This is an automated email from the ASF dual-hosted git repository. aherbert pushed a commit to branch master in repository https://gitbox.apache.org/repos/asf/commons-statistics.git
commit 40e721c43c5988bcb911314115e1b21bf2d8b377 Author: Alex Herbert <aherb...@apache.org> AuthorDate: Mon Feb 22 21:37:05 2021 +0000 Test additional distributions using setters from parent class. Rearranges the data to use the naming convention and order of the abstract methods: cumulativeTestPoints cumulativeTestValues densityTestValues --- .../TruncatedNormalDistributionTest.java | 124 ++++++++++----------- 1 file changed, 62 insertions(+), 62 deletions(-) diff --git a/commons-statistics-distribution/src/test/java/org/apache/commons/statistics/distribution/TruncatedNormalDistributionTest.java b/commons-statistics-distribution/src/test/java/org/apache/commons/statistics/distribution/TruncatedNormalDistributionTest.java index ce49e46..48eed2f 100644 --- a/commons-statistics-distribution/src/test/java/org/apache/commons/statistics/distribution/TruncatedNormalDistributionTest.java +++ b/commons-statistics-distribution/src/test/java/org/apache/commons/statistics/distribution/TruncatedNormalDistributionTest.java @@ -17,6 +17,7 @@ package org.apache.commons.statistics.distribution; +import java.util.Arrays; import org.junit.jupiter.api.Assertions; import org.junit.jupiter.api.BeforeEach; import org.junit.jupiter.api.Test; @@ -26,86 +27,79 @@ import org.junit.jupiter.api.Test; * All test values were computed using Python with SciPy v1.6.0. */ class TruncatedNormalDistributionTest extends ContinuousDistributionAbstractTest { - /** Distribution to test with. */ - private TruncatedNormalDistribution distribution = new TruncatedNormalDistribution(1.9, 1.3, -1.1, 3.4); - /** Percentiles to test with. */ - private double[] ppfValues = new double[]{0, 0.0001, 0.001, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, - 0.975, 0.99, 0.999, 0.9999, 1}; - /** Expected cumulative values for percentiles. */ - private double[] cdfValues = new double[]{-1.1, -1.09597275767544, -1.0609616183922, -0.79283350106842, - -0.505331829887808, -0.192170173599874, 0.21173317261645, - 0.925791281910463, 1.71399518338879, 2.43413009451536, 2.94473113856785, - 3.15310057075828, 3.27036798398733, 3.34641874981679, 3.39452729074341, - 3.39945153287941, 3.4}; - /** Expected density values for percentiles. */ - private double[] pdfValues = new double[]{0.0247422752302618, 0.0249196707321102, 0.0265057408263321, - 0.0415071096500185, 0.0640403254340905, 0.0971457789636, - 0.152622492901864, 0.267853863255995, 0.35107475879338, 0.325977522502844, - 0.25680502248913, 0.222886115806507, 0.203494915087054, 0.190997946666992, - 0.183167918885238, 0.182370706542209, 0.182281965373914}; - /** Expected distribution mean. */ - private double mean = 1.63375792365723; - /** Expected distribution variance. */ - private double variance = 1.03158703914439; - - /** Overrides tolerance and sets up distribution. */ + + //---------------------- Override tolerance -------------------------------- + @BeforeEach - void setUp() { + void customSetUp() { setTolerance(1e-7); - super.setUp(); } + //-------------- Implementations for abstract methods ---------------------- + /** {@inheritDoc} */ @Override public ContinuousDistribution makeDistribution() { - return distribution; + return new TruncatedNormalDistribution(1.9, 1.3, -1.1, 3.4); } /** {@inheritDoc} */ @Override public double[] makeCumulativeTestPoints() { - return cdfValues; + return new double[]{-1.1, -1.09597275767544, -1.0609616183922, -0.79283350106842, + -0.505331829887808, -0.192170173599874, 0.21173317261645, + 0.925791281910463, 1.71399518338879, 2.43413009451536, 2.94473113856785, + 3.15310057075828, 3.27036798398733, 3.34641874981679, 3.39452729074341, + 3.39945153287941, 3.4}; } /** {@inheritDoc} */ @Override public double[] makeCumulativeTestValues() { - return ppfValues; + return new double[]{0, 0.0001, 0.001, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, + 0.975, 0.99, 0.999, 0.9999, 1}; } /** {@inheritDoc} */ @Override public double[] makeDensityTestValues() { - return pdfValues; + return new double[]{0.0247422752302618, 0.0249196707321102, 0.0265057408263321, + 0.0415071096500185, 0.0640403254340905, 0.0971457789636, + 0.152622492901864, 0.267853863255995, 0.35107475879338, 0.325977522502844, + 0.25680502248913, 0.222886115806507, 0.203494915087054, 0.190997946666992, + 0.183167918885238, 0.182370706542209, 0.182281965373914}; } + //-------------------- Additional test cases ------------------------------- + /** * Configures new test values and runs relevant tests in this class and {@link ContinuousDistributionAbstractTest}. * - * @param testDistribution distribution to test with. - * @param expectedPpfValues expected percentiles to test with. - * @param expectedCdfValues expected cumulative values for percentiles. - * @param expectedPdfValues expected density values for percentiles. - * @param expectedMean expected mean. - * @param expectedVariance expected variance. + * @param distribution distribution to test with. + * @param cumulativeTestPoints test points for the cumulative probability and density. + * @param cumulativeTestValues expected values for the cumulative probability. + * @param densityTestValues expected values for the density. + * @param mean expected mean. + * @param variance expected variance. */ private void testAdditionalDistribution( - TruncatedNormalDistribution testDistribution, - double[] expectedPpfValues, - double[] expectedCdfValues, - double[] expectedPdfValues, - double expectedMean, - double expectedVariance) { - this.distribution = testDistribution; - this.ppfValues = expectedPpfValues; - this.cdfValues = expectedCdfValues; - this.pdfValues = expectedPdfValues; - this.mean = expectedMean; - this.variance = expectedVariance; - - setUp(); - - testMoments(); + TruncatedNormalDistribution distribution, + double[] cumulativeTestPoints, + double[] cumulativeTestValues, + double[] densityTestValues, + double mean, + double variance) { + setDistribution(distribution); + setCumulativeTestPoints(cumulativeTestPoints); + setCumulativeTestValues(cumulativeTestValues); + setDensityTestValues(densityTestValues); + // Use reverse mapping + setInverseCumulativeTestPoints(cumulativeTestValues); + setInverseCumulativeTestValues(cumulativeTestPoints); + // Use the log(density) + setLogDensityTestValues(Arrays.stream(densityTestValues).map(Math::log).toArray()); + + testMoments(distribution, mean, variance); testConsistency(); testSampler(); @@ -127,10 +121,10 @@ class TruncatedNormalDistributionTest extends ContinuousDistributionAbstractTest void testOneSidedLowerTail() { testAdditionalDistribution( new TruncatedNormalDistribution(12, 2.4, Double.NEGATIVE_INFINITY, 7.1), - new double[]{0, 0.00108276414971883, 0.00433032247708514, 0.0155754809421998, 0.0504271331622245, - 0.147106879016387, 0.387159643321778, 0.920668099879139, 1}, new double[]{Double.NEGATIVE_INFINITY, 2.20249292901062, 3.00511196424565, 3.80773099948069, 4.61035003471573, 5.41296906995077, 6.21558810518581, 7.01820714042084, 7.1}, + new double[]{0, 0.00108276414971883, 0.00433032247708514, 0.0155754809421998, 0.0504271331622245, + 0.147106879016387, 0.387159643321778, 0.920668099879139, 1}, new double[]{0, 0.00194181137319567, 0.00719165311538403, 0.0238165586714952, 0.0705273999981105, 0.186752027463317, 0.442182309739316, 0.936194292830215, 1.00423817618302}, 6.21558810518581, @@ -142,10 +136,10 @@ class TruncatedNormalDistributionTest extends ContinuousDistributionAbstractTest void testOneSidedUpperTail() { testAdditionalDistribution( new TruncatedNormalDistribution(-9.6, 17, -15, Double.POSITIVE_INFINITY), - new double[]{0, 0.164539974698729, 0.564800349576255, 0.836443289017693, 0.957226746540945, - 0.992394081771774, 0.999093968560336, 0.999928403010774, 1}, new double[]{-15, -10.5314720401464, 0.723583450712814, 11.978638941572, 23.2336944324312, 34.4887499232902, 45.7438054141485, 56.9988609050074, Double.POSITIVE_INFINITY}, + new double[]{0, 0.164539974698729, 0.564800349576255, 0.836443289017693, 0.957226746540945, + 0.992394081771774, 0.999093968560336, 0.999928403010774, 1}, new double[]{0.035721742043989, 0.0375137766818179, 0.0312438063187719, 0.0167870518464031, 0.00581865051705663, 0.00130109036611494, 0.000187685186297558, 1.74658560715427e-05, 0}, 0.723583450712812, @@ -157,11 +151,11 @@ class TruncatedNormalDistributionTest extends ContinuousDistributionAbstractTest void testNoTruncation() { testAdditionalDistribution( new TruncatedNormalDistribution(3, 1.1, Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY), + new double[]{Double.NEGATIVE_INFINITY, -2.5, -1.4, -0.300000000000001, 0.799999999999999, 1.9, 3, + 4.1, 5.2, 6.3, 7.4, 8.49999999996719, Double.POSITIVE_INFINITY}, new double[]{0, 2.86651571879193e-07, 3.16712418331199e-05, 0.00134989803163009, 0.0227501319481792, 0.158655253931457, 0.5, 0.841344746068543, 0.977249868051821, 0.99865010196837, 0.999968328758167, 0.999999713348428, 1}, - new double[]{Double.NEGATIVE_INFINITY, -2.5, -1.4, -0.300000000000001, 0.799999999999999, 1.9, 3, - 4.1, 5.2, 6.3, 7.4, 8.49999999996719, Double.POSITIVE_INFINITY}, new double[]{0, 1.35156319521299e-06, 0.000121663841604441, 0.00402895310176182, 0.0490826968301709, 0.219973385926494, 0.362674800364939, 0.219973385926494, 0.0490826968301709, 0.00402895310176184, 0.000121663841604441, 1.35156319541454e-06, 0}, @@ -174,10 +168,10 @@ class TruncatedNormalDistributionTest extends ContinuousDistributionAbstractTest void testLowerTailOnly() { testAdditionalDistribution( new TruncatedNormalDistribution(0, 1, Double.NEGATIVE_INFINITY, -5), - new double[]{0, 0.00196196451357246, 0.00597491488512203, 0.0176247203066899, 0.0503595643590926, - 0.139390045971621, 0.373761183487683, 0.970943041215359, 1}, new double[]{Double.NEGATIVE_INFINITY, -6.09061174025149, -5.90979018562636, -5.72896863100123, -5.54814707637611, -5.36732552175098, -5.18650396712585, -5.00568241250073, -5}, + new double[]{0, 0.00196196451357246, 0.00597491488512203, 0.0176247203066899, 0.0503595643590926, + 0.139390045971621, 0.373761183487683, 0.970943041215359, 1}, new double[]{0, 0.0122562922051934, 0.0362705138555484, 0.103883943928261, 0.287967362544455, 0.772570689127439, 2.00601097433085, 5.04113700754108, 5.18650396712585}, -5.18650396712585, @@ -189,10 +183,10 @@ class TruncatedNormalDistributionTest extends ContinuousDistributionAbstractTest void testUpperTailOnly() { testAdditionalDistribution( new TruncatedNormalDistribution(0, 1, 5, Double.POSITIVE_INFINITY), - new double[]{0, 0.0290569590230917, 0.626238816822898, 0.860609954247549, 0.949640435971243, - 0.982375279755296, 0.994025085266282, 0.998038035551444, 1}, new double[]{5, 5.00568241254803, 5.18650396728068, 5.36732552203467, 5.54814707752324, 5.72896863159791, 5.90979018980065, 6.09061174555624, Double.POSITIVE_INFINITY}, + new double[]{0, 0.0290569590230917, 0.626238816822898, 0.860609954247549, 0.949640435971243, + 0.982375279755296, 0.994025085266282, 0.998038035551444, 1}, new double[]{5.18650396712585, 5.04113700634745, 2.00601097272001, 0.772570687951075, 0.287967360711704, 0.103883943573147, 0.0362705129607846, 0.0122562918092027, 0}, 5.18650396712585, @@ -204,8 +198,8 @@ class TruncatedNormalDistributionTest extends ContinuousDistributionAbstractTest void testNarrowTruncatedRange() { testAdditionalDistribution( new TruncatedNormalDistribution(7.1, 9.9, 7.0999999, 7.1000001), - new double[]{0, 0.5, 1}, new double[]{7.0999999, 7.1, 7.1000001}, + new double[]{0, 0.5, 1}, new double[]{5000000.00238838, 5000000.00238838, 5000000.00238838}, 7.1, 1.13584123966337e-07); @@ -214,6 +208,12 @@ class TruncatedNormalDistributionTest extends ContinuousDistributionAbstractTest /** Test mean and variance moments. */ @Test void testMoments() { + final double mean = 1.63375792365723; + final double variance = 1.03158703914439; + testMoments(makeDistribution(), mean, variance); + } + + private void testMoments(ContinuousDistribution distribution, double mean, double variance) { Assertions.assertEquals(mean, distribution.getMean(), getTolerance()); Assertions.assertEquals(variance, distribution.getVariance(), getTolerance()); }