This is an automated email from the ASF dual-hosted git repository. aherbert pushed a commit to branch master in repository https://gitbox.apache.org/repos/asf/commons-math.git
The following commit(s) were added to refs/heads/master by this push: new aa58ab0 Updated tests to use factory constructors for Statistics distributions aa58ab0 is described below commit aa58ab0fd6229532ef29302342f9086f5e1a8dc8 Author: aherbert <aherb...@apache.org> AuthorDate: Wed Oct 13 14:20:47 2021 +0100 Updated tests to use factory constructors for Statistics distributions --- .../analysis/interpolation/AkimaSplineInterpolatorTest.java | 2 +- .../interpolation/BicubicInterpolatingFunctionTest.java | 4 ++-- .../analysis/interpolation/BicubicInterpolatorTest.java | 4 ++-- .../PiecewiseBicubicSplineInterpolatingFunctionTest.java | 4 ++-- .../PiecewiseBicubicSplineInterpolatorTest.java | 8 ++++---- .../interpolation/TricubicInterpolatingFunctionTest.java | 6 +++--- .../math4/legacy/distribution/EmpiricalDistributionTest.java | 8 ++++---- .../distribution/MultivariateNormalDistributionTest.java | 2 +- .../math4/legacy/fitting/PolynomialCurveFitterTest.java | 2 +- .../commons/math4/legacy/fitting/SimpleCurveFitterTest.java | 2 +- .../fitting/leastsquares/RandomCirclePointGenerator.java | 6 +++--- .../leastsquares/RandomStraightLinePointGenerator.java | 4 ++-- .../commons/math4/legacy/linear/EigenDecompositionTest.java | 2 +- .../math4/legacy/linear/HessenbergTransformerTest.java | 2 +- .../commons/math4/legacy/linear/SchurTransformerTest.java | 2 +- .../legacy/stat/correlation/PearsonsCorrelationTest.java | 2 +- .../stat/descriptive/AggregateSummaryStatisticsTest.java | 6 +++--- .../legacy/stat/descriptive/ResizableDoubleArrayTest.java | 4 ++-- .../stat/descriptive/UnivariateStatisticAbstractTest.java | 4 ++-- .../legacy/stat/descriptive/rank/PSquarePercentileTest.java | 8 ++++---- .../math4/legacy/stat/descriptive/rank/PercentileTest.java | 2 +- .../math4/legacy/stat/inference/InferenceTestUtilsTest.java | 2 +- .../legacy/stat/inference/KolmogorovSmirnovTestTest.java | 12 ++++++------ .../stat/regression/GLSMultipleLinearRegressionTest.java | 2 +- 24 files changed, 50 insertions(+), 50 deletions(-) diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/AkimaSplineInterpolatorTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/AkimaSplineInterpolatorTest.java index 518242d..f10f58a 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/AkimaSplineInterpolatorTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/AkimaSplineInterpolatorTest.java @@ -220,7 +220,7 @@ public class AkimaSplineInterpolatorTest { final UniformRandomProvider rng = RandomSource.WELL_19937_C.create(1234567L); // "tol" depends on the seed. final ContinuousDistribution.Sampler distX = - new UniformContinuousDistribution(xValues[0], xValues[xValues.length - 1]).createSampler(rng); + UniformContinuousDistribution.of(xValues[0], xValues[xValues.length - 1]).createSampler(rng); double sumError = 0; for (int i = 0; i < numberOfSamples; i++) { diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/BicubicInterpolatingFunctionTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/BicubicInterpolatingFunctionTest.java index 1c08d3a..a974ab2 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/BicubicInterpolatingFunctionTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/BicubicInterpolatingFunctionTest.java @@ -360,8 +360,8 @@ public final class BicubicInterpolatingFunctionTest { } final UniformRandomProvider rng = RandomSource.WELL_19937_C.create(1234567L); - final ContinuousDistribution.Sampler distX = new UniformContinuousDistribution(xValues[0], xValues[xValues.length - 1]).createSampler(rng); - final ContinuousDistribution.Sampler distY = new UniformContinuousDistribution(yValues[0], yValues[yValues.length - 1]).createSampler(rng); + final ContinuousDistribution.Sampler distX = UniformContinuousDistribution.of(xValues[0], xValues[xValues.length - 1]).createSampler(rng); + final ContinuousDistribution.Sampler distY = UniformContinuousDistribution.of(yValues[0], yValues[yValues.length - 1]).createSampler(rng); double sumError = 0; for (int i = 0; i < numberOfSamples; i++) { diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/BicubicInterpolatorTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/BicubicInterpolatorTest.java index 14f2234..6e2058c 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/BicubicInterpolatorTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/BicubicInterpolatorTest.java @@ -147,8 +147,8 @@ public final class BicubicInterpolatorTest { final BicubicInterpolatingFunction p = interpolator.interpolate(xval, yval, zval); final UniformRandomProvider rng = RandomSource.WELL_19937_C.create(); - final ContinuousDistribution.Sampler distX = new UniformContinuousDistribution(xval[0], xval[xval.length - 1]).createSampler(rng); - final ContinuousDistribution.Sampler distY = new UniformContinuousDistribution(yval[0], yval[yval.length - 1]).createSampler(rng); + final ContinuousDistribution.Sampler distX = UniformContinuousDistribution.of(xval[0], xval[xval.length - 1]).createSampler(rng); + final ContinuousDistribution.Sampler distY = UniformContinuousDistribution.of(yval[0], yval[yval.length - 1]).createSampler(rng); int count = 0; while (true) { diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/PiecewiseBicubicSplineInterpolatingFunctionTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/PiecewiseBicubicSplineInterpolatingFunctionTest.java index 6e2f386..71fa711 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/PiecewiseBicubicSplineInterpolatingFunctionTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/PiecewiseBicubicSplineInterpolatingFunctionTest.java @@ -252,8 +252,8 @@ public final class PiecewiseBicubicSplineInterpolatingFunctionTest { } final UniformRandomProvider rng = RandomSource.WELL_19937_C.create(1234567L); - final ContinuousDistribution.Sampler distX = new UniformContinuousDistribution(xValues[0], xValues[xValues.length - 1]).createSampler(rng); - final ContinuousDistribution.Sampler distY = new UniformContinuousDistribution(yValues[0], yValues[yValues.length - 1]).createSampler(rng); + final ContinuousDistribution.Sampler distX = UniformContinuousDistribution.of(xValues[0], xValues[xValues.length - 1]).createSampler(rng); + final ContinuousDistribution.Sampler distY = UniformContinuousDistribution.of(yValues[0], yValues[yValues.length - 1]).createSampler(rng); double sumError = 0; for (int i = 0; i < numberOfSamples; i++) { diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/PiecewiseBicubicSplineInterpolatorTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/PiecewiseBicubicSplineInterpolatorTest.java index eccb6d3..9c11618 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/PiecewiseBicubicSplineInterpolatorTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/PiecewiseBicubicSplineInterpolatorTest.java @@ -160,8 +160,8 @@ public final class PiecewiseBicubicSplineInterpolatorTest { double y; final UniformRandomProvider rng = RandomSource.WELL_19937_C.create(1234567L); - final ContinuousDistribution.Sampler distX = new UniformContinuousDistribution(xval[0], xval[xval.length - 1]).createSampler(rng); - final ContinuousDistribution.Sampler distY = new UniformContinuousDistribution(yval[0], yval[yval.length - 1]).createSampler(rng); + final ContinuousDistribution.Sampler distX = UniformContinuousDistribution.of(xval[0], xval[xval.length - 1]).createSampler(rng); + final ContinuousDistribution.Sampler distY = UniformContinuousDistribution.of(yval[0], yval[yval.length - 1]).createSampler(rng); final int numSamples = 50; final double tol = 2e-14; @@ -213,8 +213,8 @@ public final class PiecewiseBicubicSplineInterpolatorTest { double y; final UniformRandomProvider rng = RandomSource.WELL_19937_C.create(1234567L); - final ContinuousDistribution.Sampler distX = new UniformContinuousDistribution(xval[0], xval[xval.length - 1]).createSampler(rng); - final ContinuousDistribution.Sampler distY = new UniformContinuousDistribution(yval[0], yval[yval.length - 1]).createSampler(rng); + final ContinuousDistribution.Sampler distX = UniformContinuousDistribution.of(xval[0], xval[xval.length - 1]).createSampler(rng); + final ContinuousDistribution.Sampler distY = UniformContinuousDistribution.of(yval[0], yval[yval.length - 1]).createSampler(rng); final int numSamples = 50; final double tol = 5e-13; diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/TricubicInterpolatingFunctionTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/TricubicInterpolatingFunctionTest.java index 23560e9..87f7036 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/TricubicInterpolatingFunctionTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/analysis/interpolation/TricubicInterpolatingFunctionTest.java @@ -381,9 +381,9 @@ public final class TricubicInterpolatingFunctionTest { } final UniformRandomProvider rng = RandomSource.WELL_19937_C.create(1234568L); - final ContinuousDistribution.Sampler distX = new UniformContinuousDistribution(xValues[0], xValues[xValues.length - 1]).createSampler(rng); - final ContinuousDistribution.Sampler distY = new UniformContinuousDistribution(yValues[0], yValues[yValues.length - 1]).createSampler(rng); - final ContinuousDistribution.Sampler distZ = new UniformContinuousDistribution(zValues[0], zValues[zValues.length - 1]).createSampler(rng); + final ContinuousDistribution.Sampler distX = UniformContinuousDistribution.of(xValues[0], xValues[xValues.length - 1]).createSampler(rng); + final ContinuousDistribution.Sampler distY = UniformContinuousDistribution.of(yValues[0], yValues[yValues.length - 1]).createSampler(rng); + final ContinuousDistribution.Sampler distZ = UniformContinuousDistribution.of(zValues[0], zValues[zValues.length - 1]).createSampler(rng); double sumError = 0; for (int i = 0; i < numberOfSamples; i++) { diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/distribution/EmpiricalDistributionTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/distribution/EmpiricalDistributionTest.java index addd94a..a168e36 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/distribution/EmpiricalDistributionTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/distribution/EmpiricalDistributionTest.java @@ -381,9 +381,9 @@ public final class EmpiricalDistributionTest extends RealDistributionAbstractTes */ private ContinuousDistribution findKernel(double lower, double upper) { if (lower < 1) { - return new NormalDistribution(5d, 3.3166247903554); + return NormalDistribution.of(5d, 3.3166247903554); } else { - return new NormalDistribution((upper + lower + 1) / 2d, 3.0276503540974917); + return NormalDistribution.of((upper + lower + 1) / 2d, 3.0276503540974917); } } @@ -392,7 +392,7 @@ public final class EmpiricalDistributionTest extends RealDistributionAbstractTes final double[] data = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; final EmpiricalDistribution dist = EmpiricalDistribution.from(5, data, - s -> new UniformContinuousDistribution(s.getMin(), s.getMax())); + s -> UniformContinuousDistribution.of(s.getMin(), s.getMax())); final ContinuousDistribution.Sampler sampler = dist.createSampler(RandomSource.WELL_19937_C.create(1000)); // Kernels are uniform distributions on [1,3], [4,6], [7,9], [10,12], [13,15] @@ -424,7 +424,7 @@ public final class EmpiricalDistributionTest extends RealDistributionAbstractTes public void testMath1431() { final UniformRandomProvider rng = RandomSource.WELL_19937_C.create(1000); final ContinuousDistribution.Sampler exponentialDistributionSampler - = new ExponentialDistribution(0.05).createSampler(rng); + = ExponentialDistribution.of(0.05).createSampler(rng); final double[] empiricalDataPoints = new double[3000]; for (int i = 0; i < empiricalDataPoints.length; i++) { empiricalDataPoints[i] = exponentialDistributionSampler.sample(); diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/distribution/MultivariateNormalDistributionTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/distribution/MultivariateNormalDistributionTest.java index 0cf6d9e..31c5af4 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/distribution/MultivariateNormalDistributionTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/distribution/MultivariateNormalDistributionTest.java @@ -144,7 +144,7 @@ public class MultivariateNormalDistributionTest { final MultivariateNormalDistribution multi = new MultivariateNormalDistribution(mu, sigma); - final NormalDistribution uni = new NormalDistribution(mu[0], sigma[0][0]); + final NormalDistribution uni = NormalDistribution.of(mu[0], sigma[0][0]); final Random rng = new Random(); final int numCases = 100; final double tol = Math.ulp(1d); diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/fitting/PolynomialCurveFitterTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/fitting/PolynomialCurveFitterTest.java index 64eaefa..79ec3cf 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/fitting/PolynomialCurveFitterTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/fitting/PolynomialCurveFitterTest.java @@ -35,7 +35,7 @@ public class PolynomialCurveFitterTest { @Test public void testFit() { final ContinuousDistribution.Sampler rng - = new UniformContinuousDistribution(-100, 100).createSampler(RandomSource.WELL_512_A.create(64925784252L)); + = UniformContinuousDistribution.of(-100, 100).createSampler(RandomSource.WELL_512_A.create(64925784252L)); final double[] coeff = { 12.9, -3.4, 2.1 }; // 12.9 - 3.4 x + 2.1 x^2 final PolynomialFunction f = new PolynomialFunction(coeff); diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/fitting/SimpleCurveFitterTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/fitting/SimpleCurveFitterTest.java index c520196..e941412 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/fitting/SimpleCurveFitterTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/fitting/SimpleCurveFitterTest.java @@ -34,7 +34,7 @@ public class SimpleCurveFitterTest { public void testPolynomialFit() { final Random randomizer = new Random(53882150042L); final ContinuousDistribution.Sampler rng - = new UniformContinuousDistribution(-100, 100).createSampler(RandomSource.WELL_512_A.create(64925784253L)); + = UniformContinuousDistribution.of(-100, 100).createSampler(RandomSource.WELL_512_A.create(64925784253L)); final double[] coeff = { 12.9, -3.4, 2.1 }; // 12.9 - 3.4 x + 2.1 x^2 final PolynomialFunction f = new PolynomialFunction(coeff); diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/fitting/leastsquares/RandomCirclePointGenerator.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/fitting/leastsquares/RandomCirclePointGenerator.java index 1e32e17..5437544 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/fitting/leastsquares/RandomCirclePointGenerator.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/fitting/leastsquares/RandomCirclePointGenerator.java @@ -51,9 +51,9 @@ public class RandomCirclePointGenerator { double ySigma) { final UniformRandomProvider rng = RandomSource.WELL_44497_B.create(); this.radius = radius; - cX = new NormalDistribution(x, xSigma).createSampler(rng); - cY = new NormalDistribution(y, ySigma).createSampler(rng); - tP = new UniformContinuousDistribution(0, 2 * Math.PI).createSampler(rng); + cX = NormalDistribution.of(x, xSigma).createSampler(rng); + cY = NormalDistribution.of(y, ySigma).createSampler(rng); + tP = UniformContinuousDistribution.of(0, 2 * Math.PI).createSampler(rng); } /** diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/fitting/leastsquares/RandomStraightLinePointGenerator.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/fitting/leastsquares/RandomStraightLinePointGenerator.java index 7b35d4b..589f149 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/fitting/leastsquares/RandomStraightLinePointGenerator.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/fitting/leastsquares/RandomStraightLinePointGenerator.java @@ -64,8 +64,8 @@ public class RandomStraightLinePointGenerator { final UniformRandomProvider rng = RandomSource.WELL_44497_B.create(seed); slope = a; intercept = b; - error = new NormalDistribution(0, sigma).createSampler(rng); - x = new UniformContinuousDistribution(lo, hi).createSampler(rng); + error = NormalDistribution.of(0, sigma).createSampler(rng); + x = UniformContinuousDistribution.of(lo, hi).createSampler(rng); } /** diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/linear/EigenDecompositionTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/linear/EigenDecompositionTest.java index 8b7698b..092e48e 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/linear/EigenDecompositionTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/linear/EigenDecompositionTest.java @@ -464,7 +464,7 @@ public class EigenDecompositionTest { for (int run = 0; run < 100; run++) { Random r = new Random(System.currentTimeMillis()); ContinuousDistribution.Sampler dist - = new NormalDistribution(0.0, r.nextDouble() * 5).createSampler(RandomSource.WELL_512_A.create(64925784252L)); + = NormalDistribution.of(0.0, r.nextDouble() * 5).createSampler(RandomSource.WELL_512_A.create(64925784252L)); // matrix size int size = r.nextInt(20) + 4; diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/linear/HessenbergTransformerTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/linear/HessenbergTransformerTest.java index 2ec49d3..ba7c485 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/linear/HessenbergTransformerTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/linear/HessenbergTransformerTest.java @@ -111,7 +111,7 @@ public class HessenbergTransformerTest { for (int run = 0; run < 100; run++) { Random r = new Random(System.currentTimeMillis()); ContinuousDistribution.Sampler dist - = new NormalDistribution(0.0, r.nextDouble() * 5).createSampler(RandomSource.WELL_512_A.create(64925784252L)); + = NormalDistribution.of(0.0, r.nextDouble() * 5).createSampler(RandomSource.WELL_512_A.create(64925784252L)); // matrix size int size = r.nextInt(20) + 4; diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/linear/SchurTransformerTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/linear/SchurTransformerTest.java index 8085f0c..dd1f6d0 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/linear/SchurTransformerTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/linear/SchurTransformerTest.java @@ -115,7 +115,7 @@ public class SchurTransformerTest { for (int run = 0; run < 100; run++) { Random r = new Random(System.currentTimeMillis()); ContinuousDistribution.Sampler dist - = new NormalDistribution(0.0, r.nextDouble() * 5).createSampler(RandomSource.WELL_512_A.create(64925784252L)); + = NormalDistribution.of(0.0, r.nextDouble() * 5).createSampler(RandomSource.WELL_512_A.create(64925784252L)); // matrix size int size = r.nextInt(20) + 4; diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/correlation/PearsonsCorrelationTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/correlation/PearsonsCorrelationTest.java index 130e867..1b503fe 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/correlation/PearsonsCorrelationTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/correlation/PearsonsCorrelationTest.java @@ -228,7 +228,7 @@ public class PearsonsCorrelationTest { */ @Test public void testStdErrorConsistency() { - TDistribution tDistribution = new TDistribution(45); + TDistribution tDistribution = TDistribution.of(45); RealMatrix matrix = createRealMatrix(swissData, 47, 5); PearsonsCorrelation corrInstance = new PearsonsCorrelation(matrix); RealMatrix rValues = corrInstance.getCorrelationMatrix(); diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/AggregateSummaryStatisticsTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/AggregateSummaryStatisticsTest.java index 23f1835..b8aebf8 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/AggregateSummaryStatisticsTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/AggregateSummaryStatisticsTest.java @@ -283,9 +283,9 @@ public class AggregateSummaryStatisticsTest { */ private double[] generateSample() { final DiscreteDistribution.Sampler size = - new UniformDiscreteDistribution(10, 100).createSampler(RandomSource.WELL_512_A.create(327652)); + UniformDiscreteDistribution.of(10, 100).createSampler(RandomSource.WELL_512_A.create(327652)); final ContinuousDistribution.Sampler randomData - = new UniformContinuousDistribution(-100, 100).createSampler(RandomSource.WELL_512_A.create(64925784252L)); + = UniformContinuousDistribution.of(-100, 100).createSampler(RandomSource.WELL_512_A.create(64925784252L)); final int sampleSize = size.sample(); final double[] out = AbstractRealDistribution.sample(sampleSize, randomData); return out; @@ -313,7 +313,7 @@ public class AggregateSummaryStatisticsTest { next = length - 1; } else { final DiscreteDistribution.Sampler sampler = - new UniformDiscreteDistribution(cur, length - 1).createSampler(RandomSource.WELL_512_A.create()); + UniformDiscreteDistribution.of(cur, length - 1).createSampler(RandomSource.WELL_512_A.create()); next = sampler.sample(); } final int subLength = next - cur + 1; diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/ResizableDoubleArrayTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/ResizableDoubleArrayTest.java index 86a0734..abc6f5c 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/ResizableDoubleArrayTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/ResizableDoubleArrayTest.java @@ -324,7 +324,7 @@ public class ResizableDoubleArrayTest extends DoubleArrayAbstractTest { Assert.assertEquals("Initial number of elements should be 0", 0, eDA2.getNumElements()); final DiscreteDistribution.Sampler randomData = - new UniformDiscreteDistribution(100, 1000).createSampler(RandomSource.WELL_19937_C.create()); + UniformDiscreteDistribution.of(100, 1000).createSampler(RandomSource.WELL_19937_C.create()); final int iterations = randomData.sample(); for( int i = 0; i < iterations; i++) { @@ -346,7 +346,7 @@ public class ResizableDoubleArrayTest extends DoubleArrayAbstractTest { Assert.assertEquals("Initial number of elements should be 0", 0, eDA3.getNumElements() ); final DiscreteDistribution.Sampler randomData = - new UniformDiscreteDistribution(100, 3000).createSampler(RandomSource.WELL_19937_C.create()); + UniformDiscreteDistribution.of(100, 3000).createSampler(RandomSource.WELL_19937_C.create()); final int iterations = randomData.sample(); diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/UnivariateStatisticAbstractTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/UnivariateStatisticAbstractTest.java index 9595af1..78fb1e6 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/UnivariateStatisticAbstractTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/UnivariateStatisticAbstractTest.java @@ -178,7 +178,7 @@ public abstract class UnivariateStatisticAbstractTest { // Fill weights array with random int values between 1 and 5 int[] intWeights = new int[len]; final DiscreteDistribution.Sampler weightDist = - new UniformDiscreteDistribution(1, 5).createSampler(RandomSource.WELL_512_A.create(234878544L)); + UniformDiscreteDistribution.of(1, 5).createSampler(RandomSource.WELL_512_A.create(234878544L)); for (int i = 0; i < len; i++) { intWeights[i] = weightDist.sample(); weights[i] = intWeights[i]; @@ -188,7 +188,7 @@ public abstract class UnivariateStatisticAbstractTest { // and fill valuesList with values from values array with // values[i] repeated weights[i] times, each i final ContinuousDistribution.Sampler valueDist = - new NormalDistribution(mu, sigma).createSampler(RandomSource.WELL_512_A.create(64925784252L)); + NormalDistribution.of(mu, sigma).createSampler(RandomSource.WELL_512_A.create(64925784252L)); List<Double> valuesList = new ArrayList<>(); for (int i = 0; i < len; i++) { double value = valueDist.sample(); diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/rank/PSquarePercentileTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/rank/PSquarePercentileTest.java index e4955a9..a1c0ab9 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/rank/PSquarePercentileTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/rank/PSquarePercentileTest.java @@ -762,9 +762,9 @@ public class PSquarePercentileTest extends */ @Test public void testDistribution() { - doDistributionTest(new NormalDistribution(4000, 50)); - doDistributionTest(new LogNormalDistribution(4000, 50)); - // doDistributionTest((new ExponentialDistribution(4000)); - // doDistributionTest(new GammaDistribution(5d,1d),0.1); + doDistributionTest(NormalDistribution.of(4000, 50)); + doDistributionTest(LogNormalDistribution.of(4000, 50)); + // doDistributionTest((ExponentialDistribution.of(4000)); + // doDistributionTest(GammaDistribution.of(5d,1d),0.1); } } diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/rank/PercentileTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/rank/PercentileTest.java index 7f8e026..25864c5 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/rank/PercentileTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/descriptive/rank/PercentileTest.java @@ -590,7 +590,7 @@ public class PercentileTest extends UnivariateStatisticAbstractTest{ @Test public void testStoredVsDirect() { final ContinuousDistribution.Sampler sampler = - new NormalDistribution(4000, 50).createSampler(RandomSource.JDK.create(Long.MAX_VALUE)); + NormalDistribution.of(4000, 50).createSampler(RandomSource.JDK.create(Long.MAX_VALUE)); for (final int sampleSize : sampleSizes) { final double[] data = AbstractRealDistribution.sample(sampleSize, sampler); diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/inference/InferenceTestUtilsTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/inference/InferenceTestUtilsTest.java index e75745a..1d14a31 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/inference/InferenceTestUtilsTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/inference/InferenceTestUtilsTest.java @@ -527,7 +527,7 @@ public class InferenceTestUtilsTest { @Test public void testKSOneSample() throws Exception { - final NormalDistribution unitNormal = new NormalDistribution(0d, 1d); + final NormalDistribution unitNormal = NormalDistribution.of(0d, 1d); final double[] sample = KolmogorovSmirnovTestTest.gaussian; final double tol = 1e-10; Assert.assertEquals(0.3172069207622391, InferenceTestUtils.kolmogorovSmirnovTest(unitNormal, sample), tol); diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/inference/KolmogorovSmirnovTestTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/inference/KolmogorovSmirnovTestTest.java index 4d63f13..a03b4ff 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/inference/KolmogorovSmirnovTestTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/inference/KolmogorovSmirnovTestTest.java @@ -104,7 +104,7 @@ public class KolmogorovSmirnovTestTest { @Test public void testOneSampleGaussianGaussian() { final KolmogorovSmirnovTest test = new KolmogorovSmirnovTest(); - final NormalDistribution unitNormal = new NormalDistribution(0d, 1d); + final NormalDistribution unitNormal = NormalDistribution.of(0d, 1d); // Uncomment to run exact test - takes about a minute. Same value is used in R tests and for // approx. // Assert.assertEquals(0.3172069207622391, test.kolmogorovSmirnovTest(unitNormal, gaussian, @@ -118,7 +118,7 @@ public class KolmogorovSmirnovTestTest { @Test public void testOneSampleGaussianGaussianSmallSample() { final KolmogorovSmirnovTest test = new KolmogorovSmirnovTest(); - final NormalDistribution unitNormal = new NormalDistribution(0d, 1d); + final NormalDistribution unitNormal = NormalDistribution.of(0d, 1d); final double[] shortGaussian = new double[50]; System.arraycopy(gaussian, 0, shortGaussian, 0, 50); Assert.assertEquals(0.683736463728347, test.kolmogorovSmirnovTest(unitNormal, shortGaussian, false), TOLERANCE); @@ -130,7 +130,7 @@ public class KolmogorovSmirnovTestTest { @Test public void testOneSampleGaussianUniform() { final KolmogorovSmirnovTest test = new KolmogorovSmirnovTest(); - final NormalDistribution unitNormal = new NormalDistribution(0d, 1d); + final NormalDistribution unitNormal = NormalDistribution.of(0d, 1d); // Uncomment to run exact test - takes a long time. Same value is used in R tests and for // approx. // Assert.assertEquals(0.3172069207622391, test.kolmogorovSmirnovTest(unitNormal, uniform, @@ -144,7 +144,7 @@ public class KolmogorovSmirnovTestTest { // @Test - takes about 6 seconds, uncomment for public void testOneSampleUniformUniform() { final KolmogorovSmirnovTest test = new KolmogorovSmirnovTest(); - final UniformContinuousDistribution unif = new UniformContinuousDistribution(-0.5, 0.5); + final UniformContinuousDistribution unif = UniformContinuousDistribution.of(-0.5, 0.5); Assert.assertEquals(8.881784197001252E-16, test.kolmogorovSmirnovTest(unif, uniform, false), TOLERANCE); Assert.assertTrue(test.kolmogorovSmirnovTest(unif, uniform, 0.05)); Assert.assertEquals(0.5400666982352942, test.kolmogorovSmirnovStatistic(unif, uniform), TOLERANCE); @@ -154,7 +154,7 @@ public class KolmogorovSmirnovTestTest { @Test public void testOneSampleUniformUniformSmallSample() { final KolmogorovSmirnovTest test = new KolmogorovSmirnovTest(); - final UniformContinuousDistribution unif = new UniformContinuousDistribution(-0.5, 0.5); + final UniformContinuousDistribution unif = UniformContinuousDistribution.of(-0.5, 0.5); final double[] shortUniform = new double[20]; System.arraycopy(uniform, 0, shortUniform, 0, 20); Assert.assertEquals(4.117594598618268E-9, test.kolmogorovSmirnovTest(unif, shortUniform, false), TOLERANCE); @@ -166,7 +166,7 @@ public class KolmogorovSmirnovTestTest { @Test public void testOneSampleUniformGaussian() { final KolmogorovSmirnovTest test = new KolmogorovSmirnovTest(); - final UniformContinuousDistribution unif = new UniformContinuousDistribution(-0.5, 0.5); + final UniformContinuousDistribution unif = UniformContinuousDistribution.of(-0.5, 0.5); // Value was obtained via exact test, validated against R. Running exact test takes a long // time. Assert.assertEquals(4.9405812774239166E-11, test.kolmogorovSmirnovTest(unif, gaussian, false), TOLERANCE); diff --git a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/regression/GLSMultipleLinearRegressionTest.java b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/regression/GLSMultipleLinearRegressionTest.java index 2c17783..b53d500 100644 --- a/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/regression/GLSMultipleLinearRegressionTest.java +++ b/commons-math-legacy/src/test/java/org/apache/commons/math4/legacy/stat/regression/GLSMultipleLinearRegressionTest.java @@ -223,7 +223,7 @@ public class GLSMultipleLinearRegressionTest extends MultipleLinearRegressionAbs @Test public void testGLSEfficiency() { final UniformRandomProvider rg = RandomSource.MT.create(); - final ContinuousDistribution.Sampler gauss = new NormalDistribution(0, 1).createSampler(rg); + final ContinuousDistribution.Sampler gauss = NormalDistribution.of(0, 1).createSampler(rg); // Assume model has 16 observations (will use Longley data). Start by generating // non-constant variances for the 16 error terms.