Repository: commons-math
Updated Branches:
  refs/heads/field-ode f4286ec26 -> e0c0398ca


Field-based version of Gill method for solving ODE.

Project: http://git-wip-us.apache.org/repos/asf/commons-math/repo
Commit: http://git-wip-us.apache.org/repos/asf/commons-math/commit/e0c0398c
Tree: http://git-wip-us.apache.org/repos/asf/commons-math/tree/e0c0398c
Diff: http://git-wip-us.apache.org/repos/asf/commons-math/diff/e0c0398c

Branch: refs/heads/field-ode
Commit: e0c0398cad6e9598556c3a1f8a22ca45698ee086
Parents: f4286ec
Author: Luc Maisonobe <l...@apache.org>
Authored: Sun Nov 15 11:36:58 2015 +0100
Committer: Luc Maisonobe <l...@apache.org>
Committed: Sun Nov 15 11:36:58 2015 +0100

----------------------------------------------------------------------
 .../math3/ode/nonstiff/GillFieldIntegrator.java |  79 ++++++++++
 .../ode/nonstiff/GillFieldStepInterpolator.java | 157 +++++++++++++++++++
 2 files changed, 236 insertions(+)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/commons-math/blob/e0c0398c/src/main/java/org/apache/commons/math3/ode/nonstiff/GillFieldIntegrator.java
----------------------------------------------------------------------
diff --git 
a/src/main/java/org/apache/commons/math3/ode/nonstiff/GillFieldIntegrator.java 
b/src/main/java/org/apache/commons/math3/ode/nonstiff/GillFieldIntegrator.java
new file mode 100644
index 0000000..21cd5d6
--- /dev/null
+++ 
b/src/main/java/org/apache/commons/math3/ode/nonstiff/GillFieldIntegrator.java
@@ -0,0 +1,79 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.ode.nonstiff;
+
+import org.apache.commons.math3.Field;
+import org.apache.commons.math3.RealFieldElement;
+import org.apache.commons.math3.util.FastMath;
+
+
+/**
+ * This class implements the Gill fourth order Runge-Kutta
+ * integrator for Ordinary Differential Equations .
+
+ * <p>This method is an explicit Runge-Kutta method, its Butcher-array
+ * is the following one :
+ * <pre>
+ *    0  |    0        0       0      0
+ *   1/2 |   1/2       0       0      0
+ *   1/2 | (q-1)/2  (2-q)/2    0      0
+ *    1  |    0       -q/2  (2+q)/2   0
+ *       |-------------------------------
+ *       |   1/6    (2-q)/6 (2+q)/6  1/6
+ * </pre>
+ * where q = sqrt(2)</p>
+ *
+ * @see EulerFieldIntegrator
+ * @see ClassicalRungeKuttaFieldIntegrator
+ * @see MidpointFieldIntegrator
+ * @see ThreeEighthesFieldIntegrator
+ * @see LutherFieldIntegrator
+ * @param <T> the type of the field elements
+ * @since 3.6
+ */
+
+public class GillFieldIntegrator<T extends RealFieldElement<T>>
+    extends RungeKuttaFieldIntegrator<T> {
+
+    /** Time steps Butcher array. */
+    private static final double[] STATIC_C = {
+                                              1.0 / 2.0, 1.0 / 2.0, 1.0
+    };
+
+    /** Internal weights Butcher array. */
+    private static final double[][] STATIC_A = {
+                                                { 1.0 / 2.0 },
+                                                { (FastMath.sqrt(2.0) - 1.0) / 
2.0, (2.0 - FastMath.sqrt(2.0)) / 2.0 },
+                                                { 0.0, -FastMath.sqrt(2.0) / 
2.0, (2.0 + FastMath.sqrt(2.0)) / 2.0 }
+    };
+
+    /** Propagation weights Butcher array. */
+    private static final double[] STATIC_B = {
+                                              1.0 / 6.0, (2.0 - 
FastMath.sqrt(2.0)) / 6.0, (2.0 + FastMath.sqrt(2.0)) / 6.0, 1.0 / 6.0
+    };
+
+    /** Simple constructor.
+     * Build a fourth-order Gill integrator with the given step.
+     * @param field field to which the time and state vector elements belong
+     * @param step integration step
+     */
+    public GillFieldIntegrator(final Field<T> field, final T step) {
+        super(field, "Gill", STATIC_C, STATIC_A, STATIC_B, new 
GillFieldStepInterpolator<T>(), step);
+    }
+
+}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/e0c0398c/src/main/java/org/apache/commons/math3/ode/nonstiff/GillFieldStepInterpolator.java
----------------------------------------------------------------------
diff --git 
a/src/main/java/org/apache/commons/math3/ode/nonstiff/GillFieldStepInterpolator.java
 
b/src/main/java/org/apache/commons/math3/ode/nonstiff/GillFieldStepInterpolator.java
new file mode 100644
index 0000000..3da3c09
--- /dev/null
+++ 
b/src/main/java/org/apache/commons/math3/ode/nonstiff/GillFieldStepInterpolator.java
@@ -0,0 +1,157 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.ode.nonstiff;
+
+import org.apache.commons.math3.RealFieldElement;
+import org.apache.commons.math3.ode.FieldEquationsMapper;
+import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
+import org.apache.commons.math3.util.FastMath;
+import org.apache.commons.math3.util.MathArrays;
+
+/**
+ * This class implements a step interpolator for the Gill fourth
+ * order Runge-Kutta integrator.
+ *
+ * <p>This interpolator allows to compute dense output inside the last
+ * step computed. The interpolation equation is consistent with the
+ * integration scheme :
+ * <ul>
+ *   <li>Using reference point at step start:<br>
+ *   y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub>)
+ *                    + &theta; (h/6) [ (6 - 9 &theta; + 4 
&theta;<sup>2</sup>) y'<sub>1</sub>
+ *                                    + (    6 &theta; - 4 
&theta;<sup>2</sup>) ((1-1/&radic;2) y'<sub>2</sub> + (1+1/&radic;2)) 
y'<sub>3</sub>)
+ *                                    + (  - 3 &theta; + 4 
&theta;<sup>2</sup>) y'<sub>4</sub>
+ *                                    ]
+ *   </li>
+ *   <li>Using reference point at step start:<br>
+ *   y(t<sub>n</sub> + &theta; h) = y (t<sub>n</sub> + h)
+ *                    - (1 - &theta;) (h/6) [ (1 - 5 &theta; + 4 
&theta;<sup>2</sup>) y'<sub>1</sub>
+ *                                          + (2 + 2 &theta; - 4 
&theta;<sup>2</sup>) ((1-1/&radic;2) y'<sub>2</sub> + (1+1/&radic;2)) 
y'<sub>3</sub>)
+ *                                          + (1 +   &theta; + 4 
&theta;<sup>2</sup>) y'<sub>4</sub>
+ *                                          ]
+ *   </li>
+ * </ul>
+ * </p>
+ * where &theta; belongs to [0 ; 1] and where y'<sub>1</sub> to y'<sub>4</sub>
+ * are the four evaluations of the derivatives already computed during
+ * the step.</p>
+ *
+ * @see GillFieldIntegrator
+ * @param <T> the type of the field elements
+ * @since 3.6
+ */
+
+class GillFieldStepInterpolator<T extends RealFieldElement<T>>
+  extends RungeKuttaFieldStepInterpolator<T> {
+
+    /** First Gill coefficient. */
+    private static final double ONE_MINUS_INV_SQRT_2 = 1 - FastMath.sqrt(0.5);
+
+    /** Second Gill coefficient. */
+    private static final double ONE_PLUS_INV_SQRT_2 = 1 + FastMath.sqrt(0.5);
+
+    /** Simple constructor.
+     * This constructor builds an instance that is not usable yet, the
+     * {@link
+     * 
org.apache.commons.math3.ode.sampling.AbstractFieldStepInterpolator#reinitialize}
+     * method should be called before using the instance in order to
+     * initialize the internal arrays. This constructor is used only
+     * in order to delay the initialization in some cases. The {@link
+     * RungeKuttaFieldIntegrator} class uses the prototyping design pattern
+     * to create the step interpolators by cloning an uninitialized model
+     * and later initializing the copy.
+     */
+    GillFieldStepInterpolator() {
+    }
+
+    /** Copy constructor.
+     * @param interpolator interpolator to copy from. The copy is a deep
+     * copy: its arrays are separated from the original arrays of the
+     * instance
+     */
+    GillFieldStepInterpolator(final GillFieldStepInterpolator<T> interpolator) 
{
+        super(interpolator);
+    }
+
+    /** {@inheritDoc} */
+    @Override
+    protected GillFieldStepInterpolator<T> doCopy() {
+        return new GillFieldStepInterpolator<T>(this);
+    }
+
+
+    /** {@inheritDoc} */
+    @Override
+    protected FieldODEStateAndDerivative<T> 
computeInterpolatedStateAndDerivatives(final FieldEquationsMapper<T> mapper,
+                                                                               
    final T time, final T theta,
+                                                                               
    final T oneMinusThetaH) {
+
+        final T one        = time.getField().getOne();
+        final T twoTheta   = theta.multiply(2);
+        final T fourTheta2 = twoTheta.multiply(twoTheta);
+        final T coeffDot1  = theta.multiply(twoTheta.subtract(3)).add(1);
+        final T cDot23     = twoTheta.multiply(one.subtract(theta));
+        final T coeffDot2  = cDot23.multiply(ONE_MINUS_INV_SQRT_2);
+        final T coeffDot3  = cDot23.multiply(ONE_PLUS_INV_SQRT_2);
+        final T coeffDot4  = theta.multiply(twoTheta.subtract(1));
+        final T[] interpolatedState       = 
MathArrays.buildArray(theta.getField(), previousState.length);
+        final T[] interpolatedDerivatives = 
MathArrays.buildArray(theta.getField(), previousState.length);
+
+        if ((previousState != null) && (theta.getReal() <= 0.5)) {
+            final T s         = theta.multiply(h).divide(6.0);
+            final T c23       = 
s.multiply(theta.multiply(6).subtract(fourTheta2));
+            final T coeff1    = 
s.multiply(fourTheta2.subtract(theta.multiply(6)).add(6));
+            final T coeff2    = c23.multiply(ONE_MINUS_INV_SQRT_2);
+            final T coeff3    = c23.multiply(ONE_PLUS_INV_SQRT_2);
+            final T coeff4    = 
s.multiply(fourTheta2.subtract(theta.multiply(3)));
+            for (int i = 0; i < interpolatedState.length; ++i) {
+                final T yDot1 = yDotK[0][i];
+                final T yDot2 = yDotK[1][i];
+                final T yDot3 = yDotK[2][i];
+                final T yDot4 = yDotK[3][i];
+                interpolatedState[i]       = previousState[i].
+                                             
add(coeff1.multiply(yDot1)).add(coeff2.multiply(yDot2)).
+                                             
add(coeff3.multiply(yDot3)).add(coeff4.multiply(yDot4));
+                interpolatedDerivatives[i] = 
coeffDot1.multiply(yDot1).add(coeffDot2.multiply(yDot2)).
+                                             
add(coeffDot3.multiply(yDot3)).add(coeffDot4.multiply(yDot4));
+            }
+        } else {
+            final T s      = oneMinusThetaH.divide(6.0);
+            final T c23    = s .multiply(twoTheta.add(2).subtract(fourTheta2));
+            final T coeff1 = 
s.multiply(fourTheta2.subtract(theta.multiply(5)).add(1));
+            final T coeff2 = c23.multiply(ONE_MINUS_INV_SQRT_2);
+            final T coeff3 = c23.multiply(ONE_PLUS_INV_SQRT_2);
+            final T coeff4 = s.multiply(fourTheta2.add(theta).add(1));
+            for (int i = 0; i < interpolatedState.length; ++i) {
+                final T yDot1 = yDotK[0][i];
+                final T yDot2 = yDotK[1][i];
+                final T yDot3 = yDotK[2][i];
+                final T yDot4 = yDotK[3][i];
+                interpolatedState[i]       = currentState[i].
+                                             
subtract(coeff1.multiply(yDot1)).subtract(coeff2.multiply(yDot2)).
+                                             
subtract(coeff3.multiply(yDot3)).subtract(coeff4.multiply(yDot4));
+                interpolatedDerivatives[i] = 
coeffDot1.multiply(yDot1).add(coeffDot2.multiply(yDot2)).
+                                             
add(coeffDot3.multiply(yDot3)).add(coeffDot4.multiply(yDot4));
+            }
+        }
+
+        return new FieldODEStateAndDerivative<T>(time, interpolatedState, 
yDotK[0]);
+
+    }
+
+}

Reply via email to