX_VALUE;
+<a class="jxr_linenumber" name="L86" href="#L86">86</a>          
TruncatedNormalDistribution dist1;
+<a class="jxr_linenumber" name="L87" href="#L87">87</a>          
TruncatedNormalDistribution dist2;
+<a class="jxr_linenumber" name="L88" href="#L88">88</a>          <em 
class="jxr_comment">// truncation of upper tail</em>
+<a class="jxr_linenumber" name="L89" href="#L89">89</a>          dist1 = 
TruncatedNormalDistribution.of(mean, sd, -inf, upper);
+<a class="jxr_linenumber" name="L90" href="#L90">90</a>          dist2 = 
TruncatedNormalDistribution.of(mean, sd, -max, upper);
+<a class="jxr_linenumber" name="L91" href="#L91">91</a>          
Assertions.assertEquals(dist1.getMean(), dist2.getMean(), <span 
class="jxr_string">"Mean"</span>);
+<a class="jxr_linenumber" name="L92" href="#L92">92</a>          
Assertions.assertEquals(dist1.getVariance(), dist2.getVariance(), <span 
class="jxr_string">"Variance"</span>);
+<a class="jxr_linenumber" name="L93" href="#L93">93</a>          <em 
class="jxr_comment">// truncation of lower tail</em>
+<a class="jxr_linenumber" name="L94" href="#L94">94</a>          dist1 = 
TruncatedNormalDistribution.of(mean, sd, lower, inf);
+<a class="jxr_linenumber" name="L95" href="#L95">95</a>          dist2 = 
TruncatedNormalDistribution.of(mean, sd, lower, max);
+<a class="jxr_linenumber" name="L96" href="#L96">96</a>          
Assertions.assertEquals(dist1.getMean(), dist2.getMean(), <span 
class="jxr_string">"Mean"</span>);
+<a class="jxr_linenumber" name="L97" href="#L97">97</a>          
Assertions.assertEquals(dist1.getVariance(), dist2.getVariance(), <span 
class="jxr_string">"Variance"</span>);
+<a class="jxr_linenumber" name="L98" href="#L98">98</a>          <em 
class="jxr_comment">// no truncation</em>
+<a class="jxr_linenumber" name="L99" href="#L99">99</a>          dist1 = 
TruncatedNormalDistribution.of(mean, sd, -inf, inf);
+<a class="jxr_linenumber" name="L100" href="#L100">100</a>         dist2 = 
TruncatedNormalDistribution.of(mean, sd, -max, max);
+<a class="jxr_linenumber" name="L101" href="#L101">101</a>         
Assertions.assertEquals(dist1.getMean(), dist2.getMean(), <span 
class="jxr_string">"Mean"</span>);
+<a class="jxr_linenumber" name="L102" href="#L102">102</a>         
Assertions.assertEquals(dist1.getVariance(), dist2.getVariance(), <span 
class="jxr_string">"Variance"</span>);
+<a class="jxr_linenumber" name="L103" href="#L103">103</a>     }
+<a class="jxr_linenumber" name="L104" href="#L104">104</a> 
+<a class="jxr_linenumber" name="L105" href="#L105">105</a>     <em 
class="jxr_javadoccomment">/**</em>
+<a class="jxr_linenumber" name="L106" href="#L106">106</a> <em 
class="jxr_javadoccomment">     * Test mean cases adapted from the source 
implementation for the truncated</em>
+<a class="jxr_linenumber" name="L107" href="#L107">107</a> <em 
class="jxr_javadoccomment">     * normal moments.</em>
+<a class="jxr_linenumber" name="L108" href="#L108">108</a> <em 
class="jxr_javadoccomment">     *</em>
+<a class="jxr_linenumber" name="L109" href="#L109">109</a> <em 
class="jxr_javadoccomment">     * @see &lt;a href="<a 
href="https://github.com/cossio/TruncatedNormal.jl/blob/master/test/tnmom1.jl"; 
target="alexandria_uri">https://github.com/cossio/TruncatedNormal.jl/blob/master/test/tnmom1.jl</a>"&gt;</em>
+<a class="jxr_linenumber" name="L110" href="#L110">110</a> <em 
class="jxr_javadoccomment">     * cossio TruncatedNormal moment1 
tests&lt;/a&gt;</em>
+<a class="jxr_linenumber" name="L111" href="#L111">111</a> <em 
class="jxr_javadoccomment">     */</em>
+<a class="jxr_linenumber" name="L112" href="#L112">112</a>     @Test
+<a class="jxr_linenumber" name="L113" href="#L113">113</a>     <strong 
class="jxr_keyword">void</strong> testMean() {
+<a class="jxr_linenumber" name="L114" href="#L114">114</a>         
assertMean(Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, 0, 0);
+<a class="jxr_linenumber" name="L115" href="#L115">115</a>         
assertMean(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, 
Double.POSITIVE_INFINITY, 0);
+<a class="jxr_linenumber" name="L116" href="#L116">116</a>         
assertMean(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, 
Double.NEGATIVE_INFINITY, 0);
+<a class="jxr_linenumber" name="L117" href="#L117">117</a>         
assertMean(0, Double.POSITIVE_INFINITY, Math.sqrt(2 / Math.PI), 1e-15);
+<a class="jxr_linenumber" name="L118" href="#L118">118</a>         
assertMean(Double.NEGATIVE_INFINITY, 0, -Math.sqrt(2 / Math.PI), 1e-15);
+<a class="jxr_linenumber" name="L119" href="#L119">119</a> 
+<a class="jxr_linenumber" name="L120" href="#L120">120</a>         <strong 
class="jxr_keyword">for</strong> (<strong class="jxr_keyword">int</strong> x = 
-10; x &lt;= 10; x++) {
+<a class="jxr_linenumber" name="L121" href="#L121">121</a>             <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
expected = Math.sqrt(2 / Math.PI) / Erfcx.value(x / Math.sqrt(2));
+<a class="jxr_linenumber" name="L122" href="#L122">122</a>             
assertMean(x, Double.POSITIVE_INFINITY, expected, 1e-15);
+<a class="jxr_linenumber" name="L123" href="#L123">123</a>         }
+<a class="jxr_linenumber" name="L124" href="#L124">124</a> 
+<a class="jxr_linenumber" name="L125" href="#L125">125</a>         <strong 
class="jxr_keyword">for</strong> (<strong class="jxr_keyword">int</strong> i = 
-100; i &lt;= 100; i++) {
+<a class="jxr_linenumber" name="L126" href="#L126">126</a>             <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
x = Math.exp(i);
+<a class="jxr_linenumber" name="L127" href="#L127">127</a>             
assertMean(-x, x, 0, 0);
+<a class="jxr_linenumber" name="L128" href="#L128">128</a>             <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
expected = -Math.sqrt(2 / Math.PI) * Math.expm1(-x * x / 2) / Erf.value(x / 
Math.sqrt(2));
+<a class="jxr_linenumber" name="L129" href="#L129">129</a>             
assertMean(0, x, expected, 1e-15);
+<a class="jxr_linenumber" name="L130" href="#L130">130</a>         }
+<a class="jxr_linenumber" name="L131" href="#L131">131</a> 
+<a class="jxr_linenumber" name="L132" href="#L132">132</a>         
assertMean(1e-44, 1e-43, 5.4999999999999999999999999999999999999999e-44, 1e-15);
+<a class="jxr_linenumber" name="L133" href="#L133">133</a> 
+<a class="jxr_linenumber" name="L134" href="#L134">134</a>         
assertMean(100, 115, 100.00999800099926070518490239457545847490332879043, 
1e-15);
+<a class="jxr_linenumber" name="L135" href="#L135">135</a>         
assertMean(-1e6, -999000, -999000.00000100100100099899498898098, 1e-15);
+<a class="jxr_linenumber" name="L136" href="#L136">136</a>         
assertMean(+1e6, Double.POSITIVE_INFINITY, +1.00000000000099999999999800000e6, 
1e-15);
+<a class="jxr_linenumber" name="L137" href="#L137">137</a>         
assertMean(Double.NEGATIVE_INFINITY, -1e6, -1.00000000000099999999999800000e6, 
1e-15);
+<a class="jxr_linenumber" name="L138" href="#L138">138</a> 
+<a class="jxr_linenumber" name="L139" href="#L139">139</a>         
assertMean(-1e200, 1e200, 0, 1e-15);
+<a class="jxr_linenumber" name="L140" href="#L140">140</a>         
assertMean(0, +1e200, +0.797884560802865355879892119869, 1e-15);
+<a class="jxr_linenumber" name="L141" href="#L141">141</a>         
assertMean(-1e200, 0, -0.797884560802865355879892119869, 1e-15);
+<a class="jxr_linenumber" name="L142" href="#L142">142</a> 
+<a class="jxr_linenumber" name="L143" href="#L143">143</a>         
assertMean(50, 70, -2, 3, 50.171943499898757645751683644632860837133138152489, 
1e-15);
+<a class="jxr_linenumber" name="L144" href="#L144">144</a>         
assertMean(-100.0, 0.0, 0.0, 2.0986317998643735, 
-1.6744659119217125058885983754999713622460154892645, 1e-15);
+<a class="jxr_linenumber" name="L145" href="#L145">145</a>         
assertMean(0.0, 0.9, 0.0, 0.07132755843183151, 
0.056911157632522598806524588414964004271754161737065, 1e-15);
+<a class="jxr_linenumber" name="L146" href="#L146">146</a>         
assertMean(-100.0, 100.0, 0.0, 17.185261847875548, 0, 1e-15);
+<a class="jxr_linenumber" name="L147" href="#L147">147</a>         
assertMean(-100.0, 0.5, 0.0, 0.47383322897860064, 
-0.1267981330521791493635176736743283314399, 1e-15);
+<a class="jxr_linenumber" name="L148" href="#L148">148</a>         
assertMean(-100.0, 100.0, 0.0, 17.185261847875548, 0, 1e-15);
+<a class="jxr_linenumber" name="L149" href="#L149">149</a> 
+<a class="jxr_linenumber" name="L150" href="#L150">150</a>         <strong 
class="jxr_keyword">for</strong> (<strong class="jxr_keyword">int</strong> i = 
-10; i &lt;= 10; i++) {
+<a class="jxr_linenumber" name="L151" href="#L151">151</a>             <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
a = Math.exp(i);
+<a class="jxr_linenumber" name="L152" href="#L152">152</a>             <strong 
class="jxr_keyword">for</strong> (<strong class="jxr_keyword">int</strong> j = 
-10; j &lt;= 10; j++) {
+<a class="jxr_linenumber" name="L153" href="#L153">153</a>                 
<strong class="jxr_keyword">final</strong> <strong 
class="jxr_keyword">double</strong> b = Math.exp(j);
+<a class="jxr_linenumber" name="L154" href="#L154">154</a>                 
<strong class="jxr_keyword">if</strong> (a &lt;= b) {
+<a class="jxr_linenumber" name="L155" href="#L155">155</a>                     
<strong class="jxr_keyword">final</strong> <strong 
class="jxr_keyword">double</strong> mean = 
TruncatedNormalDistribution.moment1(a, b);
+<a class="jxr_linenumber" name="L156" href="#L156">156</a>                     
Assertions.assertTrue(a &lt;= mean &amp;&amp; mean &lt;= b);
+<a class="jxr_linenumber" name="L157" href="#L157">157</a>                 }
+<a class="jxr_linenumber" name="L158" href="#L158">158</a>             }
+<a class="jxr_linenumber" name="L159" href="#L159">159</a>         }
+<a class="jxr_linenumber" name="L160" href="#L160">160</a> 
+<a class="jxr_linenumber" name="L161" href="#L161">161</a>         <em 
class="jxr_comment">// 
https://github.com/JuliaStats/Distributions.jl/issues/827, 1e-15);</em>
+<a class="jxr_linenumber" name="L162" href="#L162">162</a>         
assertMean(0, 1000, 1000000, 1, 
999.99999899899899900100501101901899090472046236710608108591983, 6e-14);
+<a class="jxr_linenumber" name="L163" href="#L163">163</a>     }
+<a class="jxr_linenumber" name="L164" href="#L164">164</a> 
+<a class="jxr_linenumber" name="L165" href="#L165">165</a>     <em 
class="jxr_javadoccomment">/**</em>
+<a class="jxr_linenumber" name="L166" href="#L166">166</a> <em 
class="jxr_javadoccomment">     * Test variance cases adapted from the source 
implementation for the truncated</em>
+<a class="jxr_linenumber" name="L167" href="#L167">167</a> <em 
class="jxr_javadoccomment">     * normal moments.</em>
+<a class="jxr_linenumber" name="L168" href="#L168">168</a> <em 
class="jxr_javadoccomment">     *</em>
+<a class="jxr_linenumber" name="L169" href="#L169">169</a> <em 
class="jxr_javadoccomment">     * @see &lt;a href="<a 
href="https://github.com/cossio/TruncatedNormal.jl/blob/master/test/tnvar.jl"; 
target="alexandria_uri">https://github.com/cossio/TruncatedNormal.jl/blob/master/test/tnvar.jl</a>"&gt;</em>
+<a class="jxr_linenumber" name="L170" href="#L170">170</a> <em 
class="jxr_javadoccomment">     * cossio TruncatedNormal variance 
tests&lt;/a&gt;</em>
+<a class="jxr_linenumber" name="L171" href="#L171">171</a> <em 
class="jxr_javadoccomment">     */</em>
+<a class="jxr_linenumber" name="L172" href="#L172">172</a>     @Test
+<a class="jxr_linenumber" name="L173" href="#L173">173</a>     <strong 
class="jxr_keyword">void</strong> testVariance() {
+<a class="jxr_linenumber" name="L174" href="#L174">174</a>         
assertVariance(Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, 1, 0);
+<a class="jxr_linenumber" name="L175" href="#L175">175</a>         
assertVariance(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, 0, 0);
+<a class="jxr_linenumber" name="L176" href="#L176">176</a>         
assertVariance(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, 0, 0);
+<a class="jxr_linenumber" name="L177" href="#L177">177</a>         
assertVariance(0, Double.POSITIVE_INFINITY, 1 - 2 / Math.PI, 1e-15);
+<a class="jxr_linenumber" name="L178" href="#L178">178</a>         
assertVariance(Double.NEGATIVE_INFINITY, 0, 1 - 2 / Math.PI, 1e-15);
+<a class="jxr_linenumber" name="L179" href="#L179">179</a> 
+<a class="jxr_linenumber" name="L180" href="#L180">180</a>         <strong 
class="jxr_keyword">for</strong> (<strong class="jxr_keyword">int</strong> x = 
-10; x &lt;= 10; x++) {
+<a class="jxr_linenumber" name="L181" href="#L181">181</a>             <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
expected = 1 + Math.sqrt(2 / Math.PI) * x / Erfcx.value(x / Math.sqrt(2)) -
+<a class="jxr_linenumber" name="L182" href="#L182">182</a>                 (2 
/ Math.PI) / Math.pow(Erfcx.value(x / Math.sqrt(2)), 2);
+<a class="jxr_linenumber" name="L183" href="#L183">183</a>             
assertVariance(x, Double.POSITIVE_INFINITY, expected, 1e-11);
+<a class="jxr_linenumber" name="L184" href="#L184">184</a>         }
+<a class="jxr_linenumber" name="L185" href="#L185">185</a> 
+<a class="jxr_linenumber" name="L186" href="#L186">186</a>         
assertVariance(50, 70, 0.0003990431868038995479099272265360593305365, 1e-9);
+<a class="jxr_linenumber" name="L187" href="#L187">187</a> 
+<a class="jxr_linenumber" name="L188" href="#L188">188</a>         
assertVariance(50, 70, -2, 3, 
0.029373438107168350377591231295634273607812172191712, 1e-11);
+<a class="jxr_linenumber" name="L189" href="#L189">189</a>         
assertVariance(-100.0, 0.0, 0.0, 2.0986317998643735, 
1.6004193412141677189841357987638847137391508803335, 1e-15);
+<a class="jxr_linenumber" name="L190" href="#L190">190</a>         
assertVariance(0.0, 0.9, 0.0, 0.07132755843183151, 
0.0018487407287725028827020557707636415445504260892486, 1e-15);
+<a class="jxr_linenumber" name="L191" href="#L191">191</a>         
assertVariance(-100.0, 100.0, 0.0, 17.185261847875548, 
295.333163899557735486302841237124507431445, 1e-15);
+<a class="jxr_linenumber" name="L192" href="#L192">192</a>         
assertVariance(-100.0, 0.5, 0.0, 0.47383322897860064, 
0.145041095812679283837328561547251019229612, 1e-15);
+<a class="jxr_linenumber" name="L193" href="#L193">193</a>         
assertVariance(-100.0, 100.0, 0.0, 17.185261847875548, 
295.333163899557735486302841237124507431445, 1e-15);
+<a class="jxr_linenumber" name="L194" href="#L194">194</a>         
assertVariance(-10000, 10000, 0, 1, 1, 1e-15);
+<a class="jxr_linenumber" name="L195" href="#L195">195</a> 
+<a class="jxr_linenumber" name="L196" href="#L196">196</a>         <em 
class="jxr_comment">// 
https://github.com/JuliaStats/Distributions.jl/issues/827</em>
+<a class="jxr_linenumber" name="L197" href="#L197">197</a>         
Assertions.assertTrue(TruncatedNormalDistribution.variance(999000, 1e6) &gt;= 
0);
+<a class="jxr_linenumber" name="L198" href="#L198">198</a>         
Assertions.assertTrue(TruncatedNormalDistribution.variance(-1000000, 1000 - 
1000000) &gt;= 0);
+<a class="jxr_linenumber" name="L199" href="#L199">199</a> 
+<a class="jxr_linenumber" name="L200" href="#L200">200</a>         <em 
class="jxr_comment">// These tests are marked as broken in the reference 
implementation.</em>
+<a class="jxr_linenumber" name="L201" href="#L201">201</a>         <em 
class="jxr_comment">// They present extreme deviations of the truncation bounds 
from the mean.</em>
+<a class="jxr_linenumber" name="L202" href="#L202">202</a>         <em 
class="jxr_comment">//assertVariance(1e6, Double.POSITIVE_INFINITY, 
9.99999999994000000000050000000e-13, 1e-15);</em>
+<a class="jxr_linenumber" name="L203" href="#L203">203</a>         <em 
class="jxr_comment">//assertVariance(999000, 1e6, 
1.00200300399898194688784897455e-12, 1e-15);</em>
+<a class="jxr_linenumber" name="L204" href="#L204">204</a>         <em 
class="jxr_comment">//assertVariance(-1e6, -999000, 
1.00200300399898194688784897455e-12, 1e-15);</em>
+<a class="jxr_linenumber" name="L205" href="#L205">205</a>     }
+<a class="jxr_linenumber" name="L206" href="#L206">206</a> 
+<a class="jxr_linenumber" name="L207" href="#L207">207</a>     <em 
class="jxr_javadoccomment">/**</em>
+<a class="jxr_linenumber" name="L208" href="#L208">208</a> <em 
class="jxr_javadoccomment">     * Test cases for computation of the moments. 
This hits edge cases including truncations</em>
+<a class="jxr_linenumber" name="L209" href="#L209">209</a> <em 
class="jxr_javadoccomment">     * too extreme to have a probability range for 
the distribution.</em>
+<a class="jxr_linenumber" name="L210" href="#L210">210</a> <em 
class="jxr_javadoccomment">     * The test ensures that the moments are 
computable for parameterisations</em>
+<a class="jxr_linenumber" name="L211" href="#L211">211</a> <em 
class="jxr_javadoccomment">     * where the bounds fall within +/- 40 standard 
deviations from the mean.</em>
+<a class="jxr_linenumber" name="L212" href="#L212">212</a> <em 
class="jxr_javadoccomment">     *</em>
+<a class="jxr_linenumber" name="L213" href="#L213">213</a> <em 
class="jxr_javadoccomment">     * &lt;p&gt;Test data generated using a 128-bit 
implementation of the method using GCC lib quadmath</em>
+<a class="jxr_linenumber" name="L214" href="#L214">214</a> <em 
class="jxr_javadoccomment">     * and Boost C++ Error function routines adapted 
to compute erfcx. Data verified using</em>
+<a class="jxr_linenumber" name="L215" href="#L215">215</a> <em 
class="jxr_javadoccomment">     * the Julia implementation:</em>
+<a class="jxr_linenumber" name="L216" href="#L216">216</a> <em 
class="jxr_javadoccomment">     * &lt;pre&gt;</em>
+<a class="jxr_linenumber" name="L217" href="#L217">217</a> <em 
class="jxr_javadoccomment">     * import Pkg</em>
+<a class="jxr_linenumber" name="L218" href="#L218">218</a> <em 
class="jxr_javadoccomment">     * Pkg.add(url="<a 
href="https://github.com/cossio/TruncatedNormal.jl"; 
target="alexandria_uri">https://github.com/cossio/TruncatedNormal.jl</a>")</em>
+<a class="jxr_linenumber" name="L219" href="#L219">219</a> <em 
class="jxr_javadoccomment">     * using TruncatedNormal</em>
+<a class="jxr_linenumber" name="L220" href="#L220">220</a> <em 
class="jxr_javadoccomment">     *</em>
+<a class="jxr_linenumber" name="L221" href="#L221">221</a> <em 
class="jxr_javadoccomment">     * tnmean(1.23, 4.56)  # 1.7122093853640246</em>
+<a class="jxr_linenumber" name="L222" href="#L222">222</a> <em 
class="jxr_javadoccomment">     * tnvar(1.23, 4.56)   # 0.1739856461219162</em>
+<a class="jxr_linenumber" name="L223" href="#L223">223</a> <em 
class="jxr_javadoccomment">     *</em>
+<a class="jxr_linenumber" name="L224" href="#L224">224</a> <em 
class="jxr_javadoccomment">     * # Using BigFloat does not work on hard cases 
of the variance</em>
+<a class="jxr_linenumber" name="L225" href="#L225">225</a> <em 
class="jxr_javadoccomment">     * tnvar(BigFloat(1.0), 
BigFloat(1.0000000000000002))</em>
+<a class="jxr_linenumber" name="L226" href="#L226">226</a> <em 
class="jxr_javadoccomment">     * &lt;/pre&gt;</em>
+<a class="jxr_linenumber" name="L227" href="#L227">227</a> <em 
class="jxr_javadoccomment">     *</em>
+<a class="jxr_linenumber" name="L228" href="#L228">228</a> <em 
class="jxr_javadoccomment">     * &lt;p&gt;Computation of the mean is stable. 
Computation of the variance is not accurate as it</em>
+<a class="jxr_linenumber" name="L229" href="#L229">229</a> <em 
class="jxr_javadoccomment">     * approaches machine epsilon (2^-52). Using 
Julia's BigFloat support does not allow computation</em>
+<a class="jxr_linenumber" name="L230" href="#L230">230</a> <em 
class="jxr_javadoccomment">     * of the difficult cases listed below for the 
variance.</em>
+<a class="jxr_linenumber" name="L231" href="#L231">231</a> <em 
class="jxr_javadoccomment">     *</em>
+<a class="jxr_linenumber" name="L232" href="#L232">232</a> <em 
class="jxr_javadoccomment">     * @param lower Lower bound (inclusive) of the 
distribution, can be {@link Double#NEGATIVE_INFINITY}.</em>
+<a class="jxr_linenumber" name="L233" href="#L233">233</a> <em 
class="jxr_javadoccomment">     * @param upper Upper bound (inclusive) of the 
distribution, can be {@link Double#POSITIVE_INFINITY}.</em>
+<a class="jxr_linenumber" name="L234" href="#L234">234</a> <em 
class="jxr_javadoccomment">     * @param mean Expected mean</em>
+<a class="jxr_linenumber" name="L235" href="#L235">235</a> <em 
class="jxr_javadoccomment">     * @param variance Expected variance</em>
+<a class="jxr_linenumber" name="L236" href="#L236">236</a> <em 
class="jxr_javadoccomment">     * @param meanRelativeError Relative error 
tolerance for the mean</em>
+<a class="jxr_linenumber" name="L237" href="#L237">237</a> <em 
class="jxr_javadoccomment">     * @param varianceRelativeError Relative error 
tolerance for the variance</em>
+<a class="jxr_linenumber" name="L238" href="#L238">238</a> <em 
class="jxr_javadoccomment">     * (if set to negative the variance is allowed 
to be within 1.5 * epsilon of zero)</em>
+<a class="jxr_linenumber" name="L239" href="#L239">239</a> <em 
class="jxr_javadoccomment">     */</em>
+<a class="jxr_linenumber" name="L240" href="#L240">240</a>     
@ParameterizedTest
+<a class="jxr_linenumber" name="L241" href="#L241">241</a>     @CsvSource({
+<a class="jxr_linenumber" name="L242" href="#L242">242</a>         <em 
class="jxr_comment">// Equal bounds</em>
+<a class="jxr_linenumber" name="L243" href="#L243">243</a>         <span 
class="jxr_string">"1.23, 1.23, 1.23, 0, 0, 0"</span>,
+<a class="jxr_linenumber" name="L244" href="#L244">244</a>         <span 
class="jxr_string">"1.23, 4.56, 1.7122093853640246, 0.1739856461219162, 1e-15, 
5e-15"</span>,
+<a class="jxr_linenumber" name="L245" href="#L245">245</a> 
+<a class="jxr_linenumber" name="L246" href="#L246">246</a>         <em 
class="jxr_comment">// Effectively no truncation</em>
+<a class="jxr_linenumber" name="L247" href="#L247">247</a>         <span 
class="jxr_string">"-55, 60, 0, 1, 0, 0"</span>,
+<a class="jxr_linenumber" name="L248" href="#L248">248</a> 
+<a class="jxr_linenumber" name="L249" href="#L249">249</a>         <em 
class="jxr_comment">// Long tail</em>
+<a class="jxr_linenumber" name="L250" href="#L250">250</a>         <span 
class="jxr_string">"-100, 101, 1.3443134677817230433408433600205167e-2172, 1, 
1e-15, 1e-15"</span>,
+<a class="jxr_linenumber" name="L251" href="#L251">251</a>         <span 
class="jxr_string">"-40, 101, 1.46327025083830317873709720033828097e-348, 1, 
1e-15, 1e-15"</span>,
+<a class="jxr_linenumber" name="L252" href="#L252">252</a>         <span 
class="jxr_string">"-30, 101, 1.47364613487854751904949326604507453e-196, 1, 
1e-15, 1e-15"</span>,
+<a class="jxr_linenumber" name="L253" href="#L253">253</a>         <span 
class="jxr_string">"-20, 101, 5.52094836215976318958273568278700042e-88, 1, 
1e-15, 1e-15"</span>,
+<a class="jxr_linenumber" name="L254" href="#L254">254</a>         <span 
class="jxr_string">"-10, 101, 7.69459862670641934633909221175249367e-23, 
0.999999999999999999999230540137329438, 1e-15, 1e-15"</span>,
+<a class="jxr_linenumber" name="L255" href="#L255">255</a>         <span 
class="jxr_string">"-5, 101, 1.48671994090490571244174411946057083e-06, 
0.999992566398085139288753504945569711, 1e-15, 1e-15"</span>,
+<a class="jxr_linenumber" name="L256" href="#L256">256</a>         <span 
class="jxr_string">"-1, 101, 0.287599970939178361228670127385217202, 
0.629686285776605400861244494862843017, 1e-15, 1e-15"</span>,
+<a class="jxr_linenumber" name="L257" href="#L257">257</a>         <span 
class="jxr_string">"0, 101, 0.797884560802865355879892119868763748, 
0.363380227632418656924464946509942526, 1e-15, 1e-15"</span>,
+<a class="jxr_linenumber" name="L258" href="#L258">258</a>         <span 
class="jxr_string">"1, 101, 1.52513527616098120908909053639057876, 
0.199097665570348791553367979096726767, 1e-15, 1e-14"</span>,
+<a class="jxr_linenumber" name="L259" href="#L259">259</a>         <span 
class="jxr_string">"5, 101, 5.18650396712584211561650896200523673, 
0.032696434617112225345315807700917674, 1e-15, 1e-13"</span>,
+<a class="jxr_linenumber" name="L260" href="#L260">260</a>         <span 
class="jxr_string">"10, 101, 10.0980932339625119628436416537120371, 
0.00944537782565626116413681765035684208, 1e-15, 1e-11"</span>,
+<a class="jxr_linenumber" name="L261" href="#L261">261</a>         <span 
class="jxr_string">"20, 101, 20.0497530685278505422140233087209891, 
0.00246326161505216359968528619980015911, 1e-15, 1e-11"</span>,
+<a class="jxr_linenumber" name="L262" href="#L262">262</a>         <span 
class="jxr_string">"30, 101, 30.033259667433677037071124100012257, 
0.00110377151189009100113674138540728116, 1e-15, 1e-10"</span>,
+<a class="jxr_linenumber" name="L263" href="#L263">263</a>         <span 
class="jxr_string">"40, 101, 40.0249688472072637232448709953697417, 
0.000622668378591388773498879400697584317, 1e-15, 2e-9"</span>,
+<a class="jxr_linenumber" name="L264" href="#L264">264</a>         <span 
class="jxr_string">"100, 101, 100.009998000999260705184902394575471, 
9.99400499482634503612772420030347819e-05, 1e-15, 2e-8"</span>,
+<a class="jxr_linenumber" name="L265" href="#L265">265</a> 
+<a class="jxr_linenumber" name="L266" href="#L266">266</a>         <em 
class="jxr_comment">// One-sided truncation</em>
+<a class="jxr_linenumber" name="L267" href="#L267">267</a>         <span 
class="jxr_string">"-5, Infinity, 1.4867199409049057124417441194605712e-06, 
0.999992566398085139288753504945569711, 1e-14, 1e-14"</span>,
+<a class="jxr_linenumber" name="L268" href="#L268">268</a>         <span 
class="jxr_string">"-3, Infinity, 0.00443783904212566379330210431090259846, 
0.98666678845825919379095350748267984, 1e-15, 1e-15"</span>,
+<a class="jxr_linenumber" name="L269" href="#L269">269</a>         <span 
class="jxr_string">"-1, Infinity, 0.287599970939178361228670127385217154, 
0.629686285776605400861244494862843306, 1e-15, 1e-15"</span>,
+<a class="jxr_linenumber" name="L270" href="#L270">270</a>         <span 
class="jxr_string">"0, Infinity, 0.797884560802865355879892119868763748, 
0.363380227632418656924464946509942526, 1e-15, 1e-15"</span>,
+<a class="jxr_linenumber" name="L271" href="#L271">271</a>         <span 
class="jxr_string">"1, Infinity, 1.52513527616098120908909053639057876, 
0.199097665570348791553367979096726767, 1e-15, 1e-15"</span>,
+<a class="jxr_linenumber" name="L272" href="#L272">272</a>         <span 
class="jxr_string">"3, Infinity, 3.28309865493043650692809222681220005, 
0.0705591867852681168624020577420568271, 1e-15, 2e-14"</span>,
+<a class="jxr_linenumber" name="L273" href="#L273">273</a>         <span 
class="jxr_string">"20, Infinity, 20.0497530685278505422140233087209891, 
0.00246326161505216359968528619980015911, 1e-15, 1e-11"</span>,
+<a class="jxr_linenumber" name="L274" href="#L274">274</a>         <span 
class="jxr_string">"100, Infinity, 100.009998000999260705184902394575471, 
9.99400499482634503612772420030347819e-05, 1e-15, 4e-8"</span>,
+<a class="jxr_linenumber" name="L275" href="#L275">275</a>         <em 
class="jxr_comment">// The variance method is inaccurate at this extreme</em>
+<a class="jxr_linenumber" name="L276" href="#L276">276</a>         <span 
class="jxr_string">"1e4, Infinity, 10000.0000999999980000000999999925986, 
9.99999940000005002391967510312099493e-09, 1e-15, 0.8"</span>,
+<a class="jxr_linenumber" name="L277" href="#L277">277</a>         <span 
class="jxr_string">"1e6, Infinity, 1000000.00000099999999999800000000016, 
9.99999999770471649802883928921316157e-13, 1e-15, 1.0"</span>,
+<a class="jxr_linenumber" name="L278" href="#L278">278</a>         <em 
class="jxr_comment">// XXX: The expected variance here is incorrect. It will be 
small but may be non zero.</em>
+<a class="jxr_linenumber" name="L279" href="#L279">279</a>         <em 
class="jxr_comment">// The computation will return 0. This hits an edge case in 
the code that detects when the</em>
+<a class="jxr_linenumber" name="L280" href="#L280">280</a>         <em 
class="jxr_comment">// variance computation fails.</em>
+<a class="jxr_linenumber" name="L281" href="#L281">281</a>         <span 
class="jxr_string">"1e100, Infinity, 
1.00000000000000001590289110975991788e+100, 0, 1e-15, -1"</span>,
+<a class="jxr_linenumber" name="L282" href="#L282">282</a> 
+<a class="jxr_linenumber" name="L283" href="#L283">283</a>         <em 
class="jxr_comment">// XXX: The expected variance here is incorrect. It will be 
small but may be non zero.</em>
+<a class="jxr_linenumber" name="L284" href="#L284">284</a>         <em 
class="jxr_comment">// This hits an edge case where the computed variance 
(infinity) is above 1</em>
+<a class="jxr_linenumber" name="L285" href="#L285">285</a>         <span 
class="jxr_string">"1e290, 1e300, 1.00000000000000006172783352786715689e+290, 
0, 1e-15, -1"</span>,
+<a class="jxr_linenumber" name="L286" href="#L286">286</a> 
+<a class="jxr_linenumber" name="L287" href="#L287">287</a>         <em 
class="jxr_comment">// Small ranges.</em>
+<a class="jxr_linenumber" name="L288" href="#L288">288</a>         <span 
class="jxr_string">"1, 1.1000000000000001, 
1.04912545221799091312759556239135752, 
0.000832596851563726615564931035799390151, 1e-15, 2e-12"</span>,
+<a class="jxr_linenumber" name="L289" href="#L289">289</a>         <span 
class="jxr_string">"5, 5.0999999999999996, 
5.04581083165668427678725919870992629, 
0.000822546087919772895415146023240560636, 1e-15, 2e-11"</span>,
+<a class="jxr_linenumber" name="L290" href="#L290">290</a>         <span 
class="jxr_string">"35, 35.100000000000001, 
35.025438801080858717764612789648226, 
0.000494605845872597846399929727938197022, 1e-15, 2e-9"</span>,
+<a class="jxr_linenumber" name="L291" href="#L291">291</a> 
+<a class="jxr_linenumber" name="L292" href="#L292">292</a>         <em 
class="jxr_comment">// (b-a) = 1 ULP</em>
+<a class="jxr_linenumber" name="L293" href="#L293">293</a>         <em 
class="jxr_comment">// XXX: The expected variance here is incorrect.</em>
+<a class="jxr_linenumber" name="L294" href="#L294">294</a>         <em 
class="jxr_comment">// It is upper limited to the variance of a uniform 
distribution.</em>
+<a class="jxr_linenumber" name="L295" href="#L295">295</a>         <em 
class="jxr_comment">// The computation will return 0. This hits an edge case in 
the code that detects when the</em>
+<a class="jxr_linenumber" name="L296" href="#L296">296</a>         <em 
class="jxr_comment">// variance computation fails.</em>
+<a class="jxr_linenumber" name="L297" href="#L297">297</a>         <em 
class="jxr_comment">// Spans p=8.327e-17 of the parent normal distribution</em>
+<a class="jxr_linenumber" name="L298" href="#L298">298</a>         <span 
class="jxr_string">"1, 1.0000000000000002, 
1.00000000000000011091535982917837267, 0, 1e-15, -1"</span>,
+<a class="jxr_linenumber" name="L299" href="#L299">299</a>         <em 
class="jxr_comment">// Spans p=1.626e-19 of the parent normal distribution</em>
+<a class="jxr_linenumber" name="L300" href="#L300">300</a>         <span 
class="jxr_string">"4, 4.0000000000000009, 
4.00000000000000044406536771487238653, 0, 1e-15, -1"</span>,
+<a class="jxr_linenumber" name="L301" href="#L301">301</a>         <em 
class="jxr_comment">// Spans p=1.925e-37 of the parent normal distribution</em>
+<a class="jxr_linenumber" name="L302" href="#L302">302</a>         <span 
class="jxr_string">"10, 10.000000000000002, 
10.0000000000000008883225369216741152, 0, 1e-15, -1"</span>,
+<a class="jxr_linenumber" name="L303" href="#L303">303</a> 
+<a class="jxr_linenumber" name="L304" href="#L304">304</a>         <em 
class="jxr_comment">// Test for truncation close to zero.</em>
+<a class="jxr_linenumber" name="L305" href="#L305">305</a>         <em 
class="jxr_comment">// At z &lt;= ~1.5e-8, exp(-0.5 * z * z) / sqrt(2 pi) == 1 
/ sqrt(2 pi)</em>
+<a class="jxr_linenumber" name="L306" href="#L306">306</a>         <em 
class="jxr_comment">// and the PDF is constant. It can be approximated as a 
uniform distribution.</em>
+<a class="jxr_linenumber" name="L307" href="#L307">307</a>         <em 
class="jxr_comment">// Here the mean is computable but the variance computation 
-&gt; 0.</em>
+<a class="jxr_linenumber" name="L308" href="#L308">308</a>         <em 
class="jxr_comment">// The epsilons for the variance allow the test to pass if 
the second moment</em>
+<a class="jxr_linenumber" name="L309" href="#L309">309</a>         <em 
class="jxr_comment">// uses a uniform distribution approximation: (b^3 - a^3) / 
(3b - 3a).</em>
+<a class="jxr_linenumber" name="L310" href="#L310">310</a>         <em 
class="jxr_comment">// This is not done at present and the variance computes 
incorrectly and close to 0.</em>
+<a class="jxr_linenumber" name="L311" href="#L311">311</a>         <em 
class="jxr_comment">// The largest span covers only 5.8242e-8 of the 
probability range of the parent normal</em>
+<a class="jxr_linenumber" name="L312" href="#L312">312</a>         <em 
class="jxr_comment">// and these are not practical truncations.</em>
+<a class="jxr_linenumber" name="L313" href="#L313">313</a>         <span 
class="jxr_string">"-7.299454196351098e-8, 7.299454196351098e-8, 0, 
1.77606771882092042827020676955306864e-15, 1e-15, -1e-15"</span>,
+<a class="jxr_linenumber" name="L314" href="#L314">314</a>         <span 
class="jxr_string">"-7.299454196351098e-8, 3.649727098175549e-8, 
-1.82486354908777262111748030604612676e-08, 
9.99038091836768051420202283759953002e-16, 1e-15, -1e-15"</span>,
+<a class="jxr_linenumber" name="L315" href="#L315">315</a>         <span 
class="jxr_string">"-7.299454196351098e-8, 1.8248635490877744e-8, 
-2.7372953236316597672674778496667655e-08, 
6.93776452664422342699175710737901419e-16, 1e-15, -2e-15"</span>,
+<a class="jxr_linenumber" name="L316" href="#L316">316</a>         <span 
class="jxr_string">"-7.299454196351098e-8, 0, 
-3.64972709817554726791073610445021429e-08, 
4.44016929705230343732389204118195096e-16, 1e-15, -2e-15"</span>,
+<a class="jxr_linenumber" name="L317" href="#L317">317</a>         <span 
class="jxr_string">"-7.299454196351098e-8, -1.8248635490877744e-8, 
-4.56215887271943497112157190855901547e-08, 
2.49759522957641055973442997155578316e-16, 3e-10, -5e-9"</span>,
+<a class="jxr_linenumber" name="L318" href="#L318">318</a>         <span 
class="jxr_string">"-7.299454196351098e-8, -3.649727098175549e-8, 
-5.47459064726332272497430210977513379e-08, 
1.11004232421306844799494326433537718e-16, 3e-10, -2e-8"</span>,
+<a class="jxr_linenumber" name="L319" href="#L319">319</a>         <span 
class="jxr_string">"-3.649727098175549e-8, 3.649727098175549e-8, 0, 
4.44016929705230343602092590994317462e-16, 1e-15, -1e-15"</span>,
+<a class="jxr_linenumber" name="L320" href="#L320">320</a>         <span 
class="jxr_string">"-3.649727098175549e-8, 1.8248635490877744e-8, 
-9.12431774543886994224314381693928319e-09, 
2.49759522959192087703300220816741702e-16, 1e-15, -1e-15"</span>,
+<a class="jxr_linenumber" name="L321" href="#L321">321</a>         <span 
class="jxr_string">"-3.649727098175549e-8, 0, 
-1.82486354908777424165810069993271136e-08, 
1.11004232426307600672725101668733634e-16, 1e-15, -2e-15"</span>,
+<a class="jxr_linenumber" name="L322" href="#L322">322</a>         <span 
class="jxr_string">"-3.649727098175549e-8, -1.8248635490877744e-8, 
-2.73729532363166159037567578213044937e-08, 
2.77510581119222125912321725734620803e-17, 3e-10, -2e-8"</span>,
+<a class="jxr_linenumber" name="L323" href="#L323">323</a>         <span 
class="jxr_string">"-1.8248635490877744e-8, 1.8248635490877744e-8, 0, 
1.11004232426307600757649604002272128e-16, 1e-15, -1e-15"</span>,
+<a class="jxr_linenumber" name="L324" href="#L324">324</a>         <span 
class="jxr_string">"-1.8248635490877744e-8, 9.124317745438872e-9, 
-4.5621588727194358257035396943085424e-09, 
6.24398807397980267185125584627689296e-17, 1e-15, -1e-15"</span>,
+<a class="jxr_linenumber" name="L325" href="#L325">325</a>         <span 
class="jxr_string">"-1.8248635490877744e-8, 0, 
-9.12431774543887196791891930929818729e-09, 
2.77510581065769011631256630479419225e-17, 1e-15, -1e-15"</span>,
+<a class="jxr_linenumber" name="L326" href="#L326">326</a>         <span 
class="jxr_string">"-9.124317745438872e-9, 9.124317745438872e-9, 0, 
2.77510581065769013145632047586655539e-17, 1e-15, -1e-15"</span>,
+<a class="jxr_linenumber" name="L327" href="#L327">327</a>         <span 
class="jxr_string">"-9.124317745438872e-9, 4.562158872719436e-9, 
-2.28107943635971801967451582038414367e-09, 
1.56099701849495071020338587207547036e-17, 1e-15, -1e-15"</span>,
+<a class="jxr_linenumber" name="L328" href="#L328">328</a>         <span 
class="jxr_string">"-9.124317745438872e-9, 0, 
-4.5621588727194360789130116308534264e-09, 
6.93776452664422554954584023114952882e-18, 1e-15, -1e-15"</span>,
+<a class="jxr_linenumber" name="L329" href="#L329">329</a> 
+<a class="jxr_linenumber" name="L330" href="#L330">330</a>         <em 
class="jxr_comment">// The variance method is inaccurate at this extreme.</em>
+<a class="jxr_linenumber" name="L331" href="#L331">331</a>         <em 
class="jxr_comment">// Spans p=8.858e-17 of the parent normal distribution</em>
+<a class="jxr_linenumber" name="L332" href="#L332">332</a>         <span 
class="jxr_string">"0, 2.220446049250313e-16, 
1.11022302462515654042363166809081572e-16, 
4.14074938043255708407035257655783112e-33, 1e-15, -1e-2"</span>,
+<a class="jxr_linenumber" name="L333" href="#L333">333</a>     })
+<a class="jxr_linenumber" name="L334" href="#L334">334</a>     <strong 
class="jxr_keyword">void</strong> testAdditionalMoments(<strong 
class="jxr_keyword">double</strong> lower, <strong 
class="jxr_keyword">double</strong> upper,
+<a class="jxr_linenumber" name="L335" href="#L335">335</a>                     
           <strong class="jxr_keyword">double</strong> mean, <strong 
class="jxr_keyword">double</strong> variance,
+<a class="jxr_linenumber" name="L336" href="#L336">336</a>                     
           <strong class="jxr_keyword">double</strong> meanRelativeError, 
<strong class="jxr_keyword">double</strong> varianceRelativeError) {
+<a class="jxr_linenumber" name="L337" href="#L337">337</a>         
assertMean(lower, upper, mean, meanRelativeError);
+<a class="jxr_linenumber" name="L338" href="#L338">338</a>         <strong 
class="jxr_keyword">if</strong> (varianceRelativeError &lt; 0) {
+<a class="jxr_linenumber" name="L339" href="#L339">339</a>             <em 
class="jxr_comment">// Known problem case.</em>
+<a class="jxr_linenumber" name="L340" href="#L340">340</a>             <em 
class="jxr_comment">// Allow small absolute variances using an absolute 
threshold of</em>
+<a class="jxr_linenumber" name="L341" href="#L341">341</a>             <em 
class="jxr_comment">// machine epsilon (2^-52) * 1.5. Any true variance 
approaching machine epsilon</em>
+<a class="jxr_linenumber" name="L342" href="#L342">342</a>             <em 
class="jxr_comment">// is allowed to be computed as small or zero but cannot be 
too large.</em>
+<a class="jxr_linenumber" name="L343" href="#L343">343</a>             <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
<strong class="jxr_keyword">var</strong> = 
TruncatedNormalDistribution.variance(lower, upper);
+<a class="jxr_linenumber" name="L344" href="#L344">344</a>             
Assertions.assertTrue(<strong class="jxr_keyword">var</strong> &gt;= 0, () 
-&gt; <span class="jxr_string">"Variance is not positive: "</span> + <strong 
class="jxr_keyword">var</strong>);
+<a class="jxr_linenumber" name="L345" href="#L345">345</a>             
Assertions.assertEquals(<strong class="jxr_keyword">var</strong>, 
TruncatedNormalDistribution.variance(-upper, -lower));
+<a class="jxr_linenumber" name="L346" href="#L346">346</a>             
TestUtils.assertEquals(variance, <strong class="jxr_keyword">var</strong>,
+<a class="jxr_linenumber" name="L347" href="#L347">347</a>                     
createAbsOrRelTolerance(1.5 * 0x1.0p-52, -varianceRelativeError),
+<a class="jxr_linenumber" name="L348" href="#L348">348</a>                 () 
-&gt; String.format(<span class="jxr_string">"variance(%s, %s)"</span>, lower, 
upper));
+<a class="jxr_linenumber" name="L349" href="#L349">349</a>         } <strong 
class="jxr_keyword">else</strong> {
+<a class="jxr_linenumber" name="L350" href="#L350">350</a>             
assertVariance(lower, upper, variance, varianceRelativeError);
+<a class="jxr_linenumber" name="L351" href="#L351">351</a>         }
+<a class="jxr_linenumber" name="L352" href="#L352">352</a>     }
+<a class="jxr_linenumber" name="L353" href="#L353">353</a> 
+<a class="jxr_linenumber" name="L354" href="#L354">354</a>     <em 
class="jxr_javadoccomment">/**</em>
+<a class="jxr_linenumber" name="L355" href="#L355">355</a> <em 
class="jxr_javadoccomment">     * Assert the mean of the truncated normal 
distribution is within the provided relative error.</em>
+<a class="jxr_linenumber" name="L356" href="#L356">356</a> <em 
class="jxr_javadoccomment">     */</em>
+<a class="jxr_linenumber" name="L357" href="#L357">357</a>     <strong 
class="jxr_keyword">private</strong> <strong 
class="jxr_keyword">static</strong> <strong class="jxr_keyword">void</strong> 
assertMean(<strong class="jxr_keyword">double</strong> lower, <strong 
class="jxr_keyword">double</strong> upper, <strong 
class="jxr_keyword">double</strong> expected, <strong 
class="jxr_keyword">double</strong> eps) {
+<a class="jxr_linenumber" name="L358" href="#L358">358</a>         <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
mean = TruncatedNormalDistribution.moment1(lower, upper);
+<a class="jxr_linenumber" name="L359" href="#L359">359</a>         
Assertions.assertEquals(0 - mean, TruncatedNormalDistribution.moment1(-upper, 
-lower));
+<a class="jxr_linenumber" name="L360" href="#L360">360</a>         
TestUtils.assertEquals(expected, mean, DoubleTolerances.relative(eps),
+<a class="jxr_linenumber" name="L361" href="#L361">361</a>             () 
-&gt; String.format(<span class="jxr_string">"mean(%s, %s)"</span>, lower, 
upper));
+<a class="jxr_linenumber" name="L362" href="#L362">362</a>     }
+<a class="jxr_linenumber" name="L363" href="#L363">363</a> 
+<a class="jxr_linenumber" name="L364" href="#L364">364</a>     <em 
class="jxr_javadoccomment">/**</em>
+<a class="jxr_linenumber" name="L365" href="#L365">365</a> <em 
class="jxr_javadoccomment">     * Assert the mean of the truncated normal 
distribution is within the provided relative error.</em>
+<a class="jxr_linenumber" name="L366" href="#L366">366</a> <em 
class="jxr_javadoccomment">     * Helper method using range [lower, upper] of 
the parent normal distribution with the specified</em>
+<a class="jxr_linenumber" name="L367" href="#L367">367</a> <em 
class="jxr_javadoccomment">     * mean and standard deviation.</em>
+<a class="jxr_linenumber" name="L368" href="#L368">368</a> <em 
class="jxr_javadoccomment">     */</em>
+<a class="jxr_linenumber" name="L369" href="#L369">369</a>     <strong 
class="jxr_keyword">private</strong> <strong 
class="jxr_keyword">static</strong> <strong class="jxr_keyword">void</strong> 
assertMean(<strong class="jxr_keyword">double</strong> lower, <strong 
class="jxr_keyword">double</strong> upper, <strong 
class="jxr_keyword">double</strong> u, <strong 
class="jxr_keyword">double</strong> s, <strong 
class="jxr_keyword">double</strong> expected, <strong 
class="jxr_keyword">double</strong> eps) {
+<a class="jxr_linenumber" name="L370" href="#L370">370</a>         <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
a = (lower - u) / s;
+<a class="jxr_linenumber" name="L371" href="#L371">371</a>         <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
b = (upper - u) / s;
+<a class="jxr_linenumber" name="L372" href="#L372">372</a>         <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
mean = u + TruncatedNormalDistribution.moment1(a, b) * s;
+<a class="jxr_linenumber" name="L373" href="#L373">373</a>         
TestUtils.assertEquals(expected, mean, DoubleTolerances.relative(eps),
+<a class="jxr_linenumber" name="L374" href="#L374">374</a>             () 
-&gt; String.format(<span class="jxr_string">"mean(%s, %s, %s, %s)"</span>, 
lower, upper, u, s));
+<a class="jxr_linenumber" name="L375" href="#L375">375</a>     }
+<a class="jxr_linenumber" name="L376" href="#L376">376</a> 
+<a class="jxr_linenumber" name="L377" href="#L377">377</a>     <em 
class="jxr_javadoccomment">/**</em>
+<a class="jxr_linenumber" name="L378" href="#L378">378</a> <em 
class="jxr_javadoccomment">     * Assert the variance of the truncated normal 
distribution is within the provided relative error.</em>
+<a class="jxr_linenumber" name="L379" href="#L379">379</a> <em 
class="jxr_javadoccomment">     */</em>
+<a class="jxr_linenumber" name="L380" href="#L380">380</a>     <strong 
class="jxr_keyword">private</strong> <strong 
class="jxr_keyword">static</strong> <strong class="jxr_keyword">void</strong> 
assertVariance(<strong class="jxr_keyword">double</strong> lower, <strong 
class="jxr_keyword">double</strong> upper, <strong 
class="jxr_keyword">double</strong> expected, <strong 
class="jxr_keyword">double</strong> eps) {
+<a class="jxr_linenumber" name="L381" href="#L381">381</a>         <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
<strong class="jxr_keyword">var</strong> = 
TruncatedNormalDistribution.variance(lower, upper);
+<a class="jxr_linenumber" name="L382" href="#L382">382</a>         
Assertions.assertEquals(<strong class="jxr_keyword">var</strong>, 
TruncatedNormalDistribution.variance(-upper, -lower));
+<a class="jxr_linenumber" name="L383" href="#L383">383</a>         
TestUtils.assertEquals(expected, <strong class="jxr_keyword">var</strong>, 
DoubleTolerances.relative(eps),
+<a class="jxr_linenumber" name="L384" href="#L384">384</a>             () 
-&gt; String.format(<span class="jxr_string">"variance(%s, %s)"</span>, lower, 
upper));
+<a class="jxr_linenumber" name="L385" href="#L385">385</a>     }
+<a class="jxr_linenumber" name="L386" href="#L386">386</a> 
+<a class="jxr_linenumber" name="L387" href="#L387">387</a>     <em 
class="jxr_javadoccomment">/**</em>
+<a class="jxr_linenumber" name="L388" href="#L388">388</a> <em 
class="jxr_javadoccomment">     * Assert the variance of the truncated normal 
distribution is within the provided relative error.</em>
+<a class="jxr_linenumber" name="L389" href="#L389">389</a> <em 
class="jxr_javadoccomment">     * Helper method using range [lower, upper] of 
the parent normal distribution with the specified</em>
+<a class="jxr_linenumber" name="L390" href="#L390">390</a> <em 
class="jxr_javadoccomment">     * mean and standard deviation.</em>
+<a class="jxr_linenumber" name="L391" href="#L391">391</a> <em 
class="jxr_javadoccomment">     */</em>
+<a class="jxr_linenumber" name="L392" href="#L392">392</a>     <strong 
class="jxr_keyword">private</strong> <strong 
class="jxr_keyword">static</strong> <strong class="jxr_keyword">void</strong> 
assertVariance(<strong class="jxr_keyword">double</strong> lower, <strong 
class="jxr_keyword">double</strong> upper, <strong 
class="jxr_keyword">double</strong> u, <strong 
class="jxr_keyword">double</strong> s, <strong 
class="jxr_keyword">double</strong> expected, <strong 
class="jxr_keyword">double</strong> eps) {
+<a class="jxr_linenumber" name="L393" href="#L393">393</a>         <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
a = (lower - u) / s;
+<a class="jxr_linenumber" name="L394" href="#L394">394</a>         <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
b = (upper - u) / s;
+<a class="jxr_linenumber" name="L395" href="#L395">395</a>         <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
<strong class="jxr_keyword">var</strong> = 
TruncatedNormalDistribution.variance(a, b) * s * s;
+<a class="jxr_linenumber" name="L396" href="#L396">396</a>         
TestUtils.assertEquals(expected, <strong class="jxr_keyword">var</strong>, 
DoubleTolerances.relative(eps),
+<a class="jxr_linenumber" name="L397" href="#L397">397</a>             () 
-&gt; String.format(<span class="jxr_string">"variance(%s, %s, %s, %s)"</span>, 
lower, upper, u, s));
+<a class="jxr_linenumber" name="L398" href="#L398">398</a>     }
+<a class="jxr_linenumber" name="L399" href="#L399">399</a> }
+</pre>
+<hr/>
+<div id="footer">Copyright &#169; 2018&#x2013;2022 <a 
href="https://www.apache.org/";>The Apache Software Foundation</a>. All rights 
reserved.</div>
+</body>
+</html>

Added: 
dev/commons/statistics/1.0-RC1/site/xref-test/org/apache/commons/statistics/distribution/UniformContinuousDistributionTest.html
==============================================================================
--- 
dev/commons/statistics/1.0-RC1/site/xref-test/org/apache/commons/statistics/distribution/UniformContinuousDistributionTest.html
 (added)
+++ 
dev/commons/statistics/1.0-RC1/site/xref-test/org/apache/commons/statistics/distribution/UniformContinuousDistributionTest.html
 Thu Dec  1 16:47:12 2022
@@ -0,0 +1,176 @@
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" 
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd";>
+<html xmlns="http://www.w3.org/1999/xhtml"; xml:lang="en" lang="en">
+<head><meta http-equiv="content-type" content="text/html; charset=UTF-8" />
+<title>UniformContinuousDistributionTest xref</title>
+<link type="text/css" rel="stylesheet" href="../../../../../stylesheet.css" />
+</head>
+<body>
+<div id="overview"><a 
href="../../../../../../testapidocs/org/apache/commons/statistics/distribution/UniformContinuousDistributionTest.html">View
 Javadoc</a></div><pre>
+<a class="jxr_linenumber" name="L1" href="#L1">1</a>   <em 
class="jxr_comment">/*</em>
+<a class="jxr_linenumber" name="L2" href="#L2">2</a>   <em 
class="jxr_comment"> * Licensed to the Apache Software Foundation (ASF) under 
one or more</em>
+<a class="jxr_linenumber" name="L3" href="#L3">3</a>   <em 
class="jxr_comment"> * contributor license agreements.  See the NOTICE file 
distributed with</em>
+<a class="jxr_linenumber" name="L4" href="#L4">4</a>   <em 
class="jxr_comment"> * this work for additional information regarding copyright 
ownership.</em>
+<a class="jxr_linenumber" name="L5" href="#L5">5</a>   <em 
class="jxr_comment"> * The ASF licenses this file to You under the Apache 
License, Version 2.0</em>
+<a class="jxr_linenumber" name="L6" href="#L6">6</a>   <em 
class="jxr_comment"> * (the "License"); you may not use this file except in 
compliance with</em>
+<a class="jxr_linenumber" name="L7" href="#L7">7</a>   <em 
class="jxr_comment"> * the License.  You may obtain a copy of the License 
at</em>
+<a class="jxr_linenumber" name="L8" href="#L8">8</a>   <em 
class="jxr_comment"> *</em>
+<a class="jxr_linenumber" name="L9" href="#L9">9</a>   <em 
class="jxr_comment"> *      <a 
href="http://www.apache.org/licenses/LICENSE-2.0"; 
target="alexandria_uri">http://www.apache.org/licenses/LICENSE-2.0</a></em>
+<a class="jxr_linenumber" name="L10" href="#L10">10</a>  <em 
class="jxr_comment"> *</em>
+<a class="jxr_linenumber" name="L11" href="#L11">11</a>  <em 
class="jxr_comment"> * Unless required by applicable law or agreed to in 
writing, software</em>
+<a class="jxr_linenumber" name="L12" href="#L12">12</a>  <em 
class="jxr_comment"> * distributed under the License is distributed on an "AS 
IS" BASIS,</em>
+<a class="jxr_linenumber" name="L13" href="#L13">13</a>  <em 
class="jxr_comment"> * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either 
express or implied.</em>
+<a class="jxr_linenumber" name="L14" href="#L14">14</a>  <em 
class="jxr_comment"> * See the License for the specific language governing 
permissions and</em>
+<a class="jxr_linenumber" name="L15" href="#L15">15</a>  <em 
class="jxr_comment"> * limitations under the License.</em>
+<a class="jxr_linenumber" name="L16" href="#L16">16</a>  <em 
class="jxr_comment"> */</em>
+<a class="jxr_linenumber" name="L17" href="#L17">17</a>  
+<a class="jxr_linenumber" name="L18" href="#L18">18</a>  <strong 
class="jxr_keyword">package</strong> org.apache.commons.statistics.distribution;
+<a class="jxr_linenumber" name="L19" href="#L19">19</a>  
+<a class="jxr_linenumber" name="L20" href="#L20">20</a>  <strong 
class="jxr_keyword">import</strong> java.util.stream.Stream;
+<a class="jxr_linenumber" name="L21" href="#L21">21</a>  <strong 
class="jxr_keyword">import</strong> 
org.apache.commons.rng.UniformRandomProvider;
+<a class="jxr_linenumber" name="L22" href="#L22">22</a>  <strong 
class="jxr_keyword">import</strong> 
org.apache.commons.rng.sampling.distribution.ContinuousSampler;
+<a class="jxr_linenumber" name="L23" href="#L23">23</a>  <strong 
class="jxr_keyword">import</strong> 
org.apache.commons.rng.sampling.distribution.ContinuousUniformSampler;
+<a class="jxr_linenumber" name="L24" href="#L24">24</a>  <strong 
class="jxr_keyword">import</strong> org.apache.commons.rng.simple.RandomSource;
+<a class="jxr_linenumber" name="L25" href="#L25">25</a>  <strong 
class="jxr_keyword">import</strong> org.junit.jupiter.api.Assertions;
+<a class="jxr_linenumber" name="L26" href="#L26">26</a>  <strong 
class="jxr_keyword">import</strong> org.junit.jupiter.api.Test;
+<a class="jxr_linenumber" name="L27" href="#L27">27</a>  <strong 
class="jxr_keyword">import</strong> org.junit.jupiter.params.ParameterizedTest;
+<a class="jxr_linenumber" name="L28" href="#L28">28</a>  <strong 
class="jxr_keyword">import</strong> org.junit.jupiter.params.provider.Arguments;
+<a class="jxr_linenumber" name="L29" href="#L29">29</a>  <strong 
class="jxr_keyword">import</strong> org.junit.jupiter.params.provider.CsvSource;
+<a class="jxr_linenumber" name="L30" href="#L30">30</a>  <strong 
class="jxr_keyword">import</strong> 
org.junit.jupiter.params.provider.MethodSource;
+<a class="jxr_linenumber" name="L31" href="#L31">31</a>  
+<a class="jxr_linenumber" name="L32" href="#L32">32</a>  <em 
class="jxr_javadoccomment">/**</em>
+<a class="jxr_linenumber" name="L33" href="#L33">33</a>  <em 
class="jxr_javadoccomment"> * Test cases for {@link 
UniformContinuousDistribution}.</em>
+<a class="jxr_linenumber" name="L34" href="#L34">34</a>  <em 
class="jxr_javadoccomment"> * Extends {@link BaseContinuousDistributionTest}. 
See javadoc of that class for details.</em>
+<a class="jxr_linenumber" name="L35" href="#L35">35</a>  <em 
class="jxr_javadoccomment"> */</em>
+<a class="jxr_linenumber" name="L36" href="#L36">36</a>  <strong 
class="jxr_keyword">class</strong> <a name="UniformContinuousDistributionTest" 
href="../../../../../org/apache/commons/statistics/distribution/UniformContinuousDistributionTest.html#UniformContinuousDistributionTest">UniformContinuousDistributionTest</a>
 <strong class="jxr_keyword">extends</strong> <a 
name="BaseContinuousDistributionTest" 
href="../../../../../org/apache/commons/statistics/distribution/BaseContinuousDistributionTest.html#BaseContinuousDistributionTest">BaseContinuousDistributionTest</a>
 {
+<a class="jxr_linenumber" name="L37" href="#L37">37</a>      @Override
+<a class="jxr_linenumber" name="L38" href="#L38">38</a>      
ContinuousDistribution makeDistribution(Object... parameters) {
+<a class="jxr_linenumber" name="L39" href="#L39">39</a>          <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
lower = (Double) parameters[0];
+<a class="jxr_linenumber" name="L40" href="#L40">40</a>          <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
upper = (Double) parameters[1];
+<a class="jxr_linenumber" name="L41" href="#L41">41</a>          <strong 
class="jxr_keyword">return</strong> UniformContinuousDistribution.of(lower, 
upper);
+<a class="jxr_linenumber" name="L42" href="#L42">42</a>      }
+<a class="jxr_linenumber" name="L43" href="#L43">43</a>  
+<a class="jxr_linenumber" name="L44" href="#L44">44</a>      @Override
+<a class="jxr_linenumber" name="L45" href="#L45">45</a>      Object[][] 
makeInvalidParameters() {
+<a class="jxr_linenumber" name="L46" href="#L46">46</a>          <strong 
class="jxr_keyword">return</strong> <strong class="jxr_keyword">new</strong> 
Object[][] {
+<a class="jxr_linenumber" name="L47" href="#L47">47</a>              {0.0, 
0.0},
+<a class="jxr_linenumber" name="L48" href="#L48">48</a>              {1.0, 
0.0},
+<a class="jxr_linenumber" name="L49" href="#L49">49</a>              <em 
class="jxr_comment">// Range not finite</em>
+<a class="jxr_linenumber" name="L50" href="#L50">50</a>              
{-Double.MAX_VALUE, Double.MAX_VALUE},
+<a class="jxr_linenumber" name="L51" href="#L51">51</a>              
{Double.NaN, 1.0},
+<a class="jxr_linenumber" name="L52" href="#L52">52</a>              {0.0, 
Double.NaN},
+<a class="jxr_linenumber" name="L53" href="#L53">53</a>          };
+<a class="jxr_linenumber" name="L54" href="#L54">54</a>      }
+<a class="jxr_linenumber" name="L55" href="#L55">55</a>  
+<a class="jxr_linenumber" name="L56" href="#L56">56</a>      @Override
+<a class="jxr_linenumber" name="L57" href="#L57">57</a>      String[] 
getParameterNames() {
+<a class="jxr_linenumber" name="L58" href="#L58">58</a>          <strong 
class="jxr_keyword">return</strong> <strong class="jxr_keyword">new</strong> 
String[] {<span class="jxr_string">"SupportLowerBound"</span>, <span 
class="jxr_string">"SupportUpperBound"</span>};
+<a class="jxr_linenumber" name="L59" href="#L59">59</a>      }
+<a class="jxr_linenumber" name="L60" href="#L60">60</a>  
+<a class="jxr_linenumber" name="L61" href="#L61">61</a>      @Override
+<a class="jxr_linenumber" name="L62" href="#L62">62</a>      <strong 
class="jxr_keyword">protected</strong> <strong 
class="jxr_keyword">double</strong> getRelativeTolerance() {
+<a class="jxr_linenumber" name="L63" href="#L63">63</a>          <em 
class="jxr_comment">// Tolerance is 4.440892098500626E-16</em>
+<a class="jxr_linenumber" name="L64" href="#L64">64</a>          <strong 
class="jxr_keyword">return</strong> 2 * RELATIVE_EPS;
+<a class="jxr_linenumber" name="L65" href="#L65">65</a>      }
+<a class="jxr_linenumber" name="L66" href="#L66">66</a>  
+<a class="jxr_linenumber" name="L67" href="#L67">67</a>      <em 
class="jxr_comment">//-------------------- Additional test cases 
-------------------------------</em>
+<a class="jxr_linenumber" name="L68" href="#L68">68</a>  
+<a class="jxr_linenumber" name="L69" href="#L69">69</a>      @ParameterizedTest
+<a class="jxr_linenumber" name="L70" href="#L70">70</a>      @MethodSource
+<a class="jxr_linenumber" name="L71" href="#L71">71</a>      <strong 
class="jxr_keyword">void</strong> testAdditionalMoments(<strong 
class="jxr_keyword">double</strong> lower, <strong 
class="jxr_keyword">double</strong> upper, <strong 
class="jxr_keyword">double</strong> mean, <strong 
class="jxr_keyword">double</strong> variance) {
+<a class="jxr_linenumber" name="L72" href="#L72">72</a>          <strong 
class="jxr_keyword">final</strong> UniformContinuousDistribution dist = 
UniformContinuousDistribution.of(lower, upper);
+<a class="jxr_linenumber" name="L73" href="#L73">73</a>          
testMoments(dist, mean, variance, DoubleTolerances.equals());
+<a class="jxr_linenumber" name="L74" href="#L74">74</a>      }
+<a class="jxr_linenumber" name="L75" href="#L75">75</a>  
+<a class="jxr_linenumber" name="L76" href="#L76">76</a>      <strong 
class="jxr_keyword">static</strong> Stream&lt;Arguments&gt; 
testAdditionalMoments() {
+<a class="jxr_linenumber" name="L77" href="#L77">77</a>          <strong 
class="jxr_keyword">return</strong> Stream.of(
+<a class="jxr_linenumber" name="L78" href="#L78">78</a>              
Arguments.of(0, 1, 0.5, 1 / 12.0),
+<a class="jxr_linenumber" name="L79" href="#L79">79</a>              
Arguments.of(-1.5, 0.6, -0.45, 0.3675),
+<a class="jxr_linenumber" name="L80" href="#L80">80</a>              
Arguments.of(Double.MAX_VALUE / 2, Double.MAX_VALUE, Double.MAX_VALUE - 
Double.MAX_VALUE / 4, Double.POSITIVE_INFINITY)
+<a class="jxr_linenumber" name="L81" href="#L81">81</a>          );
+<a class="jxr_linenumber" name="L82" href="#L82">82</a>      }
+<a class="jxr_linenumber" name="L83" href="#L83">83</a>  
+<a class="jxr_linenumber" name="L84" href="#L84">84</a>      <em 
class="jxr_javadoccomment">/**</em>
+<a class="jxr_linenumber" name="L85" href="#L85">85</a>  <em 
class="jxr_javadoccomment">     * Check accuracy of analytical inverse CDF. 
Fails if a solver is used</em>
+<a class="jxr_linenumber" name="L86" href="#L86">86</a>  <em 
class="jxr_javadoccomment">     * with the default accuracy.</em>
+<a class="jxr_linenumber" name="L87" href="#L87">87</a>  <em 
class="jxr_javadoccomment">     */</em>
+<a class="jxr_linenumber" name="L88" href="#L88">88</a>      @Test
+<a class="jxr_linenumber" name="L89" href="#L89">89</a>      <strong 
class="jxr_keyword">void</strong> testInverseCumulativeDistribution() {
+<a class="jxr_linenumber" name="L90" href="#L90">90</a>          <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
upper = 1e-9;
+<a class="jxr_linenumber" name="L91" href="#L91">91</a>          <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
tiny = 0x1.0p-100;
+<a class="jxr_linenumber" name="L92" href="#L92">92</a>  
+<a class="jxr_linenumber" name="L93" href="#L93">93</a>          <strong 
class="jxr_keyword">final</strong> UniformContinuousDistribution dist = 
UniformContinuousDistribution.of(0, upper);
+<a class="jxr_linenumber" name="L94" href="#L94">94</a>          
Assertions.assertEquals(2.5e-10, dist.inverseCumulativeProbability(0.25));
+<a class="jxr_linenumber" name="L95" href="#L95">95</a>          
Assertions.assertEquals(tiny * upper, dist.inverseCumulativeProbability(tiny));
+<a class="jxr_linenumber" name="L96" href="#L96">96</a>  
+<a class="jxr_linenumber" name="L97" href="#L97">97</a>          <strong 
class="jxr_keyword">final</strong> UniformContinuousDistribution dist2 = 
UniformContinuousDistribution.of(-upper, 0);
+<a class="jxr_linenumber" name="L98" href="#L98">98</a>          <em 
class="jxr_comment">// This is inexact</em>
+<a class="jxr_linenumber" name="L99" href="#L99">99</a>          
Assertions.assertEquals(-7.5e-10, dist2.inverseCumulativeProbability(0.25), 
Math.ulp(-7.5e-10));
+<a class="jxr_linenumber" name="L100" href="#L100">100</a>         
Assertions.assertEquals(-upper + tiny * upper, 
dist2.inverseCumulativeProbability(tiny));
+<a class="jxr_linenumber" name="L101" href="#L101">101</a>     }
+<a class="jxr_linenumber" name="L102" href="#L102">102</a> 
+<a class="jxr_linenumber" name="L103" href="#L103">103</a>     <em 
class="jxr_javadoccomment">/**</em>
+<a class="jxr_linenumber" name="L104" href="#L104">104</a> <em 
class="jxr_javadoccomment">     * Test the probability in a range uses the 
exact computation of</em>
+<a class="jxr_linenumber" name="L105" href="#L105">105</a> <em 
class="jxr_javadoccomment">     * {@code (x1 - x0) / (upper - lower)} assuming 
x0 and x1 are within [lower, upper].</em>
+<a class="jxr_linenumber" name="L106" href="#L106">106</a> <em 
class="jxr_javadoccomment">     * This test will fail if the distribution uses 
the default implementation in</em>
+<a class="jxr_linenumber" name="L107" href="#L107">107</a> <em 
class="jxr_javadoccomment">     * {@link AbstractContinuousDistribution}.</em>
+<a class="jxr_linenumber" name="L108" href="#L108">108</a> <em 
class="jxr_javadoccomment">     */</em>
+<a class="jxr_linenumber" name="L109" href="#L109">109</a>     
@ParameterizedTest
+<a class="jxr_linenumber" name="L110" href="#L110">110</a>     
@CsvSource(value = {
+<a class="jxr_linenumber" name="L111" href="#L111">111</a>         <span 
class="jxr_string">"-1.6358421681, -0.566237287234"</span>,
+<a class="jxr_linenumber" name="L112" href="#L112">112</a>         <span 
class="jxr_string">"-10.23678, 234.234"</span>,
+<a class="jxr_linenumber" name="L113" href="#L113">113</a>         <span 
class="jxr_string">"234.2342, 54322342.13"</span>,
+<a class="jxr_linenumber" name="L114" href="#L114">114</a>     })
+<a class="jxr_linenumber" name="L115" href="#L115">115</a>     <strong 
class="jxr_keyword">void</strong> testProbabilityRange(<strong 
class="jxr_keyword">double</strong> lower, <strong 
class="jxr_keyword">double</strong> upper) {
+<a class="jxr_linenumber" name="L116" href="#L116">116</a>         <strong 
class="jxr_keyword">final</strong> UniformContinuousDistribution dist = 
UniformContinuousDistribution.of(lower, upper);
+<a class="jxr_linenumber" name="L117" href="#L117">117</a>         <strong 
class="jxr_keyword">final</strong> <strong class="jxr_keyword">double</strong> 
r = upper - lower;
+<a class="jxr_linenumber" name="L118" href="#L118">118</a>         <strong 
class="jxr_keyword">final</strong> UniformRandomProvider rng = 
RandomSource.XO_RO_SHI_RO_128_PP.create();
+<a class="jxr_linenumber" name="L119" href="#L119">119</a>         <strong 
class="jxr_keyword">final</strong> ContinuousSampler sampler = 
ContinuousUniformSampler.of(rng, lower, upper);
+<a class="jxr_linenumber" name="L120" href="#L120">120</a>         <strong 
class="jxr_keyword">for</strong> (<strong class="jxr_keyword">int</strong> i = 
0; i &lt; 100; i++) {
+<a class="jxr_linenumber" name="L121" href="#L121">121</a>             <strong 
class="jxr_keyword">double</strong> x0 = sampler.sample();
+<a class="jxr_linenumber" name="L122" href="#L122">122</a>             <strong 
class="jxr_keyword">double</strong> x1 = sampler.sample();
+<a class="jxr_linenumber" name="L123" href="#L123">123</a>             <strong 
class="jxr_keyword">if</strong> (x1 &lt; x0) {
+<a class="jxr_linenumber" name="L124" href="#L124">124</a>                 
<strong class="jxr_keyword">final</strong> <strong 
class="jxr_keyword">double</strong> tmp = x0;
+<a class="jxr_linenumber" name="L125" href="#L125">125</a>                 x1 
= x0;
+<a class="jxr_linenumber" name="L126" href="#L126">126</a>                 x0 
= tmp;
+<a class="jxr_linenumber" name="L127" href="#L127">127</a>             }
+<a class="jxr_linenumber" name="L128" href="#L128">128</a>             
Assertions.assertEquals((x1 - x0) / r, dist.probability(x0, x1));
+<a class="jxr_linenumber" name="L129" href="#L129">129</a>         }
+<a class="jxr_linenumber" name="L130" href="#L130">130</a>     }
+<a class="jxr_linenumber" name="L131" href="#L131">131</a> 
+<a class="jxr_linenumber" name="L132" href="#L132">132</a>     @Test
+<a class="jxr_linenumber" name="L133" href="#L133">133</a>     <strong 
class="jxr_keyword">void</strong> testProbabilityRangeEdgeCases() {
+<a class="jxr_linenumber" name="L134" href="#L134">134</a>         <strong 
class="jxr_keyword">final</strong> UniformContinuousDistribution dist = 
UniformContinuousDistribution.of(0, 11);
+<a class="jxr_linenumber" name="L135" href="#L135">135</a> 
+<a class="jxr_linenumber" name="L136" href="#L136">136</a>         
Assertions.assertThrows(DistributionException.<strong 
class="jxr_keyword">class</strong>, () -&gt; dist.probability(4, 3));
+<a class="jxr_linenumber" name="L137" href="#L137">137</a> 
+<a class="jxr_linenumber" name="L138" href="#L138">138</a>         <em 
class="jxr_comment">// x0 &gt;= upper</em>
+<a class="jxr_linenumber" name="L139" href="#L139">139</a>         
Assertions.assertEquals(0, dist.probability(11, 16));
+<a class="jxr_linenumber" name="L140" href="#L140">140</a>         
Assertions.assertEquals(0, dist.probability(15, 16));
+<a class="jxr_linenumber" name="L141" href="#L141">141</a>         <em 
class="jxr_comment">// x1 &lt; lower</em>
+<a class="jxr_linenumber" name="L142" href="#L142">142</a>         
Assertions.assertEquals(0, dist.probability(-3, -1));
+<a class="jxr_linenumber" name="L143" href="#L143">143</a> 
+<a class="jxr_linenumber" name="L144" href="#L144">144</a>         <em 
class="jxr_comment">// x0 == x1</em>
+<a class="jxr_linenumber" name="L145" href="#L145">145</a>         
Assertions.assertEquals(0, dist.probability(4.12, 4.12));
+<a class="jxr_linenumber" name="L146" href="#L146">146</a>         
Assertions.assertEquals(0, dist.probability(5.68, 5.68));
+<a class="jxr_linenumber" name="L147" href="#L147">147</a> 
+<a class="jxr_linenumber" name="L148" href="#L148">148</a>         <em 
class="jxr_comment">// x1 &gt; upper</em>
+<a class="jxr_linenumber" name="L149" href="#L149">149</a>         
Assertions.assertEquals(1, dist.probability(0, 16));
+<a class="jxr_linenumber" name="L150" href="#L150">150</a>         
Assertions.assertEquals((11 - 3.45) / 11, dist.probability(3.45, 16));
+<a class="jxr_linenumber" name="L151" href="#L151">151</a>         
Assertions.assertEquals((11 - 4.89) / 11, dist.probability(4.89, 16));
+<a class="jxr_linenumber" name="L152" href="#L152">152</a>         
Assertions.assertEquals(0, dist.probability(11, 16));
+<a class="jxr_linenumber" name="L153" href="#L153">153</a> 
+<a class="jxr_linenumber" name="L154" href="#L154">154</a>         <em 
class="jxr_comment">// x0 &lt; lower</em>
+<a class="jxr_linenumber" name="L155" href="#L155">155</a>         
Assertions.assertEquals(2.0 / 11, dist.probability(-2, 2));
+<a class="jxr_linenumber" name="L156" href="#L156">156</a>         
Assertions.assertEquals(3.0 / 11, dist.probability(-2, 3));
+<a class="jxr_linenumber" name="L157" href="#L157">157</a>         
Assertions.assertEquals(4.0 / 11, dist.probability(-2, 4));
+<a class="jxr_linenumber" name="L158" href="#L158">158</a>         
Assertions.assertEquals(1.0, dist.probability(-2, 11));
+<a class="jxr_linenumber" name="L159" href="#L159">159</a> 
+<a class="jxr_linenumber" name="L160" href="#L160">160</a>         <em 
class="jxr_comment">// x1 &gt; upper &amp;&amp; x0 &lt; lower</em>
+<a class="jxr_linenumber" name="L161" href="#L161">161</a>         
Assertions.assertEquals(1, dist.probability(-2, 16));
+<a class="jxr_linenumber" name="L162" href="#L162">162</a>     }
+<a class="jxr_linenumber" name="L163" href="#L163">163</a> }
+</pre>
+<hr/>
+<div id="footer">Copyright &#169; 2018&#x2013;2022 <a 
href="https://www.apache.org/";>The Apache Software Foundation</a>. All rights 
reserved.</div>
+</body>
+</html>


Reply via email to