http://git-wip-us.apache.org/repos/asf/commons-math/blob/9867d9f2/src/test/java/org/apache/commons/math4/random/EmpiricalDistributionTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/commons/math4/random/EmpiricalDistributionTest.java 
b/src/test/java/org/apache/commons/math4/random/EmpiricalDistributionTest.java
index 4854979..3c0564f 100644
--- 
a/src/test/java/org/apache/commons/math4/random/EmpiricalDistributionTest.java
+++ 
b/src/test/java/org/apache/commons/math4/random/EmpiricalDistributionTest.java
@@ -36,8 +36,7 @@ import 
org.apache.commons.math4.distribution.UniformRealDistribution;
 import org.apache.commons.math4.exception.MathIllegalStateException;
 import org.apache.commons.math4.exception.NullArgumentException;
 import org.apache.commons.math4.exception.NotStrictlyPositiveException;
-import org.apache.commons.math4.random.EmpiricalDistribution;
-import org.apache.commons.math4.random.RandomGenerator;
+import org.apache.commons.math4.rng.RandomSource;
 import org.apache.commons.math4.stat.descriptive.SummaryStatistics;
 import org.apache.commons.math4.util.FastMath;
 import org.junit.Assert;
@@ -156,14 +155,27 @@ public final class EmpiricalDistributionTest extends 
RealDistributionAbstractTes
     }
 
     /**
-      * Make sure exception thrown if digest getNext is attempted
-      * before loading empiricalDistribution.
+     * Make sure exception thrown if sampling is attempted
+     * before loading empiricalDistribution.
      */
     @Test
-    public void testNexFail() {
+    public void testNextFail1() {
         try {
-            empiricalDistribution.getNextValue();
-            empiricalDistribution2.getNextValue();
+            
empiricalDistribution.createSampler(RandomSource.create(RandomSource.JDK)).sample();
+            Assert.fail("Expecting MathIllegalStateException");
+        } catch (MathIllegalStateException ex) {
+            // expected
+        }
+    }
+
+    /**
+     * Make sure exception thrown if sampling is attempted
+     * before loading empiricalDistribution.
+     */
+    @Test
+    public void testNextFail2() {
+        try {
+            
empiricalDistribution2.createSampler(RandomSource.create(RandomSource.JDK)).sample();
             Assert.fail("Expecting MathIllegalStateException");
         } catch (MathIllegalStateException ex) {
             // expected
@@ -245,36 +257,38 @@ public final class EmpiricalDistributionTest extends 
RealDistributionAbstractTes
         TestUtils.assertEquals(expectedGeneratorUpperBounds, 
dist.getGeneratorUpperBounds(), tol);
     }
 
-    @Test
-    public void testGeneratorConfig() {
-        double[] testData = {0, 1, 2, 3, 4};
-        RandomGenerator generator = new 
RandomAdaptorTest.ConstantGenerator(0.5);
-
-        EmpiricalDistribution dist = new EmpiricalDistribution(5, generator);
-        dist.load(testData);
-        for (int i = 0; i < 5; i++) {
-            Assert.assertEquals(2.0, dist.getNextValue(), 0d);
-        }
-
-        // Verify no NPE with null generator argument
-        dist = new EmpiricalDistribution(5, (RandomGenerator) null);
-        dist.load(testData);
-        dist.getNextValue();
-    }
-
-    @Test
-    public void testReSeed() throws Exception {
-        empiricalDistribution.load(url);
-        empiricalDistribution.reSeed(100);
-        final double [] values = new double[10];
-        for (int i = 0; i < 10; i++) {
-            values[i] = empiricalDistribution.getNextValue();
-        }
-        empiricalDistribution.reSeed(100);
-        for (int i = 0; i < 10; i++) {
-            
Assert.assertEquals(values[i],empiricalDistribution.getNextValue(), 0d);
-        }
-    }
+    // XXX REMOVE (test "embedded RNG" which is to be removed)
+//     @Test
+//     public void testGeneratorConfig() {
+//         double[] testData = {0, 1, 2, 3, 4};
+//         RandomGenerator generator = new 
RandomAdaptorTest.ConstantGenerator(0.5);
+
+//         EmpiricalDistribution dist = new EmpiricalDistribution(5, 
generator);
+//         dist.load(testData);
+//         for (int i = 0; i < 5; i++) {
+//             Assert.assertEquals(2.0, dist.getNextValue(), 0d);
+//         }
+
+//         // Verify no NPE with null generator argument
+//         dist = new EmpiricalDistribution(5, (RandomGenerator) null);
+//         dist.load(testData);
+//         dist.getNextValue();
+//     }
+
+    // XXX REMOVE (test "embedded RNG" which is to be removed)
+//     @Test
+//     public void testReSeed() throws Exception {
+//         empiricalDistribution.load(url);
+//         empiricalDistribution.reSeed(100);
+//         final double [] values = new double[10];
+//         for (int i = 0; i < 10; i++) {
+//             values[i] = empiricalDistribution.getNextValue();
+//         }
+//         empiricalDistribution.reSeed(100);
+//         for (int i = 0; i < 10; i++) {
+//             
Assert.assertEquals(values[i],empiricalDistribution.getNextValue(), 0d);
+//         }
+//     }
 
     private void verifySame(EmpiricalDistribution d1, EmpiricalDistribution 
d2) {
         Assert.assertEquals(d1.isLoaded(), d2.isLoaded());
@@ -290,10 +304,11 @@ public final class EmpiricalDistributionTest extends 
RealDistributionAbstractTes
 
     private void tstGen(double tolerance)throws Exception {
         empiricalDistribution.load(url);
-        empiricalDistribution.reSeed(1000);
+        RealDistribution.Sampler sampler
+            = 
empiricalDistribution.createSampler(RandomSource.create(RandomSource.WELL_19937_C,
 1000));
         SummaryStatistics stats = new SummaryStatistics();
         for (int i = 1; i < 1000; i++) {
-            stats.addValue(empiricalDistribution.getNextValue());
+            stats.addValue(sampler.sample());
         }
         Assert.assertEquals("mean", 5.069831575018909, 
stats.getMean(),tolerance);
         Assert.assertEquals("std dev", 1.0173699343977738, 
stats.getStandardDeviation(),tolerance);
@@ -301,10 +316,11 @@ public final class EmpiricalDistributionTest extends 
RealDistributionAbstractTes
 
     private void tstDoubleGen(double tolerance)throws Exception {
         empiricalDistribution2.load(dataArray);
-        empiricalDistribution2.reSeed(1000);
+        RealDistribution.Sampler sampler
+            = 
empiricalDistribution2.createSampler(RandomSource.create(RandomSource.WELL_19937_C,
 1000));
         SummaryStatistics stats = new SummaryStatistics();
         for (int i = 1; i < 1000; i++) {
-            stats.addValue(empiricalDistribution2.getNextValue());
+            stats.addValue(sampler.sample());
         }
         Assert.assertEquals("mean", 5.069831575018909, stats.getMean(), 
tolerance);
         Assert.assertEquals("std dev", 1.0173699343977738, 
stats.getStandardDeviation(), tolerance);
@@ -431,9 +447,10 @@ public final class EmpiricalDistributionTest extends 
RealDistributionAbstractTes
         }
         EmpiricalDistribution dist = new EmpiricalDistribution(10);
         dist.load(data);
-        dist.reseedRandomGenerator(1000);
+        RealDistribution.Sampler sampler
+            = 
dist.createSampler(RandomSource.create(RandomSource.WELL_19937_C, 1000));
         for (int i = 0; i < 1000; i++) {
-            final double dev = dist.sample();
+            final double dev = sampler.sample();
             Assert.assertTrue(dev < 1);
             Assert.assertTrue(dev > 0);
         }
@@ -447,9 +464,10 @@ public final class EmpiricalDistributionTest extends 
RealDistributionAbstractTes
         final double[] data = {0, 0, 1, 1};
         EmpiricalDistribution dist = new EmpiricalDistribution(2);
         dist.load(data);
-        dist.reseedRandomGenerator(1000);
+        RealDistribution.Sampler sampler
+            = 
dist.createSampler(RandomSource.create(RandomSource.WELL_19937_C, 1000));
         for (int i = 0; i < 1000; i++) {
-            final double dev = dist.sample();
+            final double dev = sampler.sample();
             Assert.assertTrue(dev == 0 || dev == 1);
         }
         Assert.assertEquals(0.5, dist.cumulativeProbability(0), 
Double.MIN_VALUE);
@@ -489,10 +507,12 @@ public final class EmpiricalDistributionTest extends 
RealDistributionAbstractTes
         final EmpiricalDistribution dist = new 
ConstantKernelEmpiricalDistribution(5);
         final double[] data = {1d,2d,3d, 4d,5d,6d, 7d,8d,9d, 10d,11d,12d, 
13d,14d,15d};
         dist.load(data);
+        RealDistribution.Sampler sampler
+            = 
dist.createSampler(RandomSource.create(RandomSource.WELL_19937_C, 1000));
         // Bin masses concentrated on 2, 5, 8, 11, 14 <- effectively discrete 
uniform distribution over these
         double[] values = {2d, 5d, 8d, 11d, 14d};
         for (int i = 0; i < 20; i++) {
-            Assert.assertTrue(Arrays.binarySearch(values, dist.sample()) >= 0);
+            Assert.assertTrue(Arrays.binarySearch(values, sampler.sample()) >= 
0);
         }
         final double tol = 10E-12;
         Assert.assertEquals(0.0, dist.cumulativeProbability(1), tol);
@@ -515,11 +535,13 @@ public final class EmpiricalDistributionTest extends 
RealDistributionAbstractTes
         final EmpiricalDistribution dist = new 
UniformKernelEmpiricalDistribution(5);
         final double[] data = {1d,2d,3d, 4d,5d,6d, 7d,8d,9d, 10d,11d,12d, 
13d,14d,15d};
         dist.load(data);
+        RealDistribution.Sampler sampler
+            = 
dist.createSampler(RandomSource.create(RandomSource.WELL_19937_C, 1000));
         // Kernels are uniform distributions on [1,3], [4,6], [7,9], [10,12], 
[13,15]
         final double bounds[] = {3d, 6d, 9d, 12d};
         final double tol = 10E-12;
         for (int i = 0; i < 20; i++) {
-            final double v = dist.sample();
+            final double v = sampler.sample();
             // Make sure v is not in the excluded range between bins - that is 
(bounds[i], bounds[i] + 1)
             for (int j = 0; j < bounds.length; j++) {
                 Assert.assertFalse(v > bounds[j] + tol && v < bounds[j] + 1 - 
tol);
@@ -566,7 +588,7 @@ public final class EmpiricalDistributionTest extends 
RealDistributionAbstractTes
         }
         @Override
         protected RealDistribution getKernel(SummaryStatistics bStats) {
-            return new 
UniformRealDistribution(randomData.getRandomGenerator(), bStats.getMin(), 
bStats.getMax());
+            return new UniformRealDistribution(bStats.getMin(), 
bStats.getMax());
         }
     }
 }

http://git-wip-us.apache.org/repos/asf/commons-math/blob/9867d9f2/src/test/java/org/apache/commons/math4/stat/descriptive/rank/PSquarePercentileTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/commons/math4/stat/descriptive/rank/PSquarePercentileTest.java
 
b/src/test/java/org/apache/commons/math4/stat/descriptive/rank/PSquarePercentileTest.java
index dfdcd4e..fdbf689 100644
--- 
a/src/test/java/org/apache/commons/math4/stat/descriptive/rank/PSquarePercentileTest.java
+++ 
b/src/test/java/org/apache/commons/math4/stat/descriptive/rank/PSquarePercentileTest.java
@@ -32,6 +32,7 @@ import 
org.apache.commons.math4.exception.NullArgumentException;
 import org.apache.commons.math4.exception.OutOfRangeException;
 import org.apache.commons.math4.random.RandomGenerator;
 import org.apache.commons.math4.random.Well19937c;
+import org.apache.commons.math4.rng.RandomSource;
 import org.apache.commons.math4.stat.descriptive.StorelessUnivariateStatistic;
 import 
org.apache.commons.math4.stat.descriptive.StorelessUnivariateStatisticAbstractTest;
 import org.apache.commons.math4.stat.descriptive.UnivariateStatistic;
@@ -709,6 +710,8 @@ public class PSquarePercentileTest extends
             VERY_LARGE = 10000000;
 
     private void doDistributionTest(RealDistribution distribution) {
+        final RealDistribution.Sampler sampler =
+            
distribution.createSampler(RandomSource.create(RandomSource.WELL_19937_C, 
1000));
         double data[];
 
         data = distribution.sample(VERY_LARGE);
@@ -754,8 +757,8 @@ public class PSquarePercentileTest extends
      */
     @Test
     public void testDistribution() {
-        doDistributionTest(new NormalDistribution(randomGenerator, 4000, 50));
-        doDistributionTest(new LogNormalDistribution(randomGenerator,4000, 
50));
+        doDistributionTest(new NormalDistribution(4000, 50));
+        doDistributionTest(new LogNormalDistribution(4000, 50));
         // doDistributionTest((new ExponentialDistribution(4000));
         // doDistributionTest(new GammaDistribution(5d,1d),0.1);
     }

http://git-wip-us.apache.org/repos/asf/commons-math/blob/9867d9f2/src/test/java/org/apache/commons/math4/stat/descriptive/rank/PercentileTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/commons/math4/stat/descriptive/rank/PercentileTest.java
 
b/src/test/java/org/apache/commons/math4/stat/descriptive/rank/PercentileTest.java
index 65a25b1..98b6f91 100644
--- 
a/src/test/java/org/apache/commons/math4/stat/descriptive/rank/PercentileTest.java
+++ 
b/src/test/java/org/apache/commons/math4/stat/descriptive/rank/PercentileTest.java
@@ -18,14 +18,16 @@ package org.apache.commons.math4.stat.descriptive.rank;
 
 import java.util.Arrays;
 
+import org.apache.commons.math4.distribution.RealDistribution;
+import org.apache.commons.math4.distribution.AbstractRealDistribution;
 import org.apache.commons.math4.distribution.NormalDistribution;
 import org.apache.commons.math4.exception.MathIllegalArgumentException;
 import org.apache.commons.math4.exception.NotANumberException;
 import org.apache.commons.math4.exception.NullArgumentException;
 import org.apache.commons.math4.exception.OutOfRangeException;
-import org.apache.commons.math4.random.JDKRandomGenerator;
-import org.apache.commons.math4.random.RandomGenerator;
 import org.apache.commons.math4.random.Well1024a;
+import org.apache.commons.math4.rng.RandomSource;
+import org.apache.commons.math4.rng.UniformRandomProvider;
 import org.apache.commons.math4.stat.descriptive.UnivariateStatistic;
 import 
org.apache.commons.math4.stat.descriptive.UnivariateStatisticAbstractTest;
 import 
org.apache.commons.math4.stat.descriptive.rank.Percentile.EstimationType;
@@ -587,22 +589,23 @@ public class PercentileTest extends 
UnivariateStatisticAbstractTest{
 
     @Test
     public void testStoredVsDirect() {
-        final RandomGenerator rand= new JDKRandomGenerator();
-        rand.setSeed(Long.MAX_VALUE);
-        for (final int sampleSize:sampleSizes) {
-            final double[] data = new NormalDistribution(rand,4000, 50)
-                                .sample(sampleSize);
-            for (final double p:new double[] {50d,95d}) {
+        final RealDistribution.Sampler sampler =
+            new NormalDistribution(4000, 
50).createSampler(RandomSource.create(RandomSource.JDK,
+                                                                               
Long.MAX_VALUE));
+
+        for (final int sampleSize : sampleSizes) {
+            final double[] data = AbstractRealDistribution.sample(sampleSize, 
sampler);
+            for (final double p : new double[] { 50d, 95d }) {
                 for (final Percentile.EstimationType e : 
Percentile.EstimationType.values()) {
                     reset(p, e);
                     final Percentile pStoredData = getUnivariateStatistic();
                     pStoredData.setData(data);
-                    final double storedDataResult=pStoredData.evaluate();
+                    final double storedDataResult = pStoredData.evaluate();
                     pStoredData.setData(null);
                     final Percentile pDirect = getUnivariateStatistic();
-                    Assert.assertEquals("Sample="+sampleSize+",P="+p+" e="+e,
-                            storedDataResult,
-                            pDirect.evaluate(data),0d);
+                    Assert.assertEquals("Sample=" + sampleSize + ", P=" + p + 
" e=" + e,
+                                        storedDataResult,
+                                        pDirect.evaluate(data), 0d);
                 }
             }
         }

http://git-wip-us.apache.org/repos/asf/commons-math/blob/9867d9f2/src/test/java/org/apache/commons/math4/stat/inference/KolmogorovSmirnovTestTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/commons/math4/stat/inference/KolmogorovSmirnovTestTest.java
 
b/src/test/java/org/apache/commons/math4/stat/inference/KolmogorovSmirnovTestTest.java
index 5871fd3..0c9c0dd 100644
--- 
a/src/test/java/org/apache/commons/math4/stat/inference/KolmogorovSmirnovTestTest.java
+++ 
b/src/test/java/org/apache/commons/math4/stat/inference/KolmogorovSmirnovTestTest.java
@@ -23,8 +23,8 @@ import java.util.Arrays;
 import org.apache.commons.math4.TestUtils;
 import org.apache.commons.math4.distribution.NormalDistribution;
 import org.apache.commons.math4.distribution.UniformRealDistribution;
-import org.apache.commons.math4.random.RandomGenerator;
-import org.apache.commons.math4.random.Well19937c;
+import org.apache.commons.math4.rng.RandomSource;
+import org.apache.commons.math4.rng.UniformRandomProvider;
 import org.apache.commons.math4.util.CombinatoricsUtils;
 import org.apache.commons.math4.util.FastMath;
 import org.apache.commons.math4.util.MathArrays;
@@ -318,7 +318,7 @@ public class KolmogorovSmirnovTestTest {
      */
     @Test
     public void testTwoSampleMonteCarlo() {
-        final KolmogorovSmirnovTest test = new KolmogorovSmirnovTest(new 
Well19937c(1000));
+        final KolmogorovSmirnovTest test = new 
KolmogorovSmirnovTest(RandomSource.WELL_19937_C, 1000);
         final int sampleSize = 14;
         final double tol = .001;
         final double[] shortUniform = new double[sampleSize];
@@ -345,7 +345,7 @@ public class KolmogorovSmirnovTestTest {
 
     @Test
     public void testTwoSampleMonteCarloDifferentSampleSizes() {
-        final KolmogorovSmirnovTest test = new KolmogorovSmirnovTest(new 
Well19937c(1000));
+        final KolmogorovSmirnovTest test = new 
KolmogorovSmirnovTest(RandomSource.WELL_19937_C, 1000);
         final int sampleSize1 = 14;
         final int sampleSize2 = 7;
         final double d = 0.3;
@@ -364,7 +364,7 @@ public class KolmogorovSmirnovTestTest {
     public void testTwoSampleMonteCarloPerformance() {
         int numIterations = 100_000;
         int N = (int)Math.sqrt(KolmogorovSmirnovTest.LARGE_SAMPLE_PRODUCT);
-        final KolmogorovSmirnovTest test = new KolmogorovSmirnovTest(new 
Well19937c(1000));
+        final KolmogorovSmirnovTest test = new 
KolmogorovSmirnovTest(RandomSource.WELL_19937_C, 1000);
         for (int n = 2; n <= N; ++n) {
             long startMillis = System.currentTimeMillis();
             int m = KolmogorovSmirnovTest.LARGE_SAMPLE_PRODUCT/n;
@@ -500,7 +500,7 @@ public class KolmogorovSmirnovTestTest {
     public void testDRoundingMonteCarlo() {
         final double tol = 1e-2;
         final int iterations = 1000000;
-        final KolmogorovSmirnovTest test = new KolmogorovSmirnovTest(new 
Well19937c(1000));
+        final KolmogorovSmirnovTest test = new 
KolmogorovSmirnovTest(RandomSource.WELL_19937_C, 1000);
 
         final double[] x = {0, 2, 3, 4, 5, 6, 7, 8, 9, 12};
         final double[] y = {1, 10, 11, 13, 14, 15, 16, 17, 18};
@@ -519,14 +519,17 @@ public class KolmogorovSmirnovTestTest {
     }
 
     @Test
-    public void testFillBooleanArrayRandomlyWithFixedNumberTrueValues() {
+    public void testFillBooleanArrayRandomlyWithFixedNumberTrueValues() throws 
Exception {
+        Method method = 
KolmogorovSmirnovTest.class.getDeclaredMethod("fillBooleanArrayRandomlyWithFixedNumberTrueValues",
+                                                                      
boolean[].class, Integer.TYPE, UniformRandomProvider.class);
+        method.setAccessible(true);
 
         final int[][] parameters = {{5, 1}, {5, 2}, {5, 3}, {5, 4}, {8, 1}, 
{8, 2}, {8, 3}, {8, 4}, {8, 5}, {8, 6}, {8, 7}};
 
         final double alpha = 0.001;
         final int numIterations = 1000000;
 
-        final RandomGenerator rng = new Well19937c(0);
+        final UniformRandomProvider rng = 
RandomSource.create(RandomSource.WELL_19937_C, 0);
 
         for (final int[] parameter : parameters) {
 
@@ -537,7 +540,7 @@ public class KolmogorovSmirnovTestTest {
             final long[] counts = new long[1 << arraySize];
 
             for (int i = 0; i < numIterations; ++i) {
-                
KolmogorovSmirnovTest.fillBooleanArrayRandomlyWithFixedNumberTrueValues(b, 
numberOfTrueValues, rng);
+                method.invoke(KolmogorovSmirnovTest.class, b, 
numberOfTrueValues, rng);
                 int x = 0;
                 for (int j = 0; j < arraySize; ++j) {
                     x = ((x << 1) | ((b[j])?1:0));
@@ -576,7 +579,7 @@ public class KolmogorovSmirnovTestTest {
     public void testBootstrapSmallSamplesWithTies() {
         final double[] x = {0, 2, 4, 6, 8, 8, 10, 15, 22, 30, 33, 36, 38};
         final double[] y = {9, 17, 20, 33, 40, 51, 60, 60, 72, 90, 101};
-        final KolmogorovSmirnovTest test = new KolmogorovSmirnovTest(new 
Well19937c(2000));
+        final KolmogorovSmirnovTest test = new 
KolmogorovSmirnovTest(RandomSource.WELL_19937_C, 2000);
         Assert.assertEquals(0.0059, test.bootstrap(x, y, 10000, false), 1E-3);
     }
 
@@ -586,7 +589,7 @@ public class KolmogorovSmirnovTestTest {
      */
     @Test
     public void testBootstrapLargeSamples() {
-        final KolmogorovSmirnovTest test = new KolmogorovSmirnovTest(new 
Well19937c(1000));
+        final KolmogorovSmirnovTest test = new 
KolmogorovSmirnovTest(RandomSource.WELL_19937_C, 1000);
         Assert.assertEquals(0.0237, test.bootstrap(gaussian, gaussian2, 
10000), 1E-2);
     }
 
@@ -599,7 +602,7 @@ public class KolmogorovSmirnovTestTest {
     public void testBootstrapRounding() {
         final double[] x = {2,4,6,8,9,10,11,12,13};
         final double[] y = {0,1,3,5,7};
-        final KolmogorovSmirnovTest test = new KolmogorovSmirnovTest(new 
Well19937c(1000));
+        final KolmogorovSmirnovTest test = new 
KolmogorovSmirnovTest(RandomSource.WELL_19937_C, 1000);
         Assert.assertEquals(0.06303, test.bootstrap(x, y, 10000, false), 1E-2);
     }
 
@@ -629,7 +632,7 @@ public class KolmogorovSmirnovTestTest {
         final double[] fixedY = MathArrays.copyOf(y);
         checkFixTies(xP, yP);
         Assert.assertArrayEquals(fixedX, xP, 0);
-        Assert.assertArrayEquals(fixedY,  yP, 0);
+        Assert.assertArrayEquals(fixedY, yP, 0);
     }
 
     @Test
@@ -699,7 +702,7 @@ public class KolmogorovSmirnovTestTest {
      */
     private static void fixTies(double[] x, double[] y) throws Exception {
         Method method = 
KolmogorovSmirnovTest.class.getDeclaredMethod("fixTies",
-                                             double[].class, double[].class);
+                                                                      
double[].class, double[].class);
         method.setAccessible(true);
         method.invoke(KolmogorovSmirnovTest.class, x, y);
     }
@@ -709,7 +712,7 @@ public class KolmogorovSmirnovTestTest {
      */
     private static boolean hasTies(double[] x, double[] y) throws Exception {
         Method method = 
KolmogorovSmirnovTest.class.getDeclaredMethod("hasTies",
-                                               double[].class, double[].class);
+                                                                      
double[].class, double[].class);
         method.setAccessible(true);
         return (boolean) method.invoke(KolmogorovSmirnovTest.class, x, y);
     }

Reply via email to