Repository: commons-math
Updated Branches:
  refs/heads/master 2ae6f996e -> cb21480cb


[MATH-964] Remove unused class PollardRho.


Project: http://git-wip-us.apache.org/repos/asf/commons-math/repo
Commit: http://git-wip-us.apache.org/repos/asf/commons-math/commit/cb21480c
Tree: http://git-wip-us.apache.org/repos/asf/commons-math/tree/cb21480c
Diff: http://git-wip-us.apache.org/repos/asf/commons-math/diff/cb21480c

Branch: refs/heads/master
Commit: cb21480cb1255771ee5f5ea5fe108cd994048759
Parents: 2ae6f99
Author: Thomas Neidhart <thomas.neidh...@gmail.com>
Authored: Fri May 1 15:44:47 2015 +0200
Committer: Thomas Neidhart <thomas.neidh...@gmail.com>
Committed: Fri May 1 15:44:47 2015 +0200

----------------------------------------------------------------------
 .../apache/commons/math4/primes/PollardRho.java | 164 -------------------
 1 file changed, 164 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/commons-math/blob/cb21480c/src/main/java/org/apache/commons/math4/primes/PollardRho.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math4/primes/PollardRho.java 
b/src/main/java/org/apache/commons/math4/primes/PollardRho.java
deleted file mode 100644
index fc2ec88..0000000
--- a/src/main/java/org/apache/commons/math4/primes/PollardRho.java
+++ /dev/null
@@ -1,164 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.primes;
-
-import java.util.ArrayList;
-import java.util.List;
-
-import org.apache.commons.math4.util.FastMath;
-
-/**
- * Implementation of the Pollard's rho factorization algorithm.
- * @since 3.2
- */
-class PollardRho {
-
-    /**
-     * Hide utility class.
-     */
-    private PollardRho() {
-    }
-
-    /**
-     * Factorization using Pollard's rho algorithm.
-     * @param n number to factors, must be &gt; 0
-     * @return the list of prime factors of n.
-     */
-    public static List<Integer> primeFactors(int n) {
-        final List<Integer> factors = new ArrayList<Integer>();
-
-        n = SmallPrimes.smallTrialDivision(n, factors);
-        if (1 == n) {
-            return factors;
-        }
-
-        if (SmallPrimes.millerRabinPrimeTest(n)) {
-            factors.add(n);
-            return factors;
-        }
-
-        int divisor = rhoBrent(n);
-        factors.add(divisor);
-        factors.add(n / divisor);
-        return factors;
-    }
-
-    /**
-     * Implementation of the Pollard's rho factorization algorithm.
-     * <p>
-     * This implementation follows the paper "An improved Monte Carlo 
factorization algorithm"
-     * by Richard P. Brent. This avoids the triple computation of f(x) 
typically found in Pollard's
-     * rho implementations. It also batches several gcd computation into 1.
-     * <p>
-     * The backtracking is not implemented as we deal only with semi-primes.
-     *
-     * @param n number to factor, must be semi-prime.
-     * @return a prime factor of n.
-     */
-    static int rhoBrent(final int n) {
-        final int x0 = 2;
-        final int m = 25;
-        int cst = SmallPrimes.PRIMES_LAST;
-        int y = x0;
-        int r = 1;
-        do {
-            int x = y;
-            for (int i = 0; i < r; i++) {
-                final long y2 = ((long) y) * y;
-                y = (int) ((y2 + cst) % n);
-            }
-            int k = 0;
-            do {
-                final int bound = FastMath.min(m, r - k);
-                int q = 1;
-                for (int i = -3; i < bound; i++) { //start at -3 to ensure we 
enter this loop at least 3 times
-                    final long y2 = ((long) y) * y;
-                    y = (int) ((y2 + cst) % n);
-                    final long divisor = FastMath.abs(x - y);
-                    if (0 == divisor) {
-                        cst += SmallPrimes.PRIMES_LAST;
-                        k = -m;
-                        y = x0;
-                        r = 1;
-                        break;
-                    }
-                    final long prod = divisor * q;
-                    q = (int) (prod % n);
-                    if (0 == q) {
-                        return gcdPositive(FastMath.abs((int) divisor), n);
-                    }
-                }
-                final int out = gcdPositive(FastMath.abs(q), n);
-                if (1 != out) {
-                    return out;
-                }
-                k += m;
-            } while (k < r);
-            r = 2 * r;
-        } while (true);
-    }
-
-    /**
-     * Gcd between two positive numbers.
-     * <p>
-     * Gets the greatest common divisor of two numbers, using the "binary gcd" 
method,
-     * which avoids division and modulo operations. See Knuth 4.5.2 algorithm 
B.
-     * This algorithm is due to Josef Stein (1961).
-     * </p>
-     * Special cases:
-     * <ul>
-     * <li>The result of {@code gcd(x, x)}, {@code gcd(0, x)} and {@code 
gcd(x, 0)} is the value of {@code x}.</li>
-     * <li>The invocation {@code gcd(0, 0)} is the only one which returns 
{@code 0}.</li>
-     * </ul>
-     *
-     * @param a first number, must be &ge; 0
-     * @param b second number, must be &ge; 0
-     * @return gcd(a,b)
-     */
-    static int gcdPositive(int a, int b){
-        // both a and b must be positive, it is not checked here
-        // gdc(a,0) = a
-        if (a == 0) {
-            return b;
-        } else if (b == 0) {
-            return a;
-        }
-
-        // make a and b odd, keep in mind the common power of twos
-        final int aTwos = Integer.numberOfTrailingZeros(a);
-        a >>= aTwos;
-        final int bTwos = Integer.numberOfTrailingZeros(b);
-        b >>= bTwos;
-        final int shift = FastMath.min(aTwos, bTwos);
-
-        // a and b >0
-        // if a > b then gdc(a,b) = gcd(a-b,b)
-        // if a < b then gcd(a,b) = gcd(b-a,a)
-        // so next a is the absolute difference and next b is the minimum of 
current values
-        while (a != b) {
-            final int delta = a - b;
-            b = FastMath.min(a, b);
-            a = FastMath.abs(delta);
-            // for speed optimization:
-            // remove any power of two in a as b is guaranteed to be odd 
throughout all iterations
-            a >>= Integer.numberOfTrailingZeros(a);
-        }
-
-        // gcd(a,a) = a, just "add" the common power of twos
-        return a << shift;
-    }
-}

Reply via email to