This is an automated email from the ASF dual-hosted git repository. aherbert pushed a commit to branch master in repository https://gitbox.apache.org/repos/asf/commons-statistics.git
commit c4b0a747adaf13ef152bcfc018fbeddb440fa2dc Author: Alex Herbert <aherb...@apache.org> AuthorDate: Fri Dec 24 15:08:39 2021 +0000 Increase Exponential PDF test tolerance The Math.exp function is platform dependent and has lower accuracy than 1 ULP on the given test data depending on the JDK and OS. --- .../commons/statistics/distribution/ExponentialDistributionTest.java | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/commons-statistics-distribution/src/test/java/org/apache/commons/statistics/distribution/ExponentialDistributionTest.java b/commons-statistics-distribution/src/test/java/org/apache/commons/statistics/distribution/ExponentialDistributionTest.java index a9b8a7e..c52b350 100644 --- a/commons-statistics-distribution/src/test/java/org/apache/commons/statistics/distribution/ExponentialDistributionTest.java +++ b/commons-statistics-distribution/src/test/java/org/apache/commons/statistics/distribution/ExponentialDistributionTest.java @@ -87,7 +87,7 @@ class ExponentialDistributionTest extends BaseContinuousDistributionTest { final double a = ExponentialDistribution.of(mean).density(x); // Require high precision. // This has max error of 3 ulp if using exp(logDensity(x)). - Assertions.assertEquals(e, a, Math.ulp(e), + Assertions.assertEquals(e, a, 2 * Math.ulp(e), () -> "ULP error: " + expected.subtract(new BigDecimal(a)).doubleValue() / Math.ulp(e)); } }