Repository: commons-math
Updated Branches:
  refs/heads/master 2f461bdb0 -> afcfbf57b


http://git-wip-us.apache.org/repos/asf/commons-math/blob/afcfbf57/src/test/java/org/apache/commons/math4/stat/regression/GLSMultipleLinearRegressionTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/commons/math4/stat/regression/GLSMultipleLinearRegressionTest.java
 
b/src/test/java/org/apache/commons/math4/stat/regression/GLSMultipleLinearRegressionTest.java
index a2f5f62..06fbc26 100644
--- 
a/src/test/java/org/apache/commons/math4/stat/regression/GLSMultipleLinearRegressionTest.java
+++ 
b/src/test/java/org/apache/commons/math4/stat/regression/GLSMultipleLinearRegressionTest.java
@@ -20,6 +20,7 @@ import org.junit.Assert;
 import org.junit.Before;
 import org.junit.Test;
 import org.apache.commons.math4.TestUtils;
+import org.apache.commons.math4.exception.MathIllegalArgumentException;
 import org.apache.commons.math4.exception.NullArgumentException;
 import org.apache.commons.math4.linear.MatrixUtils;
 import org.apache.commons.math4.linear.RealMatrix;
@@ -38,7 +39,7 @@ public class GLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
     private double[] y;
     private double[][] x;
     private double[][] omega;
-    private double[] longley = new double[] {
+    private final double[] longley = new double[] {
             60323,83.0,234289,2356,1590,107608,1947,
             61122,88.5,259426,2325,1456,108632,1948,
             60171,88.2,258054,3682,1616,109773,1949,
@@ -88,7 +89,7 @@ public class GLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
         createRegression().newSampleData(null, new double[][]{}, null);
     }
 
-    @Test(expected=IllegalArgumentException.class)
+    @Test(expected=MathIllegalArgumentException.class)
     public void cannotAddSampleDataWithSizeMismatch() {
         double[] y = new double[]{1.0, 2.0};
         double[][] x = new double[1][];
@@ -96,12 +97,12 @@ public class GLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
         createRegression().newSampleData(y, x, null);
     }
 
-    @Test(expected=IllegalArgumentException.class)
+    @Test(expected=MathIllegalArgumentException.class)
     public void cannotAddNullCovarianceData() {
         createRegression().newSampleData(new double[]{}, new double[][]{}, 
null);
     }
 
-    @Test(expected=IllegalArgumentException.class)
+    @Test(expected=MathIllegalArgumentException.class)
     public void notEnoughData() {
         double[]   reducedY = new double[y.length - 1];
         double[][] reducedX = new double[x.length - 1][];
@@ -112,7 +113,7 @@ public class GLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
         createRegression().newSampleData(reducedY, reducedX, reducedO);
     }
 
-    @Test(expected=IllegalArgumentException.class)
+    @Test(expected=MathIllegalArgumentException.class)
     public void cannotAddCovarianceDataWithSampleSizeMismatch() {
         double[] y = new double[]{1.0, 2.0};
         double[][] x = new double[2][];
@@ -123,7 +124,7 @@ public class GLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
         createRegression().newSampleData(y, x, omega);
     }
 
-    @Test(expected=IllegalArgumentException.class)
+    @Test(expected=MathIllegalArgumentException.class)
     public void cannotAddCovarianceDataThatIsNotSquare() {
         double[] y = new double[]{1.0, 2.0};
         double[][] x = new double[2][];
@@ -165,18 +166,18 @@ public class GLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
         model.newSampleData(y, x, omega);
         TestUtils.assertEquals(model.calculateYVariance(), 3.5, 0);
     }
-    
+
     /**
      * Verifies that setting X, Y and covariance separately has the same 
effect as newSample(X,Y,cov).
      */
     @Test
     public void testNewSample2() {
-        double[] y = new double[] {1, 2, 3, 4}; 
+        double[] y = new double[] {1, 2, 3, 4};
         double[][] x = new double[][] {
           {19, 22, 33},
           {20, 30, 40},
           {25, 35, 45},
-          {27, 37, 47}   
+          {27, 37, 47}
         };
         double[][] covariance = 
MatrixUtils.createRealIdentityMatrix(4).scalarMultiply(2).getData();
         GLSMultipleLinearRegression regression = new 
GLSMultipleLinearRegression();
@@ -190,13 +191,13 @@ public class GLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
         Assert.assertEquals(combinedY, regression.getY());
         Assert.assertEquals(combinedCovInv, regression.getOmegaInverse());
     }
-    
+
     /**
      * Verifies that GLS with identity covariance matrix gives the same results
      * as OLS.
      */
     @Test
-    public void testGLSOLSConsistency() {      
+    public void testGLSOLSConsistency() {
         RealMatrix identityCov = MatrixUtils.createRealIdentityMatrix(16);
         GLSMultipleLinearRegression glsModel = new 
GLSMultipleLinearRegression();
         OLSMultipleLinearRegression olsModel = new 
OLSMultipleLinearRegression();
@@ -211,7 +212,7 @@ public class GLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
             TestUtils.assertRelativelyEquals(olsBeta[i], glsBeta[i], 10E-7);
         }
     }
-    
+
     /**
      * Generate an error covariance matrix and sample data representing models
      * with this error structure. Then verify that GLS estimated coefficients,
@@ -221,7 +222,7 @@ public class GLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
     public void testGLSEfficiency() {
         RandomGenerator rg = new JDKRandomGenerator();
         rg.setSeed(200);  // Seed has been selected to generate non-trivial 
covariance
-        
+
         // Assume model has 16 observations (will use Longley data).  Start by 
generating
         // non-constant variances for the 16 error terms.
         final int nObs = 16;
@@ -229,7 +230,7 @@ public class GLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
         for (int i = 0; i < nObs; i++) {
             sigma[i] = 10 * rg.nextDouble();
         }
-        
+
         // Now generate 1000 error vectors to use to estimate the covariance 
matrix
         // Columns are draws on N(0, sigma[col])
         final int numSeeds = 1000;
@@ -239,16 +240,16 @@ public class GLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
                 errorSeeds.setEntry(i, j, rg.nextGaussian() * sigma[j]);
             }
         }
-        
+
         // Get covariance matrix for columns
         RealMatrix cov = (new Covariance(errorSeeds)).getCovarianceMatrix();
-          
+
         // Create a CorrelatedRandomVectorGenerator to use to generate 
correlated errors
         GaussianRandomGenerator rawGenerator = new GaussianRandomGenerator(rg);
         double[] errorMeans = new double[nObs];  // Counting on init to 0 here
         CorrelatedRandomVectorGenerator gen = new 
CorrelatedRandomVectorGenerator(errorMeans, cov,
          1.0e-12 * cov.getNorm(), rawGenerator);
-        
+
         // Now start generating models.  Use Longley X matrix on LHS
         // and Longley OLS beta vector as "true" beta.  Generate
         // Y values by XB + u where u is a CorrelatedRandomVector generated
@@ -257,44 +258,44 @@ public class GLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
         ols.newSampleData(longley, nObs, 6);
         final RealVector b = ols.calculateBeta().copy();
         final RealMatrix x = ols.getX().copy();
-        
+
         // Create a GLS model to reuse
         GLSMultipleLinearRegression gls = new GLSMultipleLinearRegression();
         gls.newSampleData(longley, nObs, 6);
         gls.newCovarianceData(cov.getData());
-        
+
         // Create aggregators for stats measuring model performance
         DescriptiveStatistics olsBetaStats = new DescriptiveStatistics();
         DescriptiveStatistics glsBetaStats = new DescriptiveStatistics();
-        
+
         // Generate Y vectors for 10000 models, estimate GLS and OLS and
         // Verify that OLS estimates are better
         final int nModels = 10000;
         for (int i = 0; i < nModels; i++) {
-            
+
             // Generate y = xb + u with u cov
             RealVector u = MatrixUtils.createRealVector(gen.nextVector());
             double[] y = u.add(x.operate(b)).toArray();
-            
+
             // Estimate OLS parameters
             ols.newYSampleData(y);
             RealVector olsBeta = ols.calculateBeta();
-            
+
             // Estimate GLS parameters
             gls.newYSampleData(y);
             RealVector glsBeta = gls.calculateBeta();
-            
+
             // Record deviations from "true" beta
             double dist = olsBeta.getDistance(b);
             olsBetaStats.addValue(dist * dist);
             dist = glsBeta.getDistance(b);
             glsBetaStats.addValue(dist * dist);
-            
+
         }
-        
+
         // Verify that GLS is on average more efficient, lower variance
         assert(olsBetaStats.getMean() > 1.5 * glsBetaStats.getMean());
-        assert(olsBetaStats.getStandardDeviation() > 
glsBetaStats.getStandardDeviation());  
+        assert(olsBetaStats.getStandardDeviation() > 
glsBetaStats.getStandardDeviation());
     }
-    
+
 }

http://git-wip-us.apache.org/repos/asf/commons-math/blob/afcfbf57/src/test/java/org/apache/commons/math4/stat/regression/MillerUpdatingRegressionTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/commons/math4/stat/regression/MillerUpdatingRegressionTest.java
 
b/src/test/java/org/apache/commons/math4/stat/regression/MillerUpdatingRegressionTest.java
index 0034d75..30c5bff 100644
--- 
a/src/test/java/org/apache/commons/math4/stat/regression/MillerUpdatingRegressionTest.java
+++ 
b/src/test/java/org/apache/commons/math4/stat/regression/MillerUpdatingRegressionTest.java
@@ -17,6 +17,7 @@
 package org.apache.commons.math4.stat.regression;
 
 import org.apache.commons.math4.TestUtils;
+import org.apache.commons.math4.exception.MathIllegalArgumentException;
 import org.apache.commons.math4.linear.RealMatrix;
 import org.apache.commons.math4.stat.correlation.PearsonsCorrelation;
 import org.apache.commons.math4.stat.regression.MillerUpdatingRegression;
@@ -33,9 +34,9 @@ public class MillerUpdatingRegressionTest {
 
     public MillerUpdatingRegressionTest() {
     }
-    /* This is the Greene Airline Cost data. 
+    /* This is the Greene Airline Cost data.
      * The data can be downloaded from 
http://www.indiana.edu/~statmath/stat/all/panel/airline.csv
-     */ 
+     */
     private final static double[][] airdata = {
         /*"I",*/new double[]{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 
3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 
5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6},
         /*"T",*/ new double[]{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 
9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11, 12, 13, 14, 15},
@@ -94,44 +95,44 @@ public class MillerUpdatingRegressionTest {
         MillerUpdatingRegression instance = new MillerUpdatingRegression(3, 
true);
         try {
             instance.addObservation(new double[]{1.0}, 0.0);
-            Assert.fail("Should throw IllegalArgumentException");
-        } catch (IllegalArgumentException iae) {
+            Assert.fail("Should throw MathIllegalArgumentException");
+        } catch (MathIllegalArgumentException iae) {
         } catch (Exception e) {
-            Assert.fail("Should throw IllegalArgumentException");
+            Assert.fail("Should throw MathIllegalArgumentException");
         }
         try {
             instance.addObservation(new double[]{1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 
1.0}, 0.0);
-            Assert.fail("Should throw IllegalArgumentException");
-        } catch (IllegalArgumentException iae) {
+            Assert.fail("Should throw MathIllegalArgumentException");
+        } catch (MathIllegalArgumentException iae) {
         } catch (Exception e) {
-            Assert.fail("Should throw IllegalArgumentException");
+            Assert.fail("Should throw MathIllegalArgumentException");
         }
         try {
             instance.addObservation(new double[]{1.0, 1.0, 1.0}, 0.0);
         } catch (Exception e) {
-            Assert.fail("Should throw IllegalArgumentException");
+            Assert.fail("Should throw MathIllegalArgumentException");
         }
 
         //now we try it without an intercept
         instance = new MillerUpdatingRegression(3, false);
         try {
             instance.addObservation(new double[]{1.0}, 0.0);
-            Assert.fail("Should throw IllegalArgumentException [NOINTERCEPT]");
-        } catch (IllegalArgumentException iae) {
+            Assert.fail("Should throw MathIllegalArgumentException 
[NOINTERCEPT]");
+        } catch (MathIllegalArgumentException iae) {
         } catch (Exception e) {
-            Assert.fail("Should throw IllegalArgumentException [NOINTERCEPT]");
+            Assert.fail("Should throw MathIllegalArgumentException 
[NOINTERCEPT]");
         }
         try {
             instance.addObservation(new double[]{1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 
1.0}, 0.0);
-            Assert.fail("Should throw IllegalArgumentException [NOINTERCEPT]");
-        } catch (IllegalArgumentException iae) {
+            Assert.fail("Should throw MathIllegalArgumentException 
[NOINTERCEPT]");
+        } catch (MathIllegalArgumentException iae) {
         } catch (Exception e) {
-            Assert.fail("Should throw IllegalArgumentException [NOINTERCEPT]");
+            Assert.fail("Should throw MathIllegalArgumentException 
[NOINTERCEPT]");
         }
         try {
             instance.addObservation(new double[]{1.0, 1.0, 1.0}, 0.0);
         } catch (Exception e) {
-            Assert.fail("Should throw IllegalArgumentException [NOINTERCEPT]");
+            Assert.fail("Should throw MathIllegalArgumentException 
[NOINTERCEPT]");
         }
     }
 
@@ -143,10 +144,10 @@ public class MillerUpdatingRegressionTest {
             double[] y = {1.0};
             instance.addObservations(tst, y);
 
-            Assert.fail("Should throw IllegalArgumentException");
-        } catch (IllegalArgumentException iae) {
+            Assert.fail("Should throw MathIllegalArgumentException");
+        } catch (MathIllegalArgumentException iae) {
         } catch (Exception e) {
-            Assert.fail("Should throw IllegalArgumentException");
+            Assert.fail("Should throw MathIllegalArgumentException");
         }
 
         try {
@@ -154,10 +155,10 @@ public class MillerUpdatingRegressionTest {
             double[] y = {1.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0};
             instance.addObservations(tst, y);
 
-            Assert.fail("Should throw IllegalArgumentException");
-        } catch (IllegalArgumentException iae) {
+            Assert.fail("Should throw MathIllegalArgumentException");
+        } catch (MathIllegalArgumentException iae) {
         } catch (Exception e) {
-            Assert.fail("Should throw IllegalArgumentException");
+            Assert.fail("Should throw MathIllegalArgumentException");
         }
     }
 
@@ -330,7 +331,7 @@ public class MillerUpdatingRegressionTest {
 //            tmp[6] = tmp[2] * tmp[3]; //^7
 //            tmp[7] = tmp[3] * tmp[3]; //^8
 //            tmp[8] = tmp[4] * tmp[3]; //^9
-//            tmp[9] = tmp[4] * tmp[4]; //^10           
+//            tmp[9] = tmp[4] * tmp[4]; //^10
             tmp[1] = tmp[0] * tmp[0];
             tmp[2] = tmp[0] * tmp[1];
             tmp[3] = tmp[0] * tmp[2];
@@ -681,12 +682,12 @@ public class MillerUpdatingRegressionTest {
                     0.214274163161675,
                     0.226073200069370,
                     455.478499142212}, errors, 1E-6);
-//        
+//
         // Check R-Square statistics against R
         TestUtils.assertEquals(0.995479004577296, result.getRSquared(), 1E-12);
         TestUtils.assertEquals(0.992465007628826, 
result.getAdjustedRSquared(), 1E-12);
-//        
-//        
+//
+//
 //        // Estimate model without intercept
         model = new MillerUpdatingRegression(6, false);
         off = 0;
@@ -702,13 +703,13 @@ public class MillerUpdatingRegressionTest {
                 new double[]{-52.99357013868291, 0.07107319907358,
                     -0.42346585566399, -0.57256866841929,
                     -0.41420358884978, 48.41786562001326}, 1E-11);
-//        
+//
         // Check standard errors from R
         errors = result.getStdErrorOfEstimates();
         TestUtils.assertEquals(new double[]{129.54486693117232, 
0.03016640003786,
                     0.41773654056612, 0.27899087467676, 0.32128496193363,
                     17.68948737819961}, errors, 1E-11);
-//        
+//
 
 //        // Check R-Square statistics against R
         TestUtils.assertEquals(0.9999670130706, result.getRSquared(), 1E-12);
@@ -1048,11 +1049,11 @@ public class MillerUpdatingRegressionTest {
         }
         return;
     }
-    
-    
+
+
     @Test
     public void testSubsetRegression() {
-        
+
         MillerUpdatingRegression instance = new MillerUpdatingRegression(3, 
true);
         MillerUpdatingRegression redRegression = new 
MillerUpdatingRegression(2, true);
         double[][] x = new double[airdata[0].length][];
@@ -1063,23 +1064,23 @@ public class MillerUpdatingRegressionTest {
             x[i][0] = FastMath.log(airdata[3][i]);
             x[i][1] = FastMath.log(airdata[4][i]);
             x[i][2] = airdata[5][i];
-            
+
             xReduced[i] = new double[2];
             xReduced[i][0] = FastMath.log(airdata[3][i]);
             xReduced[i][1] = FastMath.log(airdata[4][i]);
-            
+
             y[i] = FastMath.log(airdata[2][i]);
         }
 
         instance.addObservations(x, y);
         redRegression.addObservations(xReduced, y);
-        
+
         RegressionResults resultsInstance = instance.regress( new int[]{0,1,2} 
);
         RegressionResults resultsReduced = redRegression.regress();
-        
+
         TestUtils.assertEquals(resultsInstance.getParameterEstimates(), 
resultsReduced.getParameterEstimates(), 1.0e-12);
         TestUtils.assertEquals(resultsInstance.getStdErrorOfEstimates(), 
resultsReduced.getStdErrorOfEstimates(), 1.0e-12);
     }
-    
-    
+
+
 }

http://git-wip-us.apache.org/repos/asf/commons-math/blob/afcfbf57/src/test/java/org/apache/commons/math4/stat/regression/MultipleLinearRegressionAbstractTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/commons/math4/stat/regression/MultipleLinearRegressionAbstractTest.java
 
b/src/test/java/org/apache/commons/math4/stat/regression/MultipleLinearRegressionAbstractTest.java
index 1fc839b..b7ef50a 100644
--- 
a/src/test/java/org/apache/commons/math4/stat/regression/MultipleLinearRegressionAbstractTest.java
+++ 
b/src/test/java/org/apache/commons/math4/stat/regression/MultipleLinearRegressionAbstractTest.java
@@ -16,6 +16,7 @@
  */
 package org.apache.commons.math4.stat.regression;
 
+import org.apache.commons.math4.exception.MathIllegalArgumentException;
 import org.apache.commons.math4.exception.NullArgumentException;
 import org.apache.commons.math4.linear.RealMatrix;
 import org.apache.commons.math4.linear.RealVector;
@@ -65,7 +66,7 @@ public abstract class MultipleLinearRegressionAbstractTest {
             Assert.assertTrue(variance > 0.0);
         }
     }
-    
+
     /**
      * Verifies that newSampleData methods consistently insert unitary columns
      * in design matrix.  Confirms the fix for MATH-411.
@@ -78,12 +79,12 @@ public abstract class MultipleLinearRegressionAbstractTest {
           3, 25, 35, 45,
           4, 27, 37, 47
         };
-        double[] y = new double[] {1, 2, 3, 4}; 
+        double[] y = new double[] {1, 2, 3, 4};
         double[][] x = new double[][] {
           {19, 22, 33},
           {20, 30, 40},
           {25, 35, 45},
-          {27, 37, 47}   
+          {27, 37, 47}
         };
         AbstractMultipleLinearRegression regression = createRegression();
         regression.newSampleData(design, 4, 3);
@@ -93,7 +94,7 @@ public abstract class MultipleLinearRegressionAbstractTest {
         regression.newYSampleData(y);
         Assert.assertEquals(flatX, regression.getX());
         Assert.assertEquals(flatY, regression.getY());
-        
+
         // No intercept
         regression.setNoIntercept(true);
         regression.newSampleData(design, 4, 3);
@@ -104,30 +105,30 @@ public abstract class 
MultipleLinearRegressionAbstractTest {
         Assert.assertEquals(flatX, regression.getX());
         Assert.assertEquals(flatY, regression.getY());
     }
-    
+
     @Test(expected=NullArgumentException.class)
     public void testNewSampleNullData() {
         double[] data = null;
-        createRegression().newSampleData(data, 2, 3); 
+        createRegression().newSampleData(data, 2, 3);
     }
-    
-    @Test(expected=IllegalArgumentException.class)
+
+    @Test(expected=MathIllegalArgumentException.class)
     public void testNewSampleInvalidData() {
         double[] data = new double[] {1, 2, 3, 4};
         createRegression().newSampleData(data, 2, 3);
     }
-    
-    @Test(expected=IllegalArgumentException.class)
+
+    @Test(expected=MathIllegalArgumentException.class)
     public void testNewSampleInsufficientData() {
         double[] data = new double[] {1, 2, 3, 4};
         createRegression().newSampleData(data, 1, 3);
     }
-    
+
     @Test(expected=NullArgumentException.class)
     public void testXSampleDataNull() {
         createRegression().newXSampleData(null);
     }
-    
+
     @Test(expected=NullArgumentException.class)
     public void testYSampleDataNull() {
         createRegression().newYSampleData(null);

http://git-wip-us.apache.org/repos/asf/commons-math/blob/afcfbf57/src/test/java/org/apache/commons/math4/stat/regression/OLSMultipleLinearRegressionTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/commons/math4/stat/regression/OLSMultipleLinearRegressionTest.java
 
b/src/test/java/org/apache/commons/math4/stat/regression/OLSMultipleLinearRegressionTest.java
index d383d0f..16001d1 100644
--- 
a/src/test/java/org/apache/commons/math4/stat/regression/OLSMultipleLinearRegressionTest.java
+++ 
b/src/test/java/org/apache/commons/math4/stat/regression/OLSMultipleLinearRegressionTest.java
@@ -18,6 +18,7 @@ package org.apache.commons.math4.stat.regression;
 
 
 import org.apache.commons.math4.TestUtils;
+import org.apache.commons.math4.exception.MathIllegalArgumentException;
 import org.apache.commons.math4.exception.NullArgumentException;
 import org.apache.commons.math4.linear.Array2DRowRealMatrix;
 import org.apache.commons.math4.linear.DefaultRealMatrixChangingVisitor;
@@ -65,8 +66,8 @@ public class OLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
     protected int getSampleSize() {
         return y.length;
     }
-    
-    @Test(expected=IllegalArgumentException.class)
+
+    @Test(expected=MathIllegalArgumentException.class)
     public void cannotAddSampleDataWithSizeMismatch() {
         double[] y = new double[]{1.0, 2.0};
         double[][] x = new double[1][];
@@ -172,33 +173,33 @@ public class OLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
                        0.214274163161675,
                        0.226073200069370,
                        455.478499142212}, errors, 1E-6);
-        
+
         // Check regression standard error against R
         Assert.assertEquals(304.8540735619638, 
model.estimateRegressionStandardError(), 1E-10);
-        
+
         // Check R-Square statistics against R
         Assert.assertEquals(0.995479004577296, model.calculateRSquared(), 
1E-12);
         Assert.assertEquals(0.992465007628826, 
model.calculateAdjustedRSquared(), 1E-12);
-        
+
         checkVarianceConsistency(model);
-        
+
         // Estimate model without intercept
         model.setNoIntercept(true);
         model.newSampleData(design, nobs, nvars);
-        
+
         // Check expected beta values from R
         betaHat = model.estimateRegressionParameters();
         TestUtils.assertEquals(betaHat,
           new double[]{-52.99357013868291, 0.07107319907358,
                 -0.42346585566399,-0.57256866841929,
-                -0.41420358884978, 48.41786562001326}, 1E-11); 
-        
+                -0.41420358884978, 48.41786562001326}, 1E-11);
+
         // Check standard errors from R
         errors = model.estimateRegressionParametersStandardErrors();
         TestUtils.assertEquals(new double[] {129.54486693117232, 
0.03016640003786,
                 0.41773654056612, 0.27899087467676, 0.32128496193363,
                 17.68948737819961}, errors, 1E-11);
-        
+
         // Check expected residuals from R
         residuals = model.estimateResiduals();
         TestUtils.assertEquals(residuals, new double[]{
@@ -207,14 +208,14 @@ public class OLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
                 73.09368242049943, 913.21694494481869, 424.82484953610174, 
-8.56475876776709,
                 -361.32974610842876, 27.34560497213464, 151.28955976355002, 
-492.49937355336846},
                       1E-10);
-        
+
         // Check regression standard error against R
         Assert.assertEquals(475.1655079819517, 
model.estimateRegressionStandardError(), 1E-10);
-        
+
         // Check R-Square statistics against R
         Assert.assertEquals(0.9999670130706, model.calculateRSquared(), 1E-12);
         Assert.assertEquals(0.999947220913, model.calculateAdjustedRSquared(), 
1E-12);
-         
+
     }
 
     /**
@@ -272,7 +273,7 @@ public class OLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
             44.7,46.6,16,29,50.43,
             42.8,27.7,22,29,58.33
         };
-        
+
         final int nobs = 47;
         final int nvars = 4;
 
@@ -317,16 +318,16 @@ public class OLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
                 0.27410957467466,
                 0.19454551679325,
                 0.03726654773803}, errors, 1E-10);
-        
+
         // Check regression standard error against R
         Assert.assertEquals(7.73642194433223, 
model.estimateRegressionStandardError(), 1E-12);
-        
+
         // Check R-Square statistics against R
         Assert.assertEquals(0.649789742860228, model.calculateRSquared(), 
1E-12);
         Assert.assertEquals(0.6164363850373927, 
model.calculateAdjustedRSquared(), 1E-12);
-        
+
         checkVarianceConsistency(model);
-        
+
         // Estimate the model with no intercept
         model = new OLSMultipleLinearRegression();
         model.setNoIntercept(true);
@@ -337,15 +338,15 @@ public class OLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
         TestUtils.assertEquals(betaHat,
                 new double[]{0.52191832900513,
                   2.36588087917963,
-                  -0.94770353802795, 
+                  -0.94770353802795,
                   0.30851985863609}, 1E-12);
 
         // Check expected residuals from R
         residuals = model.estimateResiduals();
         TestUtils.assertEquals(residuals, new double[]{
-                44.138759883538249, 27.720705122356215, 35.873200836126799, 
+                44.138759883538249, 27.720705122356215, 35.873200836126799,
                 34.574619581211977, 26.600168342080213, 15.074636243026923, 
-12.704904871199814,
-                1.497443824078134, 2.691972687079431, 5.582798774291231, 
-4.422986561283165, 
+                1.497443824078134, 2.691972687079431, 5.582798774291231, 
-4.422986561283165,
                 -9.198581600334345, 4.481765170730647, 2.273520207553216, 
-22.649827853221336,
                 -17.747900013943308, 20.298314638496436, 6.861405135329779, 
-8.684712790954924,
                 -10.298639278062371, -9.896618896845819, 4.568568616351242, 
-15.313570491727944,
@@ -361,10 +362,10 @@ public class OLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
         errors = model.estimateRegressionParametersStandardErrors();
         TestUtils.assertEquals(new double[] {0.10470063765677, 
0.41684100584290,
                 0.43370143099691, 0.07694953606522}, errors, 1E-10);
-        
+
         // Check regression standard error against R
         Assert.assertEquals(17.24710630547, 
model.estimateRegressionStandardError(), 1E-10);
-        
+
         // Check R-Square statistics against R
         Assert.assertEquals(0.946350722085, model.calculateRSquared(), 1E-12);
         Assert.assertEquals(0.9413600915813, 
model.calculateAdjustedRSquared(), 1E-12);
@@ -451,7 +452,7 @@ public class OLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
         model.newSampleData(y, x);
         TestUtils.assertEquals(model.calculateYVariance(), 3.5, 0);
     }
-    
+
     /**
      * Verifies that calculateYVariance and calculateResidualVariance return 
consistent
      * values with direct variance computation from Y, residuals, respectively.
@@ -459,27 +460,27 @@ public class OLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
     protected void checkVarianceConsistency(OLSMultipleLinearRegression model) 
{
         // Check Y variance consistency
         TestUtils.assertEquals(StatUtils.variance(model.getY().toArray()), 
model.calculateYVariance(), 0);
-        
+
         // Check residual variance consistency
         double[] residuals = model.calculateResiduals().toArray();
         RealMatrix X = model.getX();
         TestUtils.assertEquals(
                 StatUtils.variance(model.calculateResiduals().toArray()) * 
(residuals.length - 1),
                 model.calculateErrorVariance() * (X.getRowDimension() - 
X.getColumnDimension()), 1E-20);
-        
+
     }
-    
+
     /**
      * Verifies that setting X and Y separately has the same effect as 
newSample(X,Y).
      */
     @Test
     public void testNewSample2() {
-        double[] y = new double[] {1, 2, 3, 4}; 
+        double[] y = new double[] {1, 2, 3, 4};
         double[][] x = new double[][] {
           {19, 22, 33},
           {20, 30, 40},
           {25, 35, 45},
-          {27, 37, 47}   
+          {27, 37, 47}
         };
         OLSMultipleLinearRegression regression = new 
OLSMultipleLinearRegression();
         regression.newSampleData(y, x);
@@ -489,7 +490,7 @@ public class OLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
         regression.newYSampleData(y);
         Assert.assertEquals(combinedX, regression.getX());
         Assert.assertEquals(combinedY, regression.getY());
-        
+
         // No intercept
         regression.setNoIntercept(true);
         regression.newSampleData(y, x);
@@ -500,17 +501,17 @@ public class OLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
         Assert.assertEquals(combinedX, regression.getX());
         Assert.assertEquals(combinedY, regression.getY());
     }
-    
+
     @Test(expected=NullArgumentException.class)
     public void testNewSampleDataYNull() {
         createRegression().newSampleData(null, new double[][] {});
     }
-    
+
     @Test(expected=NullArgumentException.class)
     public void testNewSampleDataXNull() {
         createRegression().newSampleData(new double[] {}, null);
     }
-    
+
      /*
      * This is a test based on the Wampler1 data set
      * http://www.itl.nist.gov/div898/strd/lls/data/Wampler1.shtml
@@ -570,7 +571,7 @@ public class OLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
                 new double[]{0.0,
                     0.0, 0.0,
                     0.0, 0.0,
-                    0.0}, 1E-8); 
+                    0.0}, 1E-8);
 
         TestUtils.assertEquals(1.0, model.calculateRSquared(), 1.0e-10);
         TestUtils.assertEquals(0, model.estimateErrorVariance(), 1.0e-7);
@@ -578,7 +579,7 @@ public class OLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
 
         return;
     }
-    
+
     /*
      * This is a test based on the Wampler2 data set
      * http://www.itl.nist.gov/div898/strd/lls/data/Wampler2.shtml
@@ -640,13 +641,13 @@ public class OLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
                 new double[]{0.0,
                     0.0, 0.0,
                     0.0, 0.0,
-                    0.0}, 1E-8); 
+                    0.0}, 1E-8);
         TestUtils.assertEquals(1.0, model.calculateRSquared(), 1.0e-10);
         TestUtils.assertEquals(0, model.estimateErrorVariance(), 1.0e-7);
         TestUtils.assertEquals(0.00, model.calculateResidualSumOfSquares(), 
1.0e-6);
         return;
     }
-    
+
     /*
      * This is a test based on the Wampler3 data set
      * http://www.itl.nist.gov/div898/strd/lls/data/Wampler3.shtml
@@ -701,7 +702,7 @@ public class OLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
                     1.0,
                     1.0,
                     1.0,
-                    1.0}, 1E-8); 
+                    1.0}, 1E-8);
 
         double[] se = model.estimateRegressionParametersStandardErrors();
         TestUtils.assertEquals(se,
@@ -770,21 +771,21 @@ public class OLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
                     1.0,
                     1.0,
                     1.0,
-                    1.0}, 1E-6); 
+                    1.0}, 1E-6);
 
         double[] se = model.estimateRegressionParametersStandardErrors();
         TestUtils.assertEquals(se,
                 new double[]{215232.624678170,
                     236355.173469681, 77934.3524331583,
                     10147.5507550350, 564.566512170752,
-                    11.2324854679312}, 1E-8); 
+                    11.2324854679312}, 1E-8);
 
         TestUtils.assertEquals(.957478440825662, model.calculateRSquared(), 
1.0e-10);
         TestUtils.assertEquals(55702845333.3333, 
model.estimateErrorVariance(), 1.0e-4);
         TestUtils.assertEquals(835542680000.000, 
model.calculateResidualSumOfSquares(), 1.0e-3);
         return;
     }
-    
+
     /**
      * Anything requiring beta calculation should advertise SME.
      */
@@ -794,26 +795,26 @@ public class OLSMultipleLinearRegressionTest extends 
MultipleLinearRegressionAbs
         model.newSampleData(new double[] {1,  2,  3, 1, 2, 3, 1, 2, 3}, 3, 2);
         model.calculateBeta();
     }
-    
+
     @Test
     public void testNoSSTOCalculateRsquare() {
         OLSMultipleLinearRegression model = new OLSMultipleLinearRegression();
         model.newSampleData(new double[] {1,  2,  3, 1, 7, 8, 1, 10, 12}, 3, 
2);
         Assert.assertTrue(Double.isNaN(model.calculateRSquared()));
     }
-    
+
     @Test(expected=NullPointerException.class)
     public void testNoDataNPECalculateBeta() {
         OLSMultipleLinearRegression model = new OLSMultipleLinearRegression();
         model.calculateBeta();
     }
-    
+
     @Test(expected=NullPointerException.class)
     public void testNoDataNPECalculateHat() {
         OLSMultipleLinearRegression model = new OLSMultipleLinearRegression();
         model.calculateHat();
     }
-    
+
     @Test(expected=NullPointerException.class)
     public void testNoDataNPESSTO() {
         OLSMultipleLinearRegression model = new OLSMultipleLinearRegression();

http://git-wip-us.apache.org/repos/asf/commons-math/blob/afcfbf57/src/test/java/org/apache/commons/math4/transform/FastCosineTransformerTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/commons/math4/transform/FastCosineTransformerTest.java
 
b/src/test/java/org/apache/commons/math4/transform/FastCosineTransformerTest.java
index 44a351a..0769706 100644
--- 
a/src/test/java/org/apache/commons/math4/transform/FastCosineTransformerTest.java
+++ 
b/src/test/java/org/apache/commons/math4/transform/FastCosineTransformerTest.java
@@ -22,6 +22,7 @@ import java.util.Collection;
 import org.apache.commons.math4.analysis.UnivariateFunction;
 import org.apache.commons.math4.analysis.function.Sin;
 import org.apache.commons.math4.analysis.function.Sinc;
+import org.apache.commons.math4.exception.MathIllegalArgumentException;
 import org.apache.commons.math4.exception.MathIllegalStateException;
 import org.apache.commons.math4.transform.DctNormalization;
 import org.apache.commons.math4.transform.FastCosineTransformer;
@@ -46,7 +47,7 @@ import org.junit.runners.Parameterized.Parameters;
 public final class FastCosineTransformerTest
     extends RealTransformerAbstractTest {
 
-    private DctNormalization normalization;
+    private final DctNormalization normalization;
 
     private final int[] invalidDataSize;
 
@@ -229,24 +230,22 @@ public final class FastCosineTransformerTest
         try {
             // bad interval
             transformer.transform(f, 1, -1, 65, TransformType.FORWARD);
-            Assert.fail("Expecting IllegalArgumentException - bad interval");
-        } catch (IllegalArgumentException ex) {
+            Assert.fail("Expecting MathIllegalArgumentException - bad 
interval");
+        } catch (MathIllegalArgumentException ex) {
             // expected
         }
         try {
             // bad samples number
             transformer.transform(f, -1, 1, 1, TransformType.FORWARD);
-            Assert
-                .fail("Expecting IllegalArgumentException - bad samples 
number");
-        } catch (IllegalArgumentException ex) {
+            Assert.fail("Expecting MathIllegalArgumentException - bad samples 
number");
+        } catch (MathIllegalArgumentException ex) {
             // expected
         }
         try {
             // bad samples number
             transformer.transform(f, -1, 1, 64, TransformType.FORWARD);
-            Assert
-                .fail("Expecting IllegalArgumentException - bad samples 
number");
-        } catch (IllegalArgumentException ex) {
+            Assert.fail("Expecting MathIllegalArgumentException - bad samples 
number");
+        } catch (MathIllegalArgumentException ex) {
             // expected
         }
     }

http://git-wip-us.apache.org/repos/asf/commons-math/blob/afcfbf57/src/test/java/org/apache/commons/math4/transform/FastHadamardTransformerTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/commons/math4/transform/FastHadamardTransformerTest.java
 
b/src/test/java/org/apache/commons/math4/transform/FastHadamardTransformerTest.java
index 89eeed4..8fe0173 100644
--- 
a/src/test/java/org/apache/commons/math4/transform/FastHadamardTransformerTest.java
+++ 
b/src/test/java/org/apache/commons/math4/transform/FastHadamardTransformerTest.java
@@ -16,6 +16,7 @@
  */
 package org.apache.commons.math4.transform;
 
+import org.apache.commons.math4.exception.MathIllegalArgumentException;
 import org.apache.commons.math4.transform.FastHadamardTransformer;
 import org.apache.commons.math4.transform.TransformType;
 import org.apache.commons.math4.util.Precision;
@@ -68,7 +69,7 @@ public final class FastHadamardTransformerTest {
         try {
             new FastHadamardTransformer().transform(new double[3], 
TransformType.FORWARD);
             Assert.fail("an exception should have been thrown");
-        } catch (IllegalArgumentException iae) {
+        } catch (MathIllegalArgumentException iae) {
             // expected
         }
     }

http://git-wip-us.apache.org/repos/asf/commons-math/blob/afcfbf57/src/test/java/org/apache/commons/math4/transform/FastSineTransformerTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/commons/math4/transform/FastSineTransformerTest.java 
b/src/test/java/org/apache/commons/math4/transform/FastSineTransformerTest.java
index 64b8e8d..9a1dfcd 100644
--- 
a/src/test/java/org/apache/commons/math4/transform/FastSineTransformerTest.java
+++ 
b/src/test/java/org/apache/commons/math4/transform/FastSineTransformerTest.java
@@ -283,22 +283,22 @@ public final class FastSineTransformerTest extends 
RealTransformerAbstractTest {
         try {
             // bad interval
             transformer.transform(f, 1, -1, 64, TransformType.FORWARD);
-            Assert.fail("Expecting IllegalArgumentException - bad interval");
-        } catch (IllegalArgumentException ex) {
+            Assert.fail("Expecting MathIllegalArgumentException - bad 
interval");
+        } catch (MathIllegalArgumentException ex) {
             // expected
         }
         try {
             // bad samples number
             transformer.transform(f, -1, 1, 0, TransformType.FORWARD);
-            Assert.fail("Expecting IllegalArgumentException - bad samples 
number");
-        } catch (IllegalArgumentException ex) {
+            Assert.fail("Expecting MathIllegalArgumentException - bad samples 
number");
+        } catch (MathIllegalArgumentException ex) {
             // expected
         }
         try {
             // bad samples number
             transformer.transform(f, -1, 1, 100, TransformType.FORWARD);
-            Assert.fail("Expecting IllegalArgumentException - bad samples 
number");
-        } catch (IllegalArgumentException ex) {
+            Assert.fail("Expecting MathIllegalArgumentException - bad samples 
number");
+        } catch (MathIllegalArgumentException ex) {
             // expected
         }
     }

http://git-wip-us.apache.org/repos/asf/commons-math/blob/afcfbf57/src/test/java/org/apache/commons/math4/util/ResizableDoubleArrayTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/commons/math4/util/ResizableDoubleArrayTest.java 
b/src/test/java/org/apache/commons/math4/util/ResizableDoubleArrayTest.java
index 1f31c0c..c7be6ea 100644
--- a/src/test/java/org/apache/commons/math4/util/ResizableDoubleArrayTest.java
+++ b/src/test/java/org/apache/commons/math4/util/ResizableDoubleArrayTest.java
@@ -18,6 +18,7 @@ package org.apache.commons.math4.util;
 
 import org.apache.commons.math4.distribution.IntegerDistribution;
 import org.apache.commons.math4.distribution.UniformIntegerDistribution;
+import org.apache.commons.math4.exception.MathIllegalArgumentException;
 import org.apache.commons.math4.exception.NullArgumentException;
 import org.apache.commons.math4.util.ResizableDoubleArray.ExpansionMode;
 import org.junit.After;
@@ -57,15 +58,15 @@ public class ResizableDoubleArrayTest extends 
DoubleArrayAbstractTest {
         Assert.assertEquals(defaultMode, testDa.getExpansionMode());
         try {
             da = new ResizableDoubleArray(-1);
-            Assert.fail("Expecting IllegalArgumentException");
-        } catch (IllegalArgumentException ex) {
+            Assert.fail("Expecting MathIllegalArgumentException");
+        } catch (MathIllegalArgumentException ex) {
             // expected
         }
 
         testDa = new ResizableDoubleArray((double[]) null);
         Assert.assertEquals(0, testDa.getNumElements());
 
-        double[] initialArray = new double[] { 0, 1, 2 };        
+        double[] initialArray = new double[] { 0, 1, 2 };
         testDa = new ResizableDoubleArray(initialArray);
         Assert.assertEquals(3, testDa.getNumElements());
 
@@ -78,8 +79,8 @@ public class ResizableDoubleArrayTest extends 
DoubleArrayAbstractTest {
 
         try {
             da = new ResizableDoubleArray(2, 0.5);
-            Assert.fail("Expecting IllegalArgumentException");
-        } catch (IllegalArgumentException ex) {
+            Assert.fail("Expecting MathIllegalArgumentException");
+        } catch (MathIllegalArgumentException ex) {
             // expected
         }
 
@@ -96,8 +97,8 @@ public class ResizableDoubleArrayTest extends 
DoubleArrayAbstractTest {
 
         try {
             da = new ResizableDoubleArray(2, 2.0, 1.5);
-            Assert.fail("Expecting IllegalArgumentException");
-        } catch (IllegalArgumentException ex) {
+            Assert.fail("Expecting MathIllegalArgumentException");
+        } catch (MathIllegalArgumentException ex) {
             // expected
         }
 
@@ -194,24 +195,24 @@ public class ResizableDoubleArrayTest extends 
DoubleArrayAbstractTest {
                 "16 and an expansion factor of 2.0",
                 1024, ((ResizableDoubleArray) da).getCapacity());
     }
-    
+
     @Test
     public void testAddElements() {
         ResizableDoubleArray testDa = new ResizableDoubleArray();
-        
+
         // MULTIPLICATIVE_MODE
         testDa.addElements(new double[] {4, 5, 6});
         Assert.assertEquals(3, testDa.getNumElements(), 0);
         Assert.assertEquals(4, testDa.getElement(0), 0);
         Assert.assertEquals(5, testDa.getElement(1), 0);
         Assert.assertEquals(6, testDa.getElement(2), 0);
-        
+
         testDa.addElements(new double[] {4, 5, 6});
         Assert.assertEquals(6, testDa.getNumElements());
 
         // ADDITIVE_MODE  (x's are occupied storage locations, 0's are open)
         testDa = new ResizableDoubleArray(2, 2.0, 2.5,
-                                          
ResizableDoubleArray.ExpansionMode.ADDITIVE);        
+                                          
ResizableDoubleArray.ExpansionMode.ADDITIVE);
         Assert.assertEquals(2, testDa.getCapacity());
         testDa.addElements(new double[] { 1d }); // x,0
         testDa.addElements(new double[] { 2d }); // x,x
@@ -298,7 +299,7 @@ public class ResizableDoubleArrayTest extends 
DoubleArrayAbstractTest {
         try {
             ((ResizableDoubleArray) da).setNumElements( -3 );
             Assert.fail( "Setting number of elements to negative should've 
thrown an exception");
-        } catch( IllegalArgumentException iae ) {
+        } catch(MathIllegalArgumentException iae) {
         }
 
         ((ResizableDoubleArray) da).setNumElements(1024);

Reply via email to