Class is obsolete.

Project: http://git-wip-us.apache.org/repos/asf/commons-math/repo
Commit: http://git-wip-us.apache.org/repos/asf/commons-math/commit/87f6b2c3
Tree: http://git-wip-us.apache.org/repos/asf/commons-math/tree/87f6b2c3
Diff: http://git-wip-us.apache.org/repos/asf/commons-math/diff/87f6b2c3

Branch: refs/heads/master
Commit: 87f6b2c3d2a7c4bfef8c64dc0ffe3da7815834e0
Parents: ef84681
Author: Gilles <er...@apache.org>
Authored: Thu Jan 25 18:40:55 2018 +0100
Committer: Gilles <er...@apache.org>
Committed: Thu Jan 25 18:40:55 2018 +0100

----------------------------------------------------------------------
 .../distribution/SaddlePointExpansion.java      | 206 -------------------
 1 file changed, 206 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/commons-math/blob/87f6b2c3/src/main/java/org/apache/commons/math4/distribution/SaddlePointExpansion.java
----------------------------------------------------------------------
diff --git 
a/src/main/java/org/apache/commons/math4/distribution/SaddlePointExpansion.java 
b/src/main/java/org/apache/commons/math4/distribution/SaddlePointExpansion.java
deleted file mode 100644
index 7def8fb..0000000
--- 
a/src/main/java/org/apache/commons/math4/distribution/SaddlePointExpansion.java
+++ /dev/null
@@ -1,206 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.distribution;
-
-import org.apache.commons.numbers.gamma.LogGamma;
-import org.apache.commons.math4.util.FastMath;
-import org.apache.commons.math4.util.MathUtils;
-
-/**
- * <p>
- * Utility class used by various distributions to accurately compute their
- * respective probability mass functions. The implementation for this class is
- * based on the Catherine Loader's <a target="_blank"
- * href="http://www.herine.net/stat/software/dbinom.html";>dbinom</a> routines.
- * </p>
- * <p>
- * This class is not intended to be called directly.
- * </p>
- * <p>
- * References:
- * <ol>
- * <li>Catherine Loader (2000). "Fast and Accurate Computation of Binomial
- * Probabilities.". <a target="_blank"
- * href="http://www.herine.net/stat/papers/dbinom.pdf";>
- * http://www.herine.net/stat/papers/dbinom.pdf</a></li>
- * </ol>
- * </p>
- *
- * @since 2.1
- */
-final class SaddlePointExpansion {
-
-    /** 1/2 * log(2 &#960;). */
-    private static final double HALF_LOG_2_PI = 0.5 * 
FastMath.log(MathUtils.TWO_PI);
-
-    /** exact Stirling expansion error for certain values. */
-    private static final double[] EXACT_STIRLING_ERRORS = { 0.0, /* 0.0 */
-    0.1534264097200273452913848, /* 0.5 */
-    0.0810614667953272582196702, /* 1.0 */
-    0.0548141210519176538961390, /* 1.5 */
-    0.0413406959554092940938221, /* 2.0 */
-    0.03316287351993628748511048, /* 2.5 */
-    0.02767792568499833914878929, /* 3.0 */
-    0.02374616365629749597132920, /* 3.5 */
-    0.02079067210376509311152277, /* 4.0 */
-    0.01848845053267318523077934, /* 4.5 */
-    0.01664469118982119216319487, /* 5.0 */
-    0.01513497322191737887351255, /* 5.5 */
-    0.01387612882307074799874573, /* 6.0 */
-    0.01281046524292022692424986, /* 6.5 */
-    0.01189670994589177009505572, /* 7.0 */
-    0.01110455975820691732662991, /* 7.5 */
-    0.010411265261972096497478567, /* 8.0 */
-    0.009799416126158803298389475, /* 8.5 */
-    0.009255462182712732917728637, /* 9.0 */
-    0.008768700134139385462952823, /* 9.5 */
-    0.008330563433362871256469318, /* 10.0 */
-    0.007934114564314020547248100, /* 10.5 */
-    0.007573675487951840794972024, /* 11.0 */
-    0.007244554301320383179543912, /* 11.5 */
-    0.006942840107209529865664152, /* 12.0 */
-    0.006665247032707682442354394, /* 12.5 */
-    0.006408994188004207068439631, /* 13.0 */
-    0.006171712263039457647532867, /* 13.5 */
-    0.005951370112758847735624416, /* 14.0 */
-    0.005746216513010115682023589, /* 14.5 */
-    0.005554733551962801371038690 /* 15.0 */
-    };
-
-    /**
-     * Default constructor.
-     */
-    private SaddlePointExpansion() {
-        super();
-    }
-
-    /**
-     * Compute the error of Stirling's series at the given value.
-     * <p>
-     * References:
-     * <ol>
-     * <li>Eric W. Weisstein. "Stirling's Series." From MathWorld--A Wolfram 
Web
-     * Resource. <a target="_blank"
-     * href="http://mathworld.wolfram.com/StirlingsSeries.html";>
-     * http://mathworld.wolfram.com/StirlingsSeries.html</a></li>
-     * </ol>
-     * </p>
-     *
-     * @param z the value.
-     * @return the Striling's series error.
-     */
-    static double getStirlingError(double z) {
-        double ret;
-        if (z < 15.0) {
-            double z2 = 2.0 * z;
-            if (FastMath.floor(z2) == z2) {
-                ret = EXACT_STIRLING_ERRORS[(int) z2];
-            } else {
-                ret = LogGamma.value(z + 1.0) - (z + 0.5) * FastMath.log(z) +
-                      z - HALF_LOG_2_PI;
-            }
-        } else {
-            double z2 = z * z;
-            ret = (0.083333333333333333333 -
-                    (0.00277777777777777777778 -
-                            (0.00079365079365079365079365 -
-                                    (0.000595238095238095238095238 -
-                                            0.0008417508417508417508417508 /
-                                            z2) / z2) / z2) / z2) / z;
-        }
-        return ret;
-    }
-
-    /**
-     * A part of the deviance portion of the saddle point approximation.
-     * <p>
-     * References:
-     * <ol>
-     * <li>Catherine Loader (2000). "Fast and Accurate Computation of Binomial
-     * Probabilities.". <a target="_blank"
-     * href="http://www.herine.net/stat/papers/dbinom.pdf";>
-     * http://www.herine.net/stat/papers/dbinom.pdf</a></li>
-     * </ol>
-     * </p>
-     *
-     * @param x the x value.
-     * @param mu the average.
-     * @return a part of the deviance.
-     */
-    static double getDeviancePart(double x, double mu) {
-        double ret;
-        if (FastMath.abs(x - mu) < 0.1 * (x + mu)) {
-            double d = x - mu;
-            double v = d / (x + mu);
-            double s1 = v * d;
-            double s = Double.NaN;
-            double ej = 2.0 * x * v;
-            v *= v;
-            int j = 1;
-            while (s1 != s) {
-                s = s1;
-                ej *= v;
-                s1 = s + ej / ((j * 2) + 1);
-                ++j;
-            }
-            ret = s1;
-        } else {
-            if (x == 0) {
-                return mu;
-            }
-            ret = x * FastMath.log(x / mu) + mu - x;
-        }
-        return ret;
-    }
-
-    /**
-     * Compute the logarithm of the PMF for a binomial distribution
-     * using the saddle point expansion.
-     *
-     * @param x the value at which the probability is evaluated.
-     * @param n the number of trials.
-     * @param p the probability of success.
-     * @param q the probability of failure (1 - p).
-     * @return log(p(x)).
-     */
-    static double logBinomialProbability(int x, int n, double p, double q) {
-        double ret;
-        if (x == 0) {
-            if (p < 0.1) {
-                ret = -getDeviancePart(n, n * q) - n * p;
-            } else {
-                if (n == 0) {
-                    return 0;
-                }
-                ret = n * FastMath.log(q);
-            }
-        } else if (x == n) {
-            if (q < 0.1) {
-                ret = -getDeviancePart(n, n * p) - n * q;
-            } else {
-                ret = n * FastMath.log(p);
-            }
-        } else {
-            ret = getStirlingError(n) - getStirlingError(x) -
-                  getStirlingError(n - x) - getDeviancePart(x, n * p) -
-                  getDeviancePart(n - x, n * q);
-            double f = (MathUtils.TWO_PI * x * (n - x)) / n;
-            ret = -0.5 * FastMath.log(f) + ret;
-        }
-        return ret;
-    }
-}

Reply via email to