This is an automated email from the ASF dual-hosted git repository.

aherbert pushed a commit to branch master
in repository https://gitbox.apache.org/repos/asf/commons-rng.git

commit 251dc2eec99c37b3ad3da8b429568a29f77ca6e9
Author: aherbert <a.herb...@sussex.ac.uk>
AuthorDate: Mon Jan 28 10:39:16 2019 +0000

    RNG-68: Fixed formatting
---
 .../distribution/AhrensDieterMarsagliaTsangGammaSampler.java        | 6 ++----
 1 file changed, 2 insertions(+), 4 deletions(-)

diff --git 
a/commons-rng-sampling/src/main/java/org/apache/commons/rng/sampling/distribution/AhrensDieterMarsagliaTsangGammaSampler.java
 
b/commons-rng-sampling/src/main/java/org/apache/commons/rng/sampling/distribution/AhrensDieterMarsagliaTsangGammaSampler.java
index ab2b176..42a50e4 100644
--- 
a/commons-rng-sampling/src/main/java/org/apache/commons/rng/sampling/distribution/AhrensDieterMarsagliaTsangGammaSampler.java
+++ 
b/commons-rng-sampling/src/main/java/org/apache/commons/rng/sampling/distribution/AhrensDieterMarsagliaTsangGammaSampler.java
@@ -115,7 +115,6 @@ public class AhrensDieterMarsagliaTsangGammaSampler
 
                 if (p <= 1) {
                     // Step 2:
-
                     final double x = Math.pow(p, oneOverTheta);
                     final double u2 = rng.nextDouble();
 
@@ -127,7 +126,6 @@ public class AhrensDieterMarsagliaTsangGammaSampler
                 }
 
                 // Step 3:
-
                 final double x = -Math.log((bGSOptim - p) * oneOverTheta);
                 final double u2 = rng.nextDouble();
 
@@ -162,8 +160,8 @@ public class AhrensDieterMarsagliaTsangGammaSampler
          * @param theta Theta scale parameter of the distribution.
          */
         LargeThetaAhrensDieterMarsagliaTsangGammaSampler(UniformRandomProvider 
rng,
-                                                     double alpha,
-                                                     double theta) {
+                                                         double alpha,
+                                                         double theta) {
             super(rng, alpha, theta);
             gaussian = new ZigguratNormalizedGaussianSampler(rng);
             dOptim = theta - ONE_THIRD;

Reply via email to