http://git-wip-us.apache.org/repos/asf/commons-math/blob/7550cb46/src/test/java/org/apache/commons/math4/random/RandomDataGeneratorTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/commons/math4/random/RandomDataGeneratorTest.java 
b/src/test/java/org/apache/commons/math4/random/RandomDataGeneratorTest.java
deleted file mode 100644
index d7c4906..0000000
--- a/src/test/java/org/apache/commons/math4/random/RandomDataGeneratorTest.java
+++ /dev/null
@@ -1,1212 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.random;
-
-import java.text.DecimalFormat;
-import java.util.ArrayList;
-import java.util.HashSet;
-import java.util.List;
-
-import org.apache.commons.math4.Retry;
-import org.apache.commons.math4.RetryRunner;
-import org.apache.commons.math4.TestUtils;
-import org.apache.commons.math4.distribution.BetaDistribution;
-import org.apache.commons.math4.distribution.BinomialDistribution;
-import org.apache.commons.math4.distribution.BinomialDistributionTest;
-import org.apache.commons.math4.distribution.CauchyDistribution;
-import org.apache.commons.math4.distribution.ChiSquaredDistribution;
-import org.apache.commons.math4.distribution.ExponentialDistribution;
-import org.apache.commons.math4.distribution.FDistribution;
-import org.apache.commons.math4.distribution.GammaDistribution;
-import org.apache.commons.math4.distribution.HypergeometricDistribution;
-import org.apache.commons.math4.distribution.HypergeometricDistributionTest;
-import org.apache.commons.math4.distribution.NormalDistribution;
-import org.apache.commons.math4.distribution.PascalDistribution;
-import org.apache.commons.math4.distribution.PascalDistributionTest;
-import org.apache.commons.math4.distribution.PoissonDistribution;
-import org.apache.commons.math4.distribution.TDistribution;
-import org.apache.commons.math4.distribution.WeibullDistribution;
-import org.apache.commons.math4.distribution.ZipfDistribution;
-import org.apache.commons.math4.distribution.ZipfDistributionTest;
-import org.apache.commons.math4.exception.MathIllegalArgumentException;
-import org.apache.commons.math4.random.RandomDataGenerator;
-import org.apache.commons.math4.stat.Frequency;
-import org.apache.commons.math4.stat.inference.ChiSquareTest;
-import org.apache.commons.math4.util.FastMath;
-import org.junit.Assert;
-import org.junit.Test;
-import org.junit.runner.RunWith;
-
-/**
- * Test cases for the RandomDataGenerator class.
- *
- */
-@RunWith(RetryRunner.class)
-public class RandomDataGeneratorTest {
-
-    public RandomDataGeneratorTest() {
-        randomData = new RandomDataGenerator();
-        randomData.reSeed(1000);
-    }
-
-    protected final long smallSampleSize = 1000;
-    protected final double[] expected = { 250, 250, 250, 250 };
-    protected final int largeSampleSize = 10000;
-    private final String[] hex = { "0", "1", "2", "3", "4", "5", "6", "7", 
"8", "9",
-            "a", "b", "c", "d", "e", "f" };
-    protected RandomDataGenerator randomData = null;
-    protected final ChiSquareTest testStatistic = new ChiSquareTest();
-
-    @Test
-    public void testNextIntExtremeValues() {
-        int x = randomData.nextInt(Integer.MIN_VALUE, Integer.MAX_VALUE);
-        int y = randomData.nextInt(Integer.MIN_VALUE, Integer.MAX_VALUE);
-        Assert.assertFalse(x == y);
-    }
-
-    @Test
-    public void testNextLongExtremeValues() {
-        long x = randomData.nextLong(Long.MIN_VALUE, Long.MAX_VALUE);
-        long y = randomData.nextLong(Long.MIN_VALUE, Long.MAX_VALUE);
-        Assert.assertFalse(x == y);
-    }
-
-    @Test
-    public void testNextUniformExtremeValues() {
-        double x = randomData.nextUniform(-Double.MAX_VALUE, Double.MAX_VALUE);
-        double y = randomData.nextUniform(-Double.MAX_VALUE, Double.MAX_VALUE);
-        Assert.assertFalse(x == y);
-        Assert.assertFalse(Double.isNaN(x));
-        Assert.assertFalse(Double.isNaN(y));
-        Assert.assertFalse(Double.isInfinite(x));
-        Assert.assertFalse(Double.isInfinite(y));
-    }
-
-    @Test
-    public void testNextIntIAE() {
-        try {
-            randomData.nextInt(4, 3);
-            Assert.fail("MathIllegalArgumentException expected");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-    }
-
-    @Test
-    public void testNextIntNegativeToPositiveRange() {
-        for (int i = 0; i < 5; i++) {
-            checkNextIntUniform(-3, 5);
-            checkNextIntUniform(-3, 6);
-        }
-    }
-
-    @Test
-    public void testNextIntNegativeRange() {
-        for (int i = 0; i < 5; i++) {
-            checkNextIntUniform(-7, -4);
-            checkNextIntUniform(-15, -2);
-            checkNextIntUniform(Integer.MIN_VALUE + 1, Integer.MIN_VALUE + 12);
-        }
-    }
-
-    @Test
-    public void testNextIntPositiveRange() {
-        for (int i = 0; i < 5; i++) {
-            checkNextIntUniform(0, 3);
-            checkNextIntUniform(2, 12);
-            checkNextIntUniform(1,2);
-            checkNextIntUniform(Integer.MAX_VALUE - 12, Integer.MAX_VALUE - 1);
-        }
-    }
-
-    private void checkNextIntUniform(int min, int max) {
-        final Frequency freq = new Frequency();
-        for (int i = 0; i < smallSampleSize; i++) {
-            final int value = randomData.nextInt(min, max);
-            Assert.assertTrue("nextInt range", (value >= min) && (value <= 
max));
-            freq.addValue(value);
-        }
-        final int len = max - min + 1;
-        final long[] observed = new long[len];
-        for (int i = 0; i < len; i++) {
-            observed[i] = freq.getCount(min + i);
-        }
-        final double[] expected = new double[len];
-        for (int i = 0; i < len; i++) {
-            expected[i] = 1d / len;
-        }
-
-        TestUtils.assertChiSquareAccept(expected, observed, 0.001);
-    }
-
-    @Test
-    public void testNextIntWideRange() {
-        int lower = -0x6543210F;
-        int upper =  0x456789AB;
-        int max   = Integer.MIN_VALUE;
-        int min   = Integer.MAX_VALUE;
-        for (int i = 0; i < 1000000; ++i) {
-            int r = randomData.nextInt(lower, upper);
-            max = FastMath.max(max, r);
-            min = FastMath.min(min, r);
-            Assert.assertTrue(r >= lower);
-            Assert.assertTrue(r <= upper);
-        }
-        double ratio = (((double) max)   - ((double) min)) /
-                       (((double) upper) - ((double) lower));
-        Assert.assertTrue(ratio > 0.99999);
-    }
-
-    @Test
-    public void testNextLongIAE() {
-        try {
-            randomData.nextLong(4, 3);
-            Assert.fail("MathIllegalArgumentException expected");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-    }
-
-    @Test
-    public void testNextLongNegativeToPositiveRange() {
-        for (int i = 0; i < 5; i++) {
-            checkNextLongUniform(-3, 5);
-            checkNextLongUniform(-3, 6);
-        }
-    }
-
-    @Test
-    public void testNextLongNegativeRange() {
-        for (int i = 0; i < 5; i++) {
-            checkNextLongUniform(-7, -4);
-            checkNextLongUniform(-15, -2);
-            checkNextLongUniform(Long.MIN_VALUE + 1, Long.MIN_VALUE + 12);
-        }
-    }
-
-    @Test
-    public void testNextLongPositiveRange() {
-        for (int i = 0; i < 5; i++) {
-            checkNextLongUniform(0, 3);
-            checkNextLongUniform(2, 12);
-            checkNextLongUniform(Long.MAX_VALUE - 12, Long.MAX_VALUE - 1);
-        }
-    }
-
-    private void checkNextLongUniform(long min, long max) {
-        final Frequency freq = new Frequency();
-        for (int i = 0; i < smallSampleSize; i++) {
-            final long value = randomData.nextLong(min, max);
-            Assert.assertTrue("nextLong range: " + value + " " + min + " " + 
max,
-                              (value >= min) && (value <= max));
-            freq.addValue(value);
-        }
-        final int len = ((int) (max - min)) + 1;
-        final long[] observed = new long[len];
-        for (int i = 0; i < len; i++) {
-            observed[i] = freq.getCount(min + i);
-        }
-        final double[] expected = new double[len];
-        for (int i = 0; i < len; i++) {
-            expected[i] = 1d / len;
-        }
-
-        TestUtils.assertChiSquareAccept(expected, observed, 0.01);
-    }
-
-    @Test
-    public void testNextLongWideRange() {
-        long lower = -0x6543210FEDCBA987L;
-        long upper =  0x456789ABCDEF0123L;
-        long max = Long.MIN_VALUE;
-        long min = Long.MAX_VALUE;
-        for (int i = 0; i < 10000000; ++i) {
-            long r = randomData.nextLong(lower, upper);
-            max = FastMath.max(max, r);
-            min = FastMath.min(min, r);
-            Assert.assertTrue(r >= lower);
-            Assert.assertTrue(r <= upper);
-        }
-        double ratio = (((double) max)   - ((double) min)) /
-                       (((double) upper) - ((double) lower));
-        Assert.assertTrue(ratio > 0.99999);
-    }
-
-    @Test
-    public void testNextSecureLongIAE() {
-        try {
-            randomData.nextSecureLong(4, 3);
-            Assert.fail("MathIllegalArgumentException expected");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-    }
-
-    @Test
-    @Retry(3)
-    public void testNextSecureLongNegativeToPositiveRange() {
-        for (int i = 0; i < 5; i++) {
-            checkNextSecureLongUniform(-3, 5);
-            checkNextSecureLongUniform(-3, 6);
-        }
-    }
-
-    @Test
-    @Retry(3)
-    public void testNextSecureLongNegativeRange() {
-        for (int i = 0; i < 5; i++) {
-            checkNextSecureLongUniform(-7, -4);
-            checkNextSecureLongUniform(-15, -2);
-        }
-    }
-
-    @Test
-    @Retry(3)
-    public void testNextSecureLongPositiveRange() {
-        for (int i = 0; i < 5; i++) {
-            checkNextSecureLongUniform(0, 3);
-            checkNextSecureLongUniform(2, 12);
-        }
-    }
-
-    private void checkNextSecureLongUniform(int min, int max) {
-        final Frequency freq = new Frequency();
-        for (int i = 0; i < smallSampleSize; i++) {
-            final long value = randomData.nextSecureLong(min, max);
-            Assert.assertTrue("nextLong range", (value >= min) && (value <= 
max));
-            freq.addValue(value);
-        }
-        final int len = max - min + 1;
-        final long[] observed = new long[len];
-        for (int i = 0; i < len; i++) {
-            observed[i] = freq.getCount(min + i);
-        }
-        final double[] expected = new double[len];
-        for (int i = 0; i < len; i++) {
-            expected[i] = 1d / len;
-        }
-
-        TestUtils.assertChiSquareAccept(expected, observed, 0.0001);
-    }
-
-    @Test
-    public void testNextSecureIntIAE() {
-        try {
-            randomData.nextSecureInt(4, 3);
-            Assert.fail("MathIllegalArgumentException expected");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-    }
-
-    @Test
-    @Retry(3)
-    public void testNextSecureIntNegativeToPositiveRange() {
-        for (int i = 0; i < 5; i++) {
-            checkNextSecureIntUniform(-3, 5);
-            checkNextSecureIntUniform(-3, 6);
-        }
-    }
-
-    @Test
-    @Retry(3)
-    public void testNextSecureIntNegativeRange() {
-        for (int i = 0; i < 5; i++) {
-            checkNextSecureIntUniform(-7, -4);
-            checkNextSecureIntUniform(-15, -2);
-        }
-    }
-
-    @Test
-    @Retry(3)
-    public void testNextSecureIntPositiveRange() {
-        for (int i = 0; i < 5; i++) {
-            checkNextSecureIntUniform(0, 3);
-            checkNextSecureIntUniform(2, 12);
-        }
-    }
-
-    private void checkNextSecureIntUniform(int min, int max) {
-        final Frequency freq = new Frequency();
-        for (int i = 0; i < smallSampleSize; i++) {
-            final int value = randomData.nextSecureInt(min, max);
-            Assert.assertTrue("nextInt range", (value >= min) && (value <= 
max));
-            freq.addValue(value);
-        }
-        final int len = max - min + 1;
-        final long[] observed = new long[len];
-        for (int i = 0; i < len; i++) {
-            observed[i] = freq.getCount(min + i);
-        }
-        final double[] expected = new double[len];
-        for (int i = 0; i < len; i++) {
-            expected[i] = 1d / len;
-        }
-
-        TestUtils.assertChiSquareAccept(expected, observed, 0.0001);
-    }
-
-
-
-    /**
-     * Make sure that empirical distribution of random Poisson(4)'s has P(X <=
-     * 5) close to actual cumulative Poisson probability and that nextPoisson
-     * fails when mean is non-positive.
-     */
-    @Test
-    public void testNextPoisson() {
-        try {
-            randomData.nextPoisson(0);
-            Assert.fail("zero mean -- expecting MathIllegalArgumentException");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-        try {
-            randomData.nextPoisson(-1);
-            Assert.fail("negative mean supplied -- 
MathIllegalArgumentException expected");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-        try {
-            randomData.nextPoisson(0);
-            Assert.fail("0 mean supplied -- MathIllegalArgumentException 
expected");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-
-        final double mean = 4.0d;
-        final int len = 5;
-        PoissonDistribution poissonDistribution = new 
PoissonDistribution(mean);
-        Frequency f = new Frequency();
-        randomData.reSeed(1000);
-        for (int i = 0; i < largeSampleSize; i++) {
-            f.addValue(randomData.nextPoisson(mean));
-        }
-        final long[] observed = new long[len];
-        for (int i = 0; i < len; i++) {
-            observed[i] = f.getCount(i + 1);
-        }
-        final double[] expected = new double[len];
-        for (int i = 0; i < len; i++) {
-            expected[i] = poissonDistribution.probability(i + 1) * 
largeSampleSize;
-        }
-
-        TestUtils.assertChiSquareAccept(expected, observed, 0.0001);
-    }
-
-    @Test
-    public void testNextPoissonConsistency() {
-
-        // Small integral means
-        for (int i = 1; i < 100; i++) {
-            checkNextPoissonConsistency(i);
-        }
-        // non-integer means
-        for (int i = 1; i < 10; i++) {
-            checkNextPoissonConsistency(randomData.nextUniform(1, 1000));
-        }
-        // large means
-        for (int i = 1; i < 10; i++) {
-            checkNextPoissonConsistency(randomData.nextUniform(1000, 10000));
-        }
-    }
-
-    /**
-     * Verifies that nextPoisson(mean) generates an empirical distribution of 
values
-     * consistent with PoissonDistributionImpl by generating 1000 values, 
computing a
-     * grouped frequency distribution of the observed values and comparing 
this distribution
-     * to the corresponding expected distribution computed using 
PoissonDistributionImpl.
-     * Uses ChiSquare test of goodness of fit to evaluate the null hypothesis 
that the
-     * distributions are the same. If the null hypothesis can be rejected with 
confidence
-     * 1 - alpha, the check fails.
-     */
-    public void checkNextPoissonConsistency(double mean) {
-        // Generate sample values
-        final int sampleSize = 1000;        // Number of deviates to generate
-        final int minExpectedCount = 7;     // Minimum size of expected bin 
count
-        long maxObservedValue = 0;
-        final double alpha = 0.001;         // Probability of false failure
-        Frequency frequency = new Frequency();
-        for (int i = 0; i < sampleSize; i++) {
-            long value = randomData.nextPoisson(mean);
-            if (value > maxObservedValue) {
-                maxObservedValue = value;
-            }
-            frequency.addValue(value);
-        }
-
-        /*
-         *  Set up bins for chi-square test.
-         *  Ensure expected counts are all at least minExpectedCount.
-         *  Start with upper and lower tail bins.
-         *  Lower bin = [0, lower); Upper bin = [upper, +inf).
-         */
-        PoissonDistribution poissonDistribution = new 
PoissonDistribution(mean);
-        int lower = 1;
-        while (poissonDistribution.cumulativeProbability(lower - 1) * 
sampleSize < minExpectedCount) {
-            lower++;
-        }
-        int upper = (int) (5 * mean);  // Even for mean = 1, not much mass 
beyond 5
-        while ((1 - poissonDistribution.cumulativeProbability(upper - 1)) * 
sampleSize < minExpectedCount) {
-            upper--;
-        }
-
-        // Set bin width for interior bins.  For poisson, only need to look at 
end bins.
-        int binWidth = 0;
-        boolean widthSufficient = false;
-        double lowerBinMass = 0;
-        double upperBinMass = 0;
-        while (!widthSufficient) {
-            binWidth++;
-            lowerBinMass = poissonDistribution.probability(lower - 1, lower + 
binWidth - 1);
-            upperBinMass = poissonDistribution.probability(upper - binWidth - 
1, upper - 1);
-            widthSufficient = FastMath.min(lowerBinMass, upperBinMass) * 
sampleSize >= minExpectedCount;
-        }
-
-        /*
-         *  Determine interior bin bounds.  Bins are
-         *  [1, lower = binBounds[0]), [lower, binBounds[1]), [binBounds[1], 
binBounds[2]), ... ,
-         *    [binBounds[binCount - 2], upper = binBounds[binCount - 1]), 
[upper, +inf)
-         *
-         */
-        List<Integer> binBounds = new ArrayList<Integer>();
-        binBounds.add(lower);
-        int bound = lower + binWidth;
-        while (bound < upper - binWidth) {
-            binBounds.add(bound);
-            bound += binWidth;
-        }
-        binBounds.add(upper); // The size of bin [binBounds[binCount - 2], 
upper) satisfies binWidth <= size < 2*binWidth.
-
-        // Compute observed and expected bin counts
-        final int binCount = binBounds.size() + 1;
-        long[] observed = new long[binCount];
-        double[] expected = new double[binCount];
-
-        // Bottom bin
-        observed[0] = 0;
-        for (int i = 0; i < lower; i++) {
-            observed[0] += frequency.getCount(i);
-        }
-        expected[0] = poissonDistribution.cumulativeProbability(lower - 1) * 
sampleSize;
-
-        // Top bin
-        observed[binCount - 1] = 0;
-        for (int i = upper; i <= maxObservedValue; i++) {
-            observed[binCount - 1] += frequency.getCount(i);
-        }
-        expected[binCount - 1] = (1 - 
poissonDistribution.cumulativeProbability(upper - 1)) * sampleSize;
-
-        // Interior bins
-        for (int i = 1; i < binCount - 1; i++) {
-            observed[i] = 0;
-            for (int j = binBounds.get(i - 1); j < binBounds.get(i); j++) {
-                observed[i] += frequency.getCount(j);
-            } // Expected count is (mass in [binBounds[i-1], binBounds[i])) * 
sampleSize
-            expected[i] = 
(poissonDistribution.cumulativeProbability(binBounds.get(i) - 1) -
-                poissonDistribution.cumulativeProbability(binBounds.get(i - 1) 
-1)) * sampleSize;
-        }
-
-        // Use chisquare test to verify that generated values are 
poisson(mean)-distributed
-        ChiSquareTest chiSquareTest = new ChiSquareTest();
-            // Fail if we can reject null hypothesis that distributions are 
the same
-        if (chiSquareTest.chiSquareTest(expected, observed, alpha)) {
-            StringBuilder msgBuffer = new StringBuilder();
-            DecimalFormat df = new DecimalFormat("#.##");
-            msgBuffer.append("Chisquare test failed for mean = ");
-            msgBuffer.append(mean);
-            msgBuffer.append(" p-value = ");
-            msgBuffer.append(chiSquareTest.chiSquareTest(expected, observed));
-            msgBuffer.append(" chisquare statistic = ");
-            msgBuffer.append(chiSquareTest.chiSquare(expected, observed));
-            msgBuffer.append(". \n");
-            msgBuffer.append("bin\t\texpected\tobserved\n");
-            for (int i = 0; i < expected.length; i++) {
-                msgBuffer.append("[");
-                msgBuffer.append(i == 0 ? 1: binBounds.get(i - 1));
-                msgBuffer.append(",");
-                msgBuffer.append(i == binBounds.size() ? "inf": 
binBounds.get(i));
-                msgBuffer.append(")");
-                msgBuffer.append("\t\t");
-                msgBuffer.append(df.format(expected[i]));
-                msgBuffer.append("\t\t");
-                msgBuffer.append(observed[i]);
-                msgBuffer.append("\n");
-            }
-            msgBuffer.append("This test can fail randomly due to sampling 
error with probability ");
-            msgBuffer.append(alpha);
-            msgBuffer.append(".");
-            Assert.fail(msgBuffer.toString());
-        }
-    }
-
-    /** test dispersion and failure modes for nextHex() */
-    @Test
-    public void testNextHex() {
-        try {
-            randomData.nextHexString(-1);
-            Assert.fail("negative length supplied -- 
MathIllegalArgumentException expected");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-        try {
-            randomData.nextHexString(0);
-            Assert.fail("zero length supplied -- MathIllegalArgumentException 
expected");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-        String hexString = randomData.nextHexString(3);
-        if (hexString.length() != 3) {
-            Assert.fail("incorrect length for generated string");
-        }
-        hexString = randomData.nextHexString(1);
-        if (hexString.length() != 1) {
-            Assert.fail("incorrect length for generated string");
-        }
-        try {
-            hexString = randomData.nextHexString(0);
-            Assert.fail("zero length requested -- expecting 
MathIllegalArgumentException");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-        Frequency f = new Frequency();
-        for (int i = 0; i < smallSampleSize; i++) {
-            hexString = randomData.nextHexString(100);
-            if (hexString.length() != 100) {
-                Assert.fail("incorrect length for generated string");
-            }
-            for (int j = 0; j < hexString.length(); j++) {
-                f.addValue(hexString.substring(j, j + 1));
-            }
-        }
-        double[] expected = new double[16];
-        long[] observed = new long[16];
-        for (int i = 0; i < 16; i++) {
-            expected[i] = (double) smallSampleSize * 100 / 16;
-            observed[i] = f.getCount(hex[i]);
-        }
-        TestUtils.assertChiSquareAccept(expected, observed, 0.001);
-    }
-
-    /** test dispersion and failure modes for nextHex() */
-    @Test
-    @Retry(3)
-    public void testNextSecureHex() {
-        try {
-            randomData.nextSecureHexString(-1);
-            Assert.fail("negative length -- MathIllegalArgumentException 
expected");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-        try {
-            randomData.nextSecureHexString(0);
-            Assert.fail("zero length -- MathIllegalArgumentException 
expected");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-        String hexString = randomData.nextSecureHexString(3);
-        if (hexString.length() != 3) {
-            Assert.fail("incorrect length for generated string");
-        }
-        hexString = randomData.nextSecureHexString(1);
-        if (hexString.length() != 1) {
-            Assert.fail("incorrect length for generated string");
-        }
-        try {
-            hexString = randomData.nextSecureHexString(0);
-            Assert.fail("zero length requested -- expecting 
MathIllegalArgumentException");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-        Frequency f = new Frequency();
-        for (int i = 0; i < smallSampleSize; i++) {
-            hexString = randomData.nextSecureHexString(100);
-            if (hexString.length() != 100) {
-                Assert.fail("incorrect length for generated string");
-            }
-            for (int j = 0; j < hexString.length(); j++) {
-                f.addValue(hexString.substring(j, j + 1));
-            }
-        }
-        double[] expected = new double[16];
-        long[] observed = new long[16];
-        for (int i = 0; i < 16; i++) {
-            expected[i] = (double) smallSampleSize * 100 / 16;
-            observed[i] = f.getCount(hex[i]);
-        }
-        TestUtils.assertChiSquareAccept(expected, observed, 0.001);
-    }
-
-    @Test
-    public void testNextUniformIAE() {
-        try {
-            randomData.nextUniform(4, 3);
-            Assert.fail("MathIllegalArgumentException expected");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-        try {
-            randomData.nextUniform(0, Double.POSITIVE_INFINITY);
-            Assert.fail("MathIllegalArgumentException expected");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-        try {
-            randomData.nextUniform(Double.NEGATIVE_INFINITY, 0);
-            Assert.fail("MathIllegalArgumentException expected");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-        try {
-            randomData.nextUniform(0, Double.NaN);
-            Assert.fail("MathIllegalArgumentException expected");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-        try {
-            randomData.nextUniform(Double.NaN, 0);
-            Assert.fail("MathIllegalArgumentException expected");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-    }
-
-    @Test
-    public void testNextUniformUniformPositiveBounds() {
-        for (int i = 0; i < 5; i++) {
-            checkNextUniformUniform(0, 10);
-        }
-    }
-
-    @Test
-    public void testNextUniformUniformNegativeToPositiveBounds() {
-        for (int i = 0; i < 5; i++) {
-            checkNextUniformUniform(-3, 5);
-        }
-    }
-
-    @Test
-    public void testNextUniformUniformNegaiveBounds() {
-        for (int i = 0; i < 5; i++) {
-            checkNextUniformUniform(-7, -3);
-        }
-    }
-
-    @Test
-    public void testNextUniformUniformMaximalInterval() {
-        for (int i = 0; i < 5; i++) {
-            checkNextUniformUniform(-Double.MAX_VALUE, Double.MAX_VALUE);
-        }
-    }
-
-    private void checkNextUniformUniform(double min, double max) {
-        // Set up bin bounds - min, binBound[0], ..., binBound[binCount-2], max
-        final int binCount = 5;
-        final double binSize = max / binCount - min/binCount; // Prevent 
overflow in extreme value case
-        final double[] binBounds = new double[binCount - 1];
-        binBounds[0] = min + binSize;
-        for (int i = 1; i < binCount - 1; i++) {
-            binBounds[i] = binBounds[i - 1] + binSize;  // + instead of * to 
avoid overflow in extreme case
-        }
-
-        final Frequency freq = new Frequency();
-        for (int i = 0; i < smallSampleSize; i++) {
-            final double value = randomData.nextUniform(min, max);
-            Assert.assertTrue("nextUniform range", (value > min) && (value < 
max));
-            // Find bin
-            int j = 0;
-            while (j < binCount - 1 && value > binBounds[j]) {
-                j++;
-            }
-            freq.addValue(j);
-        }
-
-        final long[] observed = new long[binCount];
-        for (int i = 0; i < binCount; i++) {
-            observed[i] = freq.getCount(i);
-        }
-        final double[] expected = new double[binCount];
-        for (int i = 0; i < binCount; i++) {
-            expected[i] = 1d / binCount;
-        }
-
-        TestUtils.assertChiSquareAccept(expected, observed, 0.01);
-    }
-
-    /** test exclusive endpoints of nextUniform **/
-    @Test
-    public void testNextUniformExclusiveEndpoints() {
-        for (int i = 0; i < 1000; i++) {
-            double u = randomData.nextUniform(0.99, 1);
-            Assert.assertTrue(u > 0.99 && u < 1);
-        }
-    }
-
-    /** test failure modes and distribution of nextGaussian() */
-    @Test
-    public void testNextGaussian() {
-        try {
-            randomData.nextGaussian(0, 0);
-            Assert.fail("zero sigma -- MathIllegalArgumentException expected");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-        double[] quartiles = TestUtils.getDistributionQuartiles(new 
NormalDistribution(0,1));
-        long[] counts = new long[4];
-        randomData.reSeed(1000);
-        for (int i = 0; i < 1000; i++) {
-            double value = randomData.nextGaussian(0, 1);
-            TestUtils.updateCounts(value, counts, quartiles);
-        }
-        TestUtils.assertChiSquareAccept(expected, counts, 0.001);
-    }
-
-    /** test failure modes and distribution of nextExponential() */
-    @Test
-    public void testNextExponential() {
-        try {
-            randomData.nextExponential(-1);
-            Assert.fail("negative mean -- expecting 
MathIllegalArgumentException");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-        try {
-            randomData.nextExponential(0);
-            Assert.fail("zero mean -- expecting MathIllegalArgumentException");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-        double[] quartiles;
-        long[] counts;
-
-        // Mean 1
-        quartiles = TestUtils.getDistributionQuartiles(new 
ExponentialDistribution(1));
-        counts = new long[4];
-        randomData.reSeed(1000);
-        for (int i = 0; i < 1000; i++) {
-            double value = randomData.nextExponential(1);
-            TestUtils.updateCounts(value, counts, quartiles);
-        }
-        TestUtils.assertChiSquareAccept(expected, counts, 0.001);
-
-        // Mean 5
-        quartiles = TestUtils.getDistributionQuartiles(new 
ExponentialDistribution(5));
-        counts = new long[4];
-        randomData.reSeed(1000);
-        for (int i = 0; i < 1000; i++) {
-            double value = randomData.nextExponential(5);
-            TestUtils.updateCounts(value, counts, quartiles);
-        }
-        TestUtils.assertChiSquareAccept(expected, counts, 0.001);
-    }
-
-    /** test reseeding, algorithm/provider games */
-    @Test
-    public void testConfig() {
-        randomData.reSeed(1000);
-        double v = randomData.nextUniform(0, 1);
-        randomData.reSeed();
-        Assert.assertTrue("different seeds", FastMath.abs(v - 
randomData.nextUniform(0, 1)) > 10E-12);
-        randomData.reSeed(1000);
-        Assert.assertEquals("same seeds", v, randomData.nextUniform(0, 1), 
10E-12);
-        randomData.reSeedSecure(1000);
-        String hex = randomData.nextSecureHexString(40);
-        randomData.reSeedSecure();
-        Assert.assertTrue("different seeds", !hex.equals(randomData
-                .nextSecureHexString(40)));
-        randomData.reSeedSecure(1000);
-        Assert.assertTrue("same seeds", !hex
-                .equals(randomData.nextSecureHexString(40)));
-
-        /*
-         * remove this test back soon, since it takes about 4 seconds
-         *
-         * try { randomData.setSecureAlgorithm("SHA1PRNG","SUN"); } catch
-         * (NoSuchProviderException ex) { ; } Assert.assertTrue("different 
seeds",
-         * !hex.equals(randomData.nextSecureHexString(40))); try {
-         * randomData.setSecureAlgorithm("NOSUCHTHING","SUN");
-         * Assert.fail("expecting NoSuchAlgorithmException"); } catch
-         * (NoSuchProviderException ex) { ; } catch (NoSuchAlgorithmException
-         * ex) { ; }
-         *
-         * try { randomData.setSecureAlgorithm("SHA1PRNG","NOSUCHPROVIDER");
-         * Assert.fail("expecting NoSuchProviderException"); } catch
-         * (NoSuchProviderException ex) { ; }
-         */
-
-        // test reseeding without first using the generators
-        RandomDataGenerator rd = new RandomDataGenerator();
-        rd.reSeed(100);
-        rd.nextLong(1, 2);
-        RandomDataGenerator rd2 = new RandomDataGenerator();
-        rd2.reSeedSecure(2000);
-        rd2.nextSecureLong(1, 2);
-        rd = new RandomDataGenerator();
-        rd.reSeed();
-        rd.nextLong(1, 2);
-        rd2 = new RandomDataGenerator();
-        rd2.reSeedSecure();
-        rd2.nextSecureLong(1, 2);
-    }
-
-    /** tests for nextSample() sampling from Collection */
-    @Test
-    public void testNextSample() {
-        Object[][] c = { { "0", "1" }, { "0", "2" }, { "0", "3" },
-                { "0", "4" }, { "1", "2" }, { "1", "3" }, { "1", "4" },
-                { "2", "3" }, { "2", "4" }, { "3", "4" } };
-        long[] observed = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
-        double[] expected = { 100, 100, 100, 100, 100, 100, 100, 100, 100, 100 
};
-
-        HashSet<Object> cPop = new HashSet<Object>(); // {0,1,2,3,4}
-        for (int i = 0; i < 5; i++) {
-            cPop.add(Integer.toString(i));
-        }
-
-        Object[] sets = new Object[10]; // 2-sets from 5
-        for (int i = 0; i < 10; i++) {
-            HashSet<Object> hs = new HashSet<Object>();
-            hs.add(c[i][0]);
-            hs.add(c[i][1]);
-            sets[i] = hs;
-        }
-
-        for (int i = 0; i < 1000; i++) {
-            Object[] cSamp = randomData.nextSample(cPop, 2);
-            observed[findSample(sets, cSamp)]++;
-        }
-
-        /*
-         * Use ChiSquare dist with df = 10-1 = 9, alpha = .001 Change to 21.67
-         * for alpha = .01
-         */
-        Assert.assertTrue("chi-square test -- will fail about 1 in 1000 times",
-                testStatistic.chiSquare(expected, observed) < 27.88);
-
-        // Make sure sample of size = size of collection returns same 
collection
-        HashSet<Object> hs = new HashSet<Object>();
-        hs.add("one");
-        Object[] one = randomData.nextSample(hs, 1);
-        String oneString = (String) one[0];
-        if ((one.length != 1) || !oneString.equals("one")) {
-            Assert.fail("bad sample for set size = 1, sample size = 1");
-        }
-
-        // Make sure we fail for sample size > collection size
-        try {
-            one = randomData.nextSample(hs, 2);
-            Assert.fail("sample size > set size, expecting 
MathIllegalArgumentException");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-
-        // Make sure we fail for empty collection
-        try {
-            hs = new HashSet<Object>();
-            one = randomData.nextSample(hs, 0);
-            Assert.fail("n = k = 0, expecting MathIllegalArgumentException");
-        } catch (MathIllegalArgumentException ex) {
-            // ignored
-        }
-    }
-
-    @SuppressWarnings("unchecked")
-    private int findSample(Object[] u, Object[] samp) {
-        for (int i = 0; i < u.length; i++) {
-            HashSet<Object> set = (HashSet<Object>) u[i];
-            HashSet<Object> sampSet = new HashSet<Object>();
-            for (int j = 0; j < samp.length; j++) {
-                sampSet.add(samp[j]);
-            }
-            if (set.equals(sampSet)) {
-                return i;
-            }
-        }
-        Assert.fail("sample not found:{" + samp[0] + "," + samp[1] + "}");
-        return -1;
-    }
-
-    /** tests for nextPermutation */
-    @Test
-    public void testNextPermutation() {
-        int[][] p = { { 0, 1, 2 }, { 0, 2, 1 }, { 1, 0, 2 }, { 1, 2, 0 },
-                { 2, 0, 1 }, { 2, 1, 0 } };
-        long[] observed = { 0, 0, 0, 0, 0, 0 };
-        double[] expected = { 100, 100, 100, 100, 100, 100 };
-
-        for (int i = 0; i < 600; i++) {
-            int[] perm = randomData.nextPermutation(3, 3);
-            observed[findPerm(p, perm)]++;
-        }
-
-        String[] labels = {"{0, 1, 2}", "{ 0, 2, 1 }", "{ 1, 0, 2 }",
-                "{ 1, 2, 0 }", "{ 2, 0, 1 }", "{ 2, 1, 0 }"};
-        TestUtils.assertChiSquareAccept(labels, expected, observed, 0.001);
-
-        // Check size = 1 boundary case
-        int[] perm = randomData.nextPermutation(1, 1);
-        if ((perm.length != 1) || (perm[0] != 0)) {
-            Assert.fail("bad permutation for n = 1, sample k = 1");
-
-            // Make sure we fail for k size > n
-            try {
-                perm = randomData.nextPermutation(2, 3);
-                Assert.fail("permutation k > n, expecting 
MathIllegalArgumentException");
-            } catch (MathIllegalArgumentException ex) {
-                // ignored
-            }
-
-            // Make sure we fail for n = 0
-            try {
-                perm = randomData.nextPermutation(0, 0);
-                Assert.fail("permutation k = n = 0, expecting 
MathIllegalArgumentException");
-            } catch (MathIllegalArgumentException ex) {
-                // ignored
-            }
-
-            // Make sure we fail for k < n < 0
-            try {
-                perm = randomData.nextPermutation(-1, -3);
-                Assert.fail("permutation k < n < 0, expecting 
MathIllegalArgumentException");
-            } catch (MathIllegalArgumentException ex) {
-                // ignored
-            }
-
-        }
-    }
-
-    // Disable until we have equals
-    //public void testSerial() {
-    //    Assert.assertEquals(randomData, 
TestUtils.serializeAndRecover(randomData));
-    //}
-
-    private int findPerm(int[][] p, int[] samp) {
-        for (int i = 0; i < p.length; i++) {
-            boolean good = true;
-            for (int j = 0; j < samp.length; j++) {
-                if (samp[j] != p[i][j]) {
-                    good = false;
-                }
-            }
-            if (good) {
-                return i;
-            }
-        }
-        Assert.fail("permutation not found");
-        return -1;
-    }
-
-    @Test
-    public void testNextBeta() {
-        double[] quartiles = TestUtils.getDistributionQuartiles(new 
BetaDistribution(2,5));
-        long[] counts = new long[4];
-        randomData.reSeed(1000);
-        for (int i = 0; i < 1000; i++) {
-            double value = randomData.nextBeta(2, 5);
-            TestUtils.updateCounts(value, counts, quartiles);
-        }
-        TestUtils.assertChiSquareAccept(expected, counts, 0.001);
-    }
-
-    @Test
-    public void testNextCauchy() {
-        double[] quartiles = TestUtils.getDistributionQuartiles(new 
CauchyDistribution(1.2, 2.1));
-        long[] counts = new long[4];
-        randomData.reSeed(1000);
-        for (int i = 0; i < 1000; i++) {
-            double value = randomData.nextCauchy(1.2, 2.1);
-            TestUtils.updateCounts(value, counts, quartiles);
-        }
-        TestUtils.assertChiSquareAccept(expected, counts, 0.001);
-    }
-
-    @Test
-    public void testNextChiSquare() {
-        double[] quartiles = TestUtils.getDistributionQuartiles(new 
ChiSquaredDistribution(12));
-        long[] counts = new long[4];
-        randomData.reSeed(1000);
-        for (int i = 0; i < 1000; i++) {
-            double value = randomData.nextChiSquare(12);
-            TestUtils.updateCounts(value, counts, quartiles);
-        }
-        TestUtils.assertChiSquareAccept(expected, counts, 0.001);
-    }
-
-    @Test
-    public void testNextF() {
-        double[] quartiles = TestUtils.getDistributionQuartiles(new 
FDistribution(12, 5));
-        long[] counts = new long[4];
-        randomData.reSeed(1000);
-        for (int i = 0; i < 1000; i++) {
-            double value = randomData.nextF(12, 5);
-            TestUtils.updateCounts(value, counts, quartiles);
-        }
-        TestUtils.assertChiSquareAccept(expected, counts, 0.001);
-    }
-
-    @Test
-    public void testNextGamma() {
-        double[] quartiles;
-        long[] counts;
-
-        // Tests shape > 1, one case in the rejection sampling
-        quartiles = TestUtils.getDistributionQuartiles(new 
GammaDistribution(4, 2));
-        counts = new long[4];
-        randomData.reSeed(1000);
-        for (int i = 0; i < 1000; i++) {
-            double value = randomData.nextGamma(4, 2);
-            TestUtils.updateCounts(value, counts, quartiles);
-        }
-        TestUtils.assertChiSquareAccept(expected, counts, 0.001);
-
-        // Tests shape <= 1, another case in the rejection sampling
-        quartiles = TestUtils.getDistributionQuartiles(new 
GammaDistribution(0.3, 3));
-        counts = new long[4];
-        randomData.reSeed(1000);
-        for (int i = 0; i < 1000; i++) {
-            double value = randomData.nextGamma(0.3, 3);
-            TestUtils.updateCounts(value, counts, quartiles);
-        }
-        TestUtils.assertChiSquareAccept(expected, counts, 0.001);
-    }
-
-    @Test
-    public void testNextT() {
-        double[] quartiles = TestUtils.getDistributionQuartiles(new 
TDistribution(10));
-        long[] counts = new long[4];
-        randomData.reSeed(1000);
-        for (int i = 0; i < 1000; i++) {
-            double value = randomData.nextT(10);
-            TestUtils.updateCounts(value, counts, quartiles);
-        }
-        TestUtils.assertChiSquareAccept(expected, counts, 0.001);
-    }
-
-    @Test
-    public void testNextWeibull() {
-        double[] quartiles = TestUtils.getDistributionQuartiles(new 
WeibullDistribution(1.2, 2.1));
-        long[] counts = new long[4];
-        randomData.reSeed(1000);
-        for (int i = 0; i < 1000; i++) {
-            double value = randomData.nextWeibull(1.2, 2.1);
-            TestUtils.updateCounts(value, counts, quartiles);
-        }
-        TestUtils.assertChiSquareAccept(expected, counts, 0.001);
-    }
-
-    @Test
-    public void testNextBinomial() {
-        BinomialDistributionTest testInstance = new BinomialDistributionTest();
-        int[] densityPoints = testInstance.makeDensityTestPoints();
-        double[] densityValues = testInstance.makeDensityTestValues();
-        int sampleSize = 1000;
-        int length = TestUtils.eliminateZeroMassPoints(densityPoints, 
densityValues);
-        BinomialDistribution distribution = (BinomialDistribution) 
testInstance.makeDistribution();
-        double[] expectedCounts = new double[length];
-        long[] observedCounts = new long[length];
-        for (int i = 0; i < length; i++) {
-            expectedCounts[i] = sampleSize * densityValues[i];
-        }
-        randomData.reSeed(1000);
-        for (int i = 0; i < sampleSize; i++) {
-          int value = randomData.nextBinomial(distribution.getNumberOfTrials(),
-                  distribution.getProbabilityOfSuccess());
-          for (int j = 0; j < length; j++) {
-              if (value == densityPoints[j]) {
-                  observedCounts[j]++;
-              }
-          }
-        }
-        TestUtils.assertChiSquareAccept(densityPoints, expectedCounts, 
observedCounts, .001);
-    }
-
-    @Test
-    public void testNextHypergeometric() {
-        HypergeometricDistributionTest testInstance = new 
HypergeometricDistributionTest();
-        int[] densityPoints = testInstance.makeDensityTestPoints();
-        double[] densityValues = testInstance.makeDensityTestValues();
-        int sampleSize = 1000;
-        int length = TestUtils.eliminateZeroMassPoints(densityPoints, 
densityValues);
-        HypergeometricDistribution distribution = (HypergeometricDistribution) 
testInstance.makeDistribution();
-        double[] expectedCounts = new double[length];
-        long[] observedCounts = new long[length];
-        for (int i = 0; i < length; i++) {
-            expectedCounts[i] = sampleSize * densityValues[i];
-        }
-        randomData.reSeed(1000);
-        for (int i = 0; i < sampleSize; i++) {
-          int value = 
randomData.nextHypergeometric(distribution.getPopulationSize(),
-                  distribution.getNumberOfSuccesses(), 
distribution.getSampleSize());
-          for (int j = 0; j < length; j++) {
-              if (value == densityPoints[j]) {
-                  observedCounts[j]++;
-              }
-          }
-        }
-        TestUtils.assertChiSquareAccept(densityPoints, expectedCounts, 
observedCounts, .001);
-    }
-
-    @Test
-    public void testNextPascal() {
-        PascalDistributionTest testInstance = new PascalDistributionTest();
-        int[] densityPoints = testInstance.makeDensityTestPoints();
-        double[] densityValues = testInstance.makeDensityTestValues();
-        int sampleSize = 1000;
-        int length = TestUtils.eliminateZeroMassPoints(densityPoints, 
densityValues);
-        PascalDistribution distribution = (PascalDistribution) 
testInstance.makeDistribution();
-        double[] expectedCounts = new double[length];
-        long[] observedCounts = new long[length];
-        for (int i = 0; i < length; i++) {
-            expectedCounts[i] = sampleSize * densityValues[i];
-        }
-        randomData.reSeed(1000);
-        for (int i = 0; i < sampleSize; i++) {
-          int value = 
randomData.nextPascal(distribution.getNumberOfSuccesses(), 
distribution.getProbabilityOfSuccess());
-          for (int j = 0; j < length; j++) {
-              if (value == densityPoints[j]) {
-                  observedCounts[j]++;
-              }
-          }
-        }
-        TestUtils.assertChiSquareAccept(densityPoints, expectedCounts, 
observedCounts, .001);
-    }
-
-    @Test
-    public void testNextZipf() {
-        ZipfDistributionTest testInstance = new ZipfDistributionTest();
-        int[] densityPoints = testInstance.makeDensityTestPoints();
-        double[] densityValues = testInstance.makeDensityTestValues();
-        int sampleSize = 1000;
-        int length = TestUtils.eliminateZeroMassPoints(densityPoints, 
densityValues);
-        ZipfDistribution distribution = (ZipfDistribution) 
testInstance.makeDistribution();
-        double[] expectedCounts = new double[length];
-        long[] observedCounts = new long[length];
-        for (int i = 0; i < length; i++) {
-            expectedCounts[i] = sampleSize * densityValues[i];
-        }
-        randomData.reSeed(1000);
-        for (int i = 0; i < sampleSize; i++) {
-          int value = randomData.nextZipf(distribution.getNumberOfElements(), 
distribution.getExponent());
-          for (int j = 0; j < length; j++) {
-              if (value == densityPoints[j]) {
-                  observedCounts[j]++;
-              }
-          }
-        }
-        TestUtils.assertChiSquareAccept(densityPoints, expectedCounts, 
observedCounts, .001);
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/7550cb46/src/test/java/org/apache/commons/math4/random/RandomGeneratorAbstractTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/commons/math4/random/RandomGeneratorAbstractTest.java
 
b/src/test/java/org/apache/commons/math4/random/RandomGeneratorAbstractTest.java
deleted file mode 100644
index f4ddfbd..0000000
--- 
a/src/test/java/org/apache/commons/math4/random/RandomGeneratorAbstractTest.java
+++ /dev/null
@@ -1,462 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.random;
-
-import java.util.Arrays;
-
-import org.apache.commons.math4.TestUtils;
-import org.apache.commons.math4.distribution.RealDistribution;
-import org.apache.commons.math4.distribution.UniformRealDistribution;
-import org.apache.commons.math4.exception.MathIllegalArgumentException;
-import org.apache.commons.math4.stat.Frequency;
-import org.apache.commons.math4.stat.inference.KolmogorovSmirnovTest;
-import org.apache.commons.math4.util.FastMath;
-import org.junit.Assert;
-import org.junit.Before;
-import org.junit.Ignore;
-import org.junit.Test;
-
-/**
- * Base class for RandomGenerator tests.
- *
- * Tests RandomGenerator methods directly and also executes RandomDataTest
- * test cases against a RandomDataImpl created using the provided generator.
- *
- * RandomGenerator test classes should extend this class, implementing
- * makeGenerator() to provide a concrete generator to test. The generator
- * returned by makeGenerator should be seeded with a fixed seed.
- *
- */
-
-public abstract class RandomGeneratorAbstractTest extends 
RandomDataGeneratorTest {
-
-    /** RandomGenerator under test */
-    protected RandomGenerator generator;
-
-    /**
-     * Override this method in subclasses to provide a concrete generator to 
test.
-     * Return a generator seeded with a fixed seed.
-     */
-    protected abstract RandomGenerator makeGenerator();
-
-    /**
-     * Initialize generator and randomData instance in superclass.
-     */
-    public RandomGeneratorAbstractTest() {
-        generator = makeGenerator();
-        randomData = new RandomDataGenerator(generator);
-    }
-
-    /**
-     * Set a fixed seed for the tests
-     */
-    @Before
-    public void setUp() {
-        generator = makeGenerator();
-    }
-
-    // Omit secureXxx tests, since they do not use the provided generator
-    @Override
-    public void testNextSecureLongIAE() {}
-    @Override
-    public void testNextSecureLongNegativeToPositiveRange() {}
-    @Override
-    public void testNextSecureLongNegativeRange() {}
-    @Override
-    public void testNextSecureLongPositiveRange() {}
-    @Override
-    public void testNextSecureIntIAE() {}
-    @Override
-    public void testNextSecureIntNegativeToPositiveRange() {}
-    @Override
-    public void testNextSecureIntNegativeRange() {}
-    @Override
-    public void testNextSecureIntPositiveRange() {}
-    @Override
-    public void testNextSecureHex() {}
-
-    @Test
-    /**
-     * Tests uniformity of nextInt(int) distribution by generating 1000
-     * samples for each of 10 test values and for each sample performing
-     * a chi-square test of homogeneity of the observed distribution with
-     * the expected uniform distribution.  Tests are performed at the .01
-     * level and an average failure rate higher than 2% (i.e. more than 20
-     * null hypothesis rejections) causes the test case to fail.
-     *
-     * All random values are generated using the generator instance used by
-     * other tests and the generator is not reseeded, so this is a fixed seed
-     * test.
-     */
-    public void testNextIntDirect() {
-        // Set up test values - end of the array filled randomly
-        int[] testValues = new int[] {4, 10, 12, 32, 100, 10000, 0, 0, 0, 0};
-        for (int i = 6; i < 10; i++) {
-            final int val = generator.nextInt();
-            testValues[i] = val < 0 ? -val : val + 1;
-        }
-
-        final int numTests = 1000;
-        for (int i = 0; i < testValues.length; i++) {
-            final int n = testValues[i];
-            // Set up bins
-            int[] binUpperBounds;
-            if (n < 32) {
-                binUpperBounds = new int[n];
-                for (int k = 0; k < n; k++) {
-                    binUpperBounds[k] = k;
-                }
-            } else {
-                binUpperBounds = new int[10];
-                final int step = n / 10;
-                for (int k = 0; k < 9; k++) {
-                    binUpperBounds[k] = (k + 1) * step;
-                }
-                binUpperBounds[9] = n - 1;
-            }
-            // Run the tests
-            int numFailures = 0;
-            final int binCount = binUpperBounds.length;
-            final long[] observed = new long[binCount];
-            final double[] expected = new double[binCount];
-            expected[0] = binUpperBounds[0] == 0 ? (double) smallSampleSize / 
(double) n :
-                (double) ((binUpperBounds[0] + 1) * smallSampleSize) / 
(double) n;
-            for (int k = 1; k < binCount; k++) {
-                expected[k] = (double) smallSampleSize *
-                (double) (binUpperBounds[k] - binUpperBounds[k - 1]) / n;
-            }
-            for (int j = 0; j < numTests; j++) {
-                Arrays.fill(observed, 0);
-                for (int k = 0; k < smallSampleSize; k++) {
-                    final int value = generator.nextInt(n);
-                    Assert.assertTrue("nextInt range",(value >= 0) && (value < 
n));
-                    for (int l = 0; l < binCount; l++) {
-                        if (binUpperBounds[l] >= value) {
-                            observed[l]++;
-                            break;
-                        }
-                    }
-                }
-                if (testStatistic.chiSquareTest(expected, observed) < 0.01) {
-                    numFailures++;
-                }
-            }
-            if ((double) numFailures / (double) numTests > 0.02) {
-                Assert.fail("Too many failures for n = " + n +
-                " " + numFailures + " out of " + numTests + " tests failed.");
-            }
-        }
-    }
-
-    @Test
-    public void testNextLongDirect() {
-        long q1 = Long.MAX_VALUE/4;
-        long q2 = 2 *  q1;
-        long q3 = 3 * q1;
-
-        Frequency freq = new Frequency();
-        long val = 0;
-        int value = 0;
-        for (int i=0; i<smallSampleSize; i++) {
-            val = generator.nextLong();
-            val = val < 0 ? -val : val;
-            if (val < q1) {
-                value = 0;
-            } else if (val < q2) {
-                value = 1;
-            } else if (val < q3) {
-                value = 2;
-            } else {
-                value = 3;
-            }
-            freq.addValue(value);
-        }
-        long[] observed = new long[4];
-        for (int i=0; i<4; i++) {
-            observed[i] = freq.getCount(i);
-        }
-
-        /* Use ChiSquare dist with df = 4-1 = 3, alpha = .001
-         * Change to 11.34 for alpha = .01
-         */
-        Assert.assertTrue("chi-square test -- will fail about 1 in 1000 times",
-                testStatistic.chiSquare(expected,observed) < 16.27);
-    }
-
-    @Test
-    public void testNextBooleanDirect() {
-        long halfSampleSize = smallSampleSize / 2;
-        double[] expected = {halfSampleSize, halfSampleSize};
-        long[] observed = new long[2];
-        for (int i=0; i<smallSampleSize; i++) {
-            if (generator.nextBoolean()) {
-                observed[0]++;
-            } else {
-                observed[1]++;
-            }
-        }
-        /* Use ChiSquare dist with df = 2-1 = 1, alpha = .001
-         * Change to 6.635 for alpha = .01
-         */
-        Assert.assertTrue("chi-square test -- will fail about 1 in 1000 times",
-                testStatistic.chiSquare(expected,observed) < 10.828);
-    }
-
-    @Test
-    public void testNextFloatDirect() {
-        Frequency freq = new Frequency();
-        float val = 0;
-        int value = 0;
-        for (int i=0; i<smallSampleSize; i++) {
-            val = generator.nextFloat();
-            if (val < 0.25) {
-                value = 0;
-            } else if (val < 0.5) {
-                value = 1;
-            } else if (val < 0.75) {
-                value = 2;
-            } else {
-                value = 3;
-            }
-            freq.addValue(value);
-        }
-        long[] observed = new long[4];
-        for (int i=0; i<4; i++) {
-            observed[i] = freq.getCount(i);
-        }
-
-        /* Use ChiSquare dist with df = 4-1 = 3, alpha = .001
-         * Change to 11.34 for alpha = .01
-         */
-        Assert.assertTrue("chi-square test -- will fail about 1 in 1000 times",
-                testStatistic.chiSquare(expected,observed) < 16.27);
-    }
-
-    @Test
-    public void testNextDouble() {
-        final double[] sample = new double[1000];
-        for (int i = 0; i < sample.length; i++) {
-            sample[i] = generator.nextDouble();
-        }
-        final RealDistribution uniformDistribution = new 
UniformRealDistribution(0,1);
-        final KolmogorovSmirnovTest ks = new KolmogorovSmirnovTest();
-        Assert.assertFalse(ks.kolmogorovSmirnovTest(uniformDistribution, 
sample, .01));
-    }
-
-
-    @Test(expected=MathIllegalArgumentException.class)
-    public void testNextIntPrecondition1() {
-        generator.nextInt(-1);
-    }
-
-    @Test(expected=MathIllegalArgumentException.class)
-    public void testNextIntPrecondition2() {
-        generator.nextInt(0);
-    }
-
-    @Test
-    public void testNextInt2() {
-        int walk = 0;
-        final int N = 10000;
-        for (int k = 0; k < N; ++k) {
-           if (generator.nextInt() >= 0) {
-               ++walk;
-           } else {
-               --walk;
-           }
-        }
-        Assert.assertTrue("Walked too far astray: " + walk + "\nNote: This " +
-                "test will fail randomly about 1 in 100 times.",
-                FastMath.abs(walk) < FastMath.sqrt(N) * 2.576);
-    }
-
-    @Test
-    public void testNextLong2() {
-        int walk = 0;
-        final int N = 1000;
-        for (int k = 0; k < N; ++k) {
-           if (generator.nextLong() >= 0) {
-               ++walk;
-           } else {
-               --walk;
-           }
-        }
-        Assert.assertTrue("Walked too far astray: " + walk + "\nNote: This " +
-                "test will fail randomly about 1 in 100 times.",
-                FastMath.abs(walk) < FastMath.sqrt(N) * 2.576);
-    }
-
-    @Test
-    public void testNextBoolean2() {
-        int walk = 0;
-        final int N = 10000;
-        for (int k = 0; k < N; ++k) {
-           if (generator.nextBoolean()) {
-               ++walk;
-           } else {
-               --walk;
-           }
-        }
-        Assert.assertTrue("Walked too far astray: " + walk + "\nNote: This " +
-                "test will fail randomly about 1 in 100 times.",
-                FastMath.abs(walk) < FastMath.sqrt(N) * 2.576);
-    }
-
-    @Test
-    public void testNextBytes() {
-        long[] count = new long[256];
-        byte[] bytes = new byte[10];
-        double[] expected = new double[256];
-        final int sampleSize = 100000;
-
-        for (int i = 0; i < 256; i++) {
-            expected[i] = (double) sampleSize / 265f;
-        }
-
-        for (int k = 0; k < sampleSize; ++k) {
-           generator.nextBytes(bytes);
-           for (byte b : bytes) {
-               ++count[b + 128];
-           }
-        }
-
-        TestUtils.assertChiSquareAccept(expected, count, 0.001);
-
-    }
-
-    // MATH-1300
-    @Test
-    public void testNextBytesChunks() {
-        final int[] chunkSizes = { 4, 8, 12, 16 };
-        final int[] chunks = { 1, 2, 3, 4, 5 };
-        for (int chunkSize : chunkSizes) {
-            for (int numChunks : chunks) {
-                checkNextBytesChunks(chunkSize, numChunks);
-            }
-        }
-    }
-
-    // MATH-1300: Test is ignored because it will fail due to the array
-    // size not being a multiple of 4.
-    @Ignore@Test
-    public void testNextBytesChunksFail() {
-        final int[] chunkSizes = { 5 };
-        final int[] chunks = { 4 };
-        for (int chunkSize : chunkSizes) {
-            for (int numChunks : chunks) {
-                checkNextBytesChunks(chunkSize, numChunks);
-            }
-        }
-    }
-
-    @Test
-    public void testSeeding() {
-        // makeGenerator initializes with fixed seed
-        RandomGenerator gen = makeGenerator();
-        RandomGenerator gen1 = makeGenerator();
-        checkSameSequence(gen, gen1);
-        // reseed, but recreate the second one
-        // verifies MATH-723
-        gen.setSeed(100);
-        gen1 = makeGenerator();
-        gen1.setSeed(100);
-        checkSameSequence(gen, gen1);
-    }
-
-    private void checkSameSequence(RandomGenerator gen1, RandomGenerator gen2) 
{
-        final int len = 11;  // Needs to be an odd number to check MATH-723
-        final double[][] values = new double[2][len];
-        for (int i = 0; i < len; i++) {
-            values[0][i] = gen1.nextDouble();
-        }
-        for (int i = 0; i < len; i++) {
-            values[1][i] = gen2.nextDouble();
-        }
-        Assert.assertTrue(Arrays.equals(values[0], values[1]));
-        for (int i = 0; i < len; i++) {
-            values[0][i] = gen1.nextFloat();
-        }
-        for (int i = 0; i < len; i++) {
-            values[1][i] = gen2.nextFloat();
-        }
-        Assert.assertTrue(Arrays.equals(values[0], values[1]));
-        for (int i = 0; i < len; i++) {
-            values[0][i] = gen1.nextInt();
-        }
-        for (int i = 0; i < len; i++) {
-            values[1][i] = gen2.nextInt();
-        }
-        Assert.assertTrue(Arrays.equals(values[0], values[1]));
-        for (int i = 0; i < len; i++) {
-            values[0][i] = gen1.nextLong();
-        }
-        for (int i = 0; i < len; i++) {
-            values[1][i] = gen2.nextLong();
-        }
-        Assert.assertTrue(Arrays.equals(values[0], values[1]));
-        for (int i = 0; i < len; i++) {
-            values[0][i] = gen1.nextInt(len);
-        }
-        for (int i = 0; i < len; i++) {
-            values[1][i] = gen2.nextInt(len);
-        }
-        Assert.assertTrue(Arrays.equals(values[0], values[1]));
-        for (int i = 0; i < len; i++) {
-            values[0][i] = gen1.nextBoolean() ? 1 : 0;
-        }
-        for (int i = 0; i < len; i++) {
-            values[1][i] = gen2.nextBoolean() ? 1 : 0;
-        }
-        Assert.assertTrue(Arrays.equals(values[0], values[1]));
-        for (int i = 0; i < len; i++) {
-            values[0][i] = gen1.nextGaussian();
-        }
-        for (int i = 0; i < len; i++) {
-            values[1][i] = gen2.nextGaussian();
-        }
-        Assert.assertTrue(Arrays.equals(values[0], values[1]));
-    }
-
-    // MATH-1300
-    private void checkNextBytesChunks(int chunkSize,
-                                      int numChunks) {
-        final RandomGenerator rg = makeGenerator();
-        final long seed = 1234567L;
-
-        final byte[] b1 = new byte[chunkSize * numChunks];
-        final byte[] b2 = new byte[chunkSize];
-
-        // Generate the chunks in a single call.
-        rg.setSeed(seed);
-        rg.nextBytes(b1);
-
-        // Reset.
-        rg.setSeed(seed);
-        // Generate the chunks in consecutive calls.
-        for (int i = 0; i < numChunks; i++) {
-            rg.nextBytes(b2);
-        }
-
-        // Store last 128 bytes chunk of b1 into b3.
-        final byte[] b3 = new byte[chunkSize];
-        System.arraycopy(b1, b1.length - b3.length, b3, 0, b3.length);
-
-        // Sequence of calls must be the same.
-        Assert.assertArrayEquals("chunkSize=" + chunkSize + " numChunks=" + 
numChunks,
-                                 b2, b3);
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/7550cb46/src/test/java/org/apache/commons/math4/random/RandomGeneratorFactoryTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/commons/math4/random/RandomGeneratorFactoryTest.java 
b/src/test/java/org/apache/commons/math4/random/RandomGeneratorFactoryTest.java
deleted file mode 100644
index fc94e88..0000000
--- 
a/src/test/java/org/apache/commons/math4/random/RandomGeneratorFactoryTest.java
+++ /dev/null
@@ -1,36 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.random;
-
-import java.util.Random;
-
-import org.apache.commons.math4.random.RandomGenerator;
-import org.apache.commons.math4.random.RandomGeneratorFactory;
-
-/**
- * Test cases for the {@link RandomGeneratorFactory} class.
- *
- */
-public class RandomGeneratorFactoryTest extends RandomGeneratorAbstractTest {
-
-    @Override
-    protected RandomGenerator makeGenerator() {
-        RandomGenerator generator = 
RandomGeneratorFactory.createRandomGenerator(new Random());
-        generator.setSeed(1001);
-        return generator;
-    }
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/7550cb46/src/test/java/org/apache/commons/math4/random/Well19937cTest.java
----------------------------------------------------------------------
diff --git a/src/test/java/org/apache/commons/math4/random/Well19937cTest.java 
b/src/test/java/org/apache/commons/math4/random/Well19937cTest.java
deleted file mode 100644
index cfffcd1..0000000
--- a/src/test/java/org/apache/commons/math4/random/Well19937cTest.java
+++ /dev/null
@@ -1,117 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.random;
-
-import org.apache.commons.math4.random.RandomGenerator;
-import org.apache.commons.math4.random.Well19937c;
-import org.junit.Assert;
-import org.junit.Test;
-
-public class Well19937cTest extends RandomGeneratorAbstractTest {
-
-    @Override
-    public RandomGenerator makeGenerator() {
-        return new Well19937c(100);
-    }
-
-    @Test
-    public void testReferenceCode() {
-        int[] base = {
-              740849862,  1202665156,  -199039369,  -259008301,  -291878969, 
-1164428990, -1565918811,   491009864,
-            -1883086670,  1383450241,  1244617256,   689006653, -1576746370, 
-1307940314,  1421489086,  1742094000,
-             -595495729,  1047766204,  1875773301, -1637793284,  1379017098,   
262792705,   191880010,  -251000180,
-            -1753047622,  -972355720,    90626881,  1644693418,  1503365577,   
439653419,  1806361562,  1268823869
-         };
-        int[] init = new int[624];
-        for (int i = 0; i < init.length; ++i) {
-            init[i] = base[i % base.length] + i;
-        }
-        Well19937c mt = new Well19937c(init);
-        int[] refInt = {
-            2128528153,    327121884,    935445371,    -83026433,  
-1041143083,   2084595880,  -1073535198,  -1678863790,   -523636021,  
-1514837782,   -736786810,   1527711112,  -1051227939,    978703380,    
410322163,   1727815703,
-            -648426354,    636056441,   1954420292,     17754810,   
-958628705,  -1091307602,   1793078738,  -1680336346,   1792171272,    
941973796,  -2066152330,  -1248758068,  -1061211586,    262020189,   
1276960217,   -233886784,
-            1767509252,  -1811939255,   -406116097,   -742435920,  
-1349799525,    240329556,   -332161345,   1488943143,   -332244280,   
2093328957,    674753300,  -1930135556,    257111467,     63793650,  
-1964335223,   1315849133,
-            -797349146,   1372022250,  -1451892049,  -1325138957,   
-870401239,  -1294317369,     91490879,    386205044,   -704074702,  
-1230679067,   1513674392,   -262996240,   1196007314,   1398903796,    
803719762,  -1750926831,
-           -1268814180,   1233515404,   1498313934,   -970591257,    
611113671,   -261632474,   1834097325,   1709440492,   -150396854,   
2120561003,    -62645660,    479080234,   1535125050,   1823378695,  
-1129289329,  -1095198399,
-            2092564733,     78836308,   -692015409,   1647147229,  
-1847922219,   1838279320,   -848333841,  -1375151778,    920238861,   
1512628290,   -749439404,    288851918,   -427218675,    679640964,    
425700808,  -2077624511,
-           -1929434455,   -647176419,    650437190,  -1926749131,  
-1564744729,    734494454,    108193743,    246246679,    810042628,   
1952337771,   1089253730,  -1874275331,   1428419392,   -492969232,   
1945270770,   -201265602,
-            -755490251,   -624426214,   -699605715,   -113446478,    
809091299,  -1521531511,   1136505389,   -523660964,    132928433,   
1926559713,  -1485314325,   -508322506,     46307756,  -1627479740,   
-589386406,  -1855555892,
-             584299545,   1272841066,   -597242658,    925134545,   
1102566453,   -753335037,     -9523218,  -1778632375,    568963646,    
764338254,   1259944540,  -2000124642,   1307414525,   -151384482,    
807294400,   1993749511,
-             -15503094,   -709471492,   2104830082,   1387684315,  
-1929056119,    224254668,   -733550950,   -889466978,  -1987783335,   
-437144026,    995905753,  -1021386158,  -1096313388,  -1014152835,  
-1303258241,   1201884788,
-           -1845042397,   1421462511,    980805867,   2143771251,    
481226968,   1790544569,    328448328,   1995857639,    -66668269,  
-1411421267,   -222586606,    866950765,   -308713926,  -1048350893,    
993222402,  -1139265642,
-            -871837948,   1145571913,    381928580,     35386691,   
1640961123,  -1192981020,    775971009,    594246635,   1603197812,   
-575106766,   2023682000,  -1636301903,   -718093720,  -1666421635,  
-2146115988,    320593570,
-             287355418,    454400027,   1112753817,   1751196267,    
782077910,  -1478447368,  -1007557264,   -862315517,  -2035355952,   
2123515250,   -557641502,  -1789932035,    879640129,     44167603,    
791148984,   1382939723,
-           -2135684233,   1825489580,    937345485,  -1839983359,  
-1536880111,  -1472578359,   1548052748,  -1471535862,    -14508727,   
1509621398,  -2134967452,   -787485401,    815341660,   -327905128,   
1028096737,    866906991,
-           -1585990806,    859229080,    234806270,    998518056,  
-1897890815,   -900923587,   1179856752,   1529572451,    620486106,   
1119836556,   1661285564,   2097404633,  -1437490790,    265306115,   
-984880135,   1326751968,
-            1280043536,    680210701,    155786166,   1550973250,   
-325781949,   -597789777,     -1939780,   1345275487,   1930450001,    
941449704,    669301309,    693651713,   -990721514,    582968326,    
976132553,  -1892942099,
-           -1065070157,   -711990993,   -688974833,  -1026091683,   
1115346827,  -1305730749,  -1733626381,   -364566696,    -21761572,    
-37152746,   -262011730,   1302722752,  -1806313409,   -767072509,    
764112137,   1671157377,
-            1837645038,  -1021606421,  -1781898911,   -232127459,   
-310742675,  -1818095744,  -1128320656,   -705565953,   -354445532,   
-523172807,   -433877202,    131904485,    -64292316,    381829280,    
229820263,   1797992622,
-            1359665678,    978481451,   -885267130,  -1415988446,   
-356533788,   -961419072,   1938703090,    708344111,    679299953,    
744615129,   1328811158,   1257588574,    569216282,   -753296151,  
-1519838713,   2016884452,
-            1062684606,   1561736790,   2028643511,  -1353001615,    
886376832,   1466953172,   1664783899,   1290079981,    -57483993,  
-1176112430,   1634916316,   1976304475,   1374136869,   -648738039,   
1058175869,   -909000745,
-           -1526439218,    726626991,   2066596202,     64980943,    
-26166577,   -885900005,  -1821546816,  -1103727665,    730606315,  
-1324948459,   -696956940,  -1300869403,   1171578314,    797249074,  
-1600611618,   1928247682,
-             307164165,  -1482476232,  -1886179640,   1306433392,   
1945271359,  -1272113751,  -1285984081,  -2057145549,    795047465,   
1262569087,  -1239828121,   1426641636,   -786371495,   2120199316,   
1273690652,     74457589,
-           -1033394229,    338952565,     46122958,   1225741533,   
2115308090,    678200841,  -1618264885,   -101162569,  -1628976330,  
-1232839500,    468709044,   1876019116,     92723122,    233398255,   
-554960844,     38494196,
-            -406437278,   2083528643,  -1106878615,   -340722557,  
-2123964932,    223183343,    108918116,  -1014629054,   -901344544,   
-838896840,  -1908460517,  -1763508731,   -926890833,   1703791049,   
-667755577,   1694418389,
-             791641263,   1095689677,   1119202039,  -1419111438,  
-2012259010,    188017439,  -1775110395,  -1971099661,  -1688113734,    
131472813,   -776304959,   1511388884,   2080864872,  -1733824651,   
1992147495,   1119828320,
-            1065336924,  -1357606762,    462963503,   1180719494,   
-202678962,   -892646595,    605869323,   1144255663,    878462678,  
-1051371303,    872374876,    631322271,   -172600544,  -1552071375,  
-1939570033,    151973117,
-            1640861022,    310682640,     34192866,   2057773671,  
-2004476027,  -1879238973,    582736114,    900581664,   -427390545,  
-1232348528,   -535115984,   1321853054,     69386780,  -1729375922,   
1418473715,   1022091451,
-             496799289,    -80757405,  -1903543310,  -1128846846,      
1703964,   1984450945,    856753858,   -812919184,    775486323,  -1376056193,  
  638628840,    314243536,   1030626207,    644050997,     73923896,    
362270613,
-             236584904,   1463240891,   -223614432,    435371594,   
-751940030,   -124274553,  -1991092884,   1579624267,   1249632649,    
157589625,   -345229739,   -366245207,  -1399995986,   1651729983,   
1965074340,  -1108970305,
-            1163690769,   1732013523,  -1461252895,    669755552,   
-476503675,   -264578685,    -32813949,    288222188,    -25734262,    
106040916,   1654395626,   -365148479,   2014455846,  -2040447994,   
1351639280,   -919975757,
-           -1970412139,    -47306532,    222377665,   -363434917,  
-1091717516,   2090685531,  -1221091649,  -1729649190,  -1239406708,   
1064945398,   -105437479,   -419675255,     74701669,    -12862899,   
-498269844,   1566898997,
-           -1872838355,   1596887574,    485902962,    469225597,   
-881763553,   1307841032,  -1642872487,   1388543045,    379792876,   
1095683384,    840780732,   1934378038,   1851278350,  -1359389423,    
130868458,   -313448799,
-            -663624816,   1031714153,   -608443411,   -205137499,  
-1849464427,   1973593637,   1068741808,  -1420655961,   1188762305,    
954044841,   -995454462,  -1818101092,  -1937201943,   -324541290,  
-1520603933,    572873173,
-            -554764496,   1051557081,  -1245136076,   -985349536,    
329320398,   1787901464,    -37803304,  -1759310177,  -1463492617,  
-1861729663,   1251768782,    256937091,   -779036948,  -2049893864,   
1256022877,   1228075657,
-           -1550195255,   -611319853,   1190797155,   2047604112,   
-576077160,  -1532843331,  -1324899394,   -159729560,   -622525946,  
-1080302767,   -236033484,   1895243903,   -410123689,  -1944154157,   
-681781021,   1208453003,
-             579595878,   1303914051,   -145607082,   -131567277,  
-1917288455,    894217359,   -175688726,  -1585480723,    663691440,  
-1140068263,   -641711178,   1596080008,    629197693,    976422358,  
-1570451095,    525923776,
-             895046136,   -504151767,   1602553020,  -1233054923,  
-1798474837,  -1488857895,   1055782627,    261863143,   1879276655,    
488240679,   1910982611,  -1919441259,    370435945,   1265230086,  
-1293284428,  -1503576227,
-            2076963035,  -1379628250,   1157098875,   1984461153,  
-1947837397,   1705880124,   1453607404,  -1233649748,   1479943773,   
-863878721,   -862415630,   -736723275,    940306358,  -1596000684,  
-1174889953,   -615723892,
-            -885006597,  -1796723178,   1844159055,   -188942309,   
2107251811,  -1675486996,  -1009475178,   -859263556,   -431866963,     
-9593673,  -1878920923,   -104853791,  -1535224994,    -69315537,    586690130, 
 -1292234796,
-            1378749456,   -301873019,   -319297563,   1677205851,    
292450579,  -1289441171,   1788113680,   1907606333,   1464711611,  
-1372023606,  -1978832445,  -1772259768,   1949124464,   1818322887,  
-1138036603,   1249727628,
-           -1474866449,  -1868013169,  -1384567593,    717007936,    
954189997,  -1900561040,    738470389,   -158973180,   1732860784,   
1936031206,  -1133354740,  -1173166665,   1432976712,    852636081,   
1732064691,  -1831788120,
-            1273933579,    455403217,   1988395890,    106493468,    
506092152,   -610530423,   1698053512,   1311747476,   1969503012,  
-1887461759,   1613543073,    903200334,   -737865837,    325656800,  
-1234001200,   1492148864,
-            2009861533,   -368262605,   1091338541,   2076108119,   
-961392337,   1835877112,    316250307,   -853333391,  -2125443777,    
815363504,   -798707803,   -158146540,    690786114,   -530775684,   
1203556940,   1611485582,
-           -1661412270,    -53184506,   2126287444,   -232222229,   
1559486057,    283532250,   1202760418,    932144172,   1082594656,   
-570104011,    413509167,   -995027177,   -996477516,      -540544,   
-745537167,   -712135469,
-            -996294983,   -592787198,   1889840948,   1314628747,   
-394266926,   -682316577,    456447239,   1728806063,   -396279614,    
-43387643,   1915717013,   -861574144,  -1078710588,   -561401249,   
1111464540,     63643984,
-           -1693870413,   -968369980,  -1053148188,    708799038,   
1883537988,    373371671,   -156410415,  -1596483236,  -1846890431,    
888692915,  -1025632583,  -1666477591,   -343066267,  -2059058792,    
641501628,  -1744347292,
-            1648632991,   1743540146,   2020952406,    164014499,    
990508262,   1706408228,  -1236471842,   -347116260,   1843634523,    
827255665,    300519853,  -1265974830,   -547247177,   -583064554,  
-1995437077,    689210107,
-             -93151393,    835365056,   1706367315,  -1605902756,    
200954895,    431093688,   -277573364,   -928486713,   -552221973,    
145432789,   1128919795,   1675095586,   1930359882,   1215849501,  
-1447770583,    657776490,
-            1885869860,  -1629237204,   -868897479,  -1258169760,   
1828140195,   -883850439,    463933909,   -347361158,   1478116648,    
801176896,  -1501915899,   1017335748,  -1654508882,    123994786,   
1588785290,    791166651,
-           -1523108535,    340411166,   -496474762,  -1189711141,     
-7392628,   2045171250,  -1245366209,    834787230,  -1346883181,   2034209454, 
   737043362,    898803323,   1983089087,  -1845404320,      9585188,  
-1180608323,
-            1665100606,   1949474222,   -211115008,   1151308295,  
-2132174259,    913126312,  -2085061672,   1419864120,  -1134542954,    
-53833957,   -246913211,    468382370,  -1759479323,   1136686211,   
1307012488,  -2036299559,
-           -1346099736,    314743106,  -1683101865,   -947151948,   
-234529696,  -2103334293,   -279256894,     -1484257,  -1053953017,   
1801205399,    941594454,   -874119215,   -672865187,    762284205,  
-1494975451,    486607927,
-            -898264389,  -1711861093,   -212572760,   2106484281,  
-1610786470,   1352525590,   -837779586,   1568282001,   -593019125,  
-1146260782,  -1595879979,   -640781858,   1107692311,   1547132709,  
-1928385535,  -2057772805,
-             634887038,    329772618,    942136006,   -864405576,    
501883884,   1537141484,  -1180626836,   1123055420,   1090885851,    
421662750,   2033111605,   1710917425,  -1118058244,     74321279,    
257328195,  -1199940697,
-             208625996,   -442341447,    808119183,   1166827075,   
1177417517,  -1856155370,  -1464837036,    -60624923,  -1306220638,    
-91104698,  -1434621430,    548899241,     37351476,   1478278431,  
-1255061434,    248470035,
-            -104642597,  -1865169521,   1418373655,  -1660810523,  
-2129015436,    154612798,    276575732,   1930338442,    179503250,   
-929294855,    -39452027,  -1377657544,   1442322193,   1137511318,   
-432158653,   -984801987,
-             743099148,  -1118893528,   -904123623,  -1273146363,  
-1884800406,   -803169061,   1254123158,   -484252077,    317646844,    
404246525,  -1230293916,   1121445742,    -19657507,    652967153,  
-1055406692,   -468950719,
-           -1493532921,  -1447624258,  -1369679689,  -1517000228,   
-145853307,   1518006526,   1591195514,  -1475557146,   -909722097,   
2103182976,   -406830579,  -2124025254,  -1804819507,  -1357512858,    
567321869,    409048156,
-             567805180,   1749009386,   1762759722,  -1770324077,   
1271140844,    468219092,    955792405,   1911965665,   1876314424,   
-718200715,  -1278883927,   1392281730,   -120519585,    851473793,    
245054754,    -33369039,
-            -284877584,   -479534880,   -212346563,   -122017521,  
-1461429983,   1331007370,   1788621721,   1739036536,   1446350953,  
-1985448033,    685528610,  -1386434659,   1368233993,   2021786790,   
1596478397,  -1716635278,
-           -2011083017,    171876097,   -311529197,    687812052,    
377000657,  -1055547517,  -1499047842,  -1818434951,   -120863666,     
33888043,  -1387509273,   -541540700,   1162597745,  -1331415338,   1931708792, 
  -850270000,
-             663845594,   1536495943,   -322924971,  -1380272203,    
261190298,   -204874428,  -2104974031,    883819928,    155808204,  
-1454446035,   1323388464,  -1696505728,   1549800285,   1018150463,  
-1327715703,  -1582480640,
-            1013659809,  -1820360082,   1666498787,   1406120540,   
-196541482,   1248470531,  -1250433281,    836375878,    177646854,  
-1927020253,   2145878321,    689712096,   -596605921,    348283199,   
1916993096,    481356808,
-            -339687826,   1219340319,    718895887,  -2007521340,  
-1859185806,   2042164737,    -58146784,    742449142,   1930754708,    
780832111,    715056441,  -1393886151,     -8150527,   -599607443,   
-537300865,  -1212516084
-        };
-
-        for (int i = 0; i < refInt.length; ++i) {
-            Assert.assertEquals(refInt[i], mt.nextInt());
-        }
-
-    }
-
-}

Reply via email to