Repository: commons-math
Updated Branches:
  refs/heads/master ff4ec1a32 -> e6fe53fda


Remove deprecated classes and methods.


Project: http://git-wip-us.apache.org/repos/asf/commons-math/repo
Commit: http://git-wip-us.apache.org/repos/asf/commons-math/commit/e6fe53fd
Tree: http://git-wip-us.apache.org/repos/asf/commons-math/tree/e6fe53fd
Diff: http://git-wip-us.apache.org/repos/asf/commons-math/diff/e6fe53fd

Branch: refs/heads/master
Commit: e6fe53fdae66b16ed0f0d32d68b75e62925c4c71
Parents: ff4ec1a
Author: Thomas Neidhart <thomas.neidh...@gmail.com>
Authored: Mon Feb 23 23:03:35 2015 +0100
Committer: Thomas Neidhart <thomas.neidh...@gmail.com>
Committed: Mon Feb 23 23:03:35 2015 +0100

----------------------------------------------------------------------
 .../integration/LegendreGaussIntegrator.java    | 265 -------------------
 .../math4/distribution/GammaDistribution.java   |  24 --
 .../math4/linear/EigenDecomposition.java        |  35 ---
 .../org/apache/commons/math4/special/Beta.java  |  28 --
 .../commons/math4/util/ArithmeticUtils.java     | 183 -------------
 .../LegendreGaussIntegratorTest.java            | 154 -----------
 .../distribution/GammaDistributionTest.java     |   4 +-
 7 files changed, 2 insertions(+), 691 deletions(-)
----------------------------------------------------------------------


http://git-wip-us.apache.org/repos/asf/commons-math/blob/e6fe53fd/src/main/java/org/apache/commons/math4/analysis/integration/LegendreGaussIntegrator.java
----------------------------------------------------------------------
diff --git 
a/src/main/java/org/apache/commons/math4/analysis/integration/LegendreGaussIntegrator.java
 
b/src/main/java/org/apache/commons/math4/analysis/integration/LegendreGaussIntegrator.java
deleted file mode 100644
index 94d3325..0000000
--- 
a/src/main/java/org/apache/commons/math4/analysis/integration/LegendreGaussIntegrator.java
+++ /dev/null
@@ -1,265 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.analysis.integration;
-
-import org.apache.commons.math4.exception.MathIllegalArgumentException;
-import org.apache.commons.math4.exception.MaxCountExceededException;
-import org.apache.commons.math4.exception.NotStrictlyPositiveException;
-import org.apache.commons.math4.exception.NumberIsTooSmallException;
-import org.apache.commons.math4.exception.TooManyEvaluationsException;
-import org.apache.commons.math4.exception.util.LocalizedFormats;
-import org.apache.commons.math4.util.FastMath;
-
-/**
- * Implements the <a 
href="http://mathworld.wolfram.com/Legendre-GaussQuadrature.html";>
- * Legendre-Gauss</a> quadrature formula.
- * <p>
- * Legendre-Gauss integrators are efficient integrators that can
- * accurately integrate functions with few function evaluations. A
- * Legendre-Gauss integrator using an n-points quadrature formula can
- * integrate 2n-1 degree polynomials exactly.
- * </p>
- * <p>
- * These integrators evaluate the function on n carefully chosen
- * abscissas in each step interval (mapped to the canonical [-1,1] interval).
- * The evaluation abscissas are not evenly spaced and none of them are
- * at the interval endpoints. This implies the function integrated can be
- * undefined at integration interval endpoints.
- * </p>
- * <p>
- * The evaluation abscissas x<sub>i</sub> are the roots of the degree n
- * Legendre polynomial. The weights a<sub>i</sub> of the quadrature formula
- * integrals from -1 to +1 &int; Li<sup>2</sup> where Li (x) =
- * &prod; (x-x<sub>k</sub>)/(x<sub>i</sub>-x<sub>k</sub>) for k != i.
- * </p>
- * <p>
- * @since 1.2
- * @deprecated As of 3.1 (to be removed in 4.0). Please use
- * {@link IterativeLegendreGaussIntegrator} instead.
- */
-@Deprecated
-public class LegendreGaussIntegrator extends BaseAbstractUnivariateIntegrator {
-
-    /** Abscissas for the 2 points method. */
-    private static final double[] ABSCISSAS_2 = {
-        -1.0 / FastMath.sqrt(3.0),
-         1.0 / FastMath.sqrt(3.0)
-    };
-
-    /** Weights for the 2 points method. */
-    private static final double[] WEIGHTS_2 = {
-        1.0,
-        1.0
-    };
-
-    /** Abscissas for the 3 points method. */
-    private static final double[] ABSCISSAS_3 = {
-        -FastMath.sqrt(0.6),
-         0.0,
-         FastMath.sqrt(0.6)
-    };
-
-    /** Weights for the 3 points method. */
-    private static final double[] WEIGHTS_3 = {
-        5.0 / 9.0,
-        8.0 / 9.0,
-        5.0 / 9.0
-    };
-
-    /** Abscissas for the 4 points method. */
-    private static final double[] ABSCISSAS_4 = {
-        -FastMath.sqrt((15.0 + 2.0 * FastMath.sqrt(30.0)) / 35.0),
-        -FastMath.sqrt((15.0 - 2.0 * FastMath.sqrt(30.0)) / 35.0),
-         FastMath.sqrt((15.0 - 2.0 * FastMath.sqrt(30.0)) / 35.0),
-         FastMath.sqrt((15.0 + 2.0 * FastMath.sqrt(30.0)) / 35.0)
-    };
-
-    /** Weights for the 4 points method. */
-    private static final double[] WEIGHTS_4 = {
-        (90.0 - 5.0 * FastMath.sqrt(30.0)) / 180.0,
-        (90.0 + 5.0 * FastMath.sqrt(30.0)) / 180.0,
-        (90.0 + 5.0 * FastMath.sqrt(30.0)) / 180.0,
-        (90.0 - 5.0 * FastMath.sqrt(30.0)) / 180.0
-    };
-
-    /** Abscissas for the 5 points method. */
-    private static final double[] ABSCISSAS_5 = {
-        -FastMath.sqrt((35.0 + 2.0 * FastMath.sqrt(70.0)) / 63.0),
-        -FastMath.sqrt((35.0 - 2.0 * FastMath.sqrt(70.0)) / 63.0),
-         0.0,
-         FastMath.sqrt((35.0 - 2.0 * FastMath.sqrt(70.0)) / 63.0),
-         FastMath.sqrt((35.0 + 2.0 * FastMath.sqrt(70.0)) / 63.0)
-    };
-
-    /** Weights for the 5 points method. */
-    private static final double[] WEIGHTS_5 = {
-        (322.0 - 13.0 * FastMath.sqrt(70.0)) / 900.0,
-        (322.0 + 13.0 * FastMath.sqrt(70.0)) / 900.0,
-        128.0 / 225.0,
-        (322.0 + 13.0 * FastMath.sqrt(70.0)) / 900.0,
-        (322.0 - 13.0 * FastMath.sqrt(70.0)) / 900.0
-    };
-
-    /** Abscissas for the current method. */
-    private final double[] abscissas;
-
-    /** Weights for the current method. */
-    private final double[] weights;
-
-    /**
-     * Build a Legendre-Gauss integrator with given accuracies and iterations 
counts.
-     * @param n number of points desired (must be between 2 and 5 inclusive)
-     * @param relativeAccuracy relative accuracy of the result
-     * @param absoluteAccuracy absolute accuracy of the result
-     * @param minimalIterationCount minimum number of iterations
-     * @param maximalIterationCount maximum number of iterations
-     * @exception MathIllegalArgumentException if number of points is out of 
[2; 5]
-     * @exception NotStrictlyPositiveException if minimal number of iterations
-     * is not strictly positive
-     * @exception NumberIsTooSmallException if maximal number of iterations
-     * is lesser than or equal to the minimal number of iterations
-     */
-    public LegendreGaussIntegrator(final int n,
-                                   final double relativeAccuracy,
-                                   final double absoluteAccuracy,
-                                   final int minimalIterationCount,
-                                   final int maximalIterationCount)
-        throws MathIllegalArgumentException, NotStrictlyPositiveException, 
NumberIsTooSmallException {
-        super(relativeAccuracy, absoluteAccuracy, minimalIterationCount, 
maximalIterationCount);
-        switch(n) {
-        case 2 :
-            abscissas = ABSCISSAS_2;
-            weights   = WEIGHTS_2;
-            break;
-        case 3 :
-            abscissas = ABSCISSAS_3;
-            weights   = WEIGHTS_3;
-            break;
-        case 4 :
-            abscissas = ABSCISSAS_4;
-            weights   = WEIGHTS_4;
-            break;
-        case 5 :
-            abscissas = ABSCISSAS_5;
-            weights   = WEIGHTS_5;
-            break;
-        default :
-            throw new MathIllegalArgumentException(
-                    
LocalizedFormats.N_POINTS_GAUSS_LEGENDRE_INTEGRATOR_NOT_SUPPORTED,
-                    n, 2, 5);
-        }
-
-    }
-
-    /**
-     * Build a Legendre-Gauss integrator with given accuracies.
-     * @param n number of points desired (must be between 2 and 5 inclusive)
-     * @param relativeAccuracy relative accuracy of the result
-     * @param absoluteAccuracy absolute accuracy of the result
-     * @exception MathIllegalArgumentException if number of points is out of 
[2; 5]
-     */
-    public LegendreGaussIntegrator(final int n,
-                                   final double relativeAccuracy,
-                                   final double absoluteAccuracy)
-        throws MathIllegalArgumentException {
-        this(n, relativeAccuracy, absoluteAccuracy,
-             DEFAULT_MIN_ITERATIONS_COUNT, DEFAULT_MAX_ITERATIONS_COUNT);
-    }
-
-    /**
-     * Build a Legendre-Gauss integrator with given iteration counts.
-     * @param n number of points desired (must be between 2 and 5 inclusive)
-     * @param minimalIterationCount minimum number of iterations
-     * @param maximalIterationCount maximum number of iterations
-     * @exception MathIllegalArgumentException if number of points is out of 
[2; 5]
-     * @exception NotStrictlyPositiveException if minimal number of iterations
-     * is not strictly positive
-     * @exception NumberIsTooSmallException if maximal number of iterations
-     * is lesser than or equal to the minimal number of iterations
-     */
-    public LegendreGaussIntegrator(final int n,
-                                   final int minimalIterationCount,
-                                   final int maximalIterationCount)
-        throws MathIllegalArgumentException {
-        this(n, DEFAULT_RELATIVE_ACCURACY, DEFAULT_ABSOLUTE_ACCURACY,
-             minimalIterationCount, maximalIterationCount);
-    }
-
-    /** {@inheritDoc} */
-    @Override
-    protected double doIntegrate()
-        throws MathIllegalArgumentException, TooManyEvaluationsException, 
MaxCountExceededException {
-
-        // compute first estimate with a single step
-        double oldt = stage(1);
-
-        int n = 2;
-        while (true) {
-
-            // improve integral with a larger number of steps
-            final double t = stage(n);
-
-            // estimate error
-            final double delta = FastMath.abs(t - oldt);
-            final double limit =
-                FastMath.max(getAbsoluteAccuracy(),
-                             getRelativeAccuracy() * (FastMath.abs(oldt) + 
FastMath.abs(t)) * 0.5);
-
-            // check convergence
-            if ((iterations.getCount() + 1 >= getMinimalIterationCount()) && 
(delta <= limit)) {
-                return t;
-            }
-
-            // prepare next iteration
-            double ratio = FastMath.min(4, FastMath.pow(delta / limit, 0.5 / 
abscissas.length));
-            n = FastMath.max((int) (ratio * n), n + 1);
-            oldt = t;
-            iterations.incrementCount();
-
-        }
-
-    }
-
-    /**
-     * Compute the n-th stage integral.
-     * @param n number of steps
-     * @return the value of n-th stage integral
-     * @throws TooManyEvaluationsException if the maximum number of evaluations
-     * is exceeded.
-     */
-    private double stage(final int n)
-        throws TooManyEvaluationsException {
-
-        // set up the step for the current stage
-        final double step     = (getMax() - getMin()) / n;
-        final double halfStep = step / 2.0;
-
-        // integrate over all elementary steps
-        double midPoint = getMin() + halfStep;
-        double sum = 0.0;
-        for (int i = 0; i < n; ++i) {
-            for (int j = 0; j < abscissas.length; ++j) {
-                sum += weights[j] * computeObjectiveValue(midPoint + halfStep 
* abscissas[j]);
-            }
-            midPoint += step;
-        }
-
-        return halfStep * sum;
-
-    }
-
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/e6fe53fd/src/main/java/org/apache/commons/math4/distribution/GammaDistribution.java
----------------------------------------------------------------------
diff --git 
a/src/main/java/org/apache/commons/math4/distribution/GammaDistribution.java 
b/src/main/java/org/apache/commons/math4/distribution/GammaDistribution.java
index 905c922..daa9ef9 100644
--- a/src/main/java/org/apache/commons/math4/distribution/GammaDistribution.java
+++ b/src/main/java/org/apache/commons/math4/distribution/GammaDistribution.java
@@ -206,18 +206,6 @@ public class GammaDistribution extends 
AbstractRealDistribution {
      * Returns the shape parameter of {@code this} distribution.
      *
      * @return the shape parameter
-     * @deprecated as of version 3.1, {@link #getShape()} should be preferred.
-     * This method will be removed in version 4.0.
-     */
-    @Deprecated
-    public double getAlpha() {
-        return shape;
-    }
-
-    /**
-     * Returns the shape parameter of {@code this} distribution.
-     *
-     * @return the shape parameter
      * @since 3.1
      */
     public double getShape() {
@@ -228,18 +216,6 @@ public class GammaDistribution extends 
AbstractRealDistribution {
      * Returns the scale parameter of {@code this} distribution.
      *
      * @return the scale parameter
-     * @deprecated as of version 3.1, {@link #getScale()} should be preferred.
-     * This method will be removed in version 4.0.
-     */
-    @Deprecated
-    public double getBeta() {
-        return scale;
-    }
-
-    /**
-     * Returns the scale parameter of {@code this} distribution.
-     *
-     * @return the scale parameter
      * @since 3.1
      */
     public double getScale() {

http://git-wip-us.apache.org/repos/asf/commons-math/blob/e6fe53fd/src/main/java/org/apache/commons/math4/linear/EigenDecomposition.java
----------------------------------------------------------------------
diff --git 
a/src/main/java/org/apache/commons/math4/linear/EigenDecomposition.java 
b/src/main/java/org/apache/commons/math4/linear/EigenDecomposition.java
index 1ae63bf..5118a61 100644
--- a/src/main/java/org/apache/commons/math4/linear/EigenDecomposition.java
+++ b/src/main/java/org/apache/commons/math4/linear/EigenDecomposition.java
@@ -127,24 +127,6 @@ public class EigenDecomposition {
     }
 
     /**
-     * Calculates the eigen decomposition of the given real matrix.
-     *
-     * @param matrix Matrix to decompose.
-     * @param splitTolerance Dummy parameter (present for backward
-     * compatibility only).
-     * @throws MathArithmeticException  if the decomposition of a general 
matrix
-     * results in a matrix with zero norm
-     * @throws MaxCountExceededException if the algorithm fails to converge.
-     * @deprecated in 3.1 (to be removed in 4.0) due to unused parameter
-     */
-    @Deprecated
-    public EigenDecomposition(final RealMatrix matrix,
-                              final double splitTolerance)
-        throws MathArithmeticException {
-        this(matrix);
-    }
-
-    /**
      * Calculates the eigen decomposition of the symmetric tridiagonal
      * matrix.  The Householder matrix is assumed to be the identity matrix.
      *
@@ -167,23 +149,6 @@ public class EigenDecomposition {
     }
 
     /**
-     * Calculates the eigen decomposition of the symmetric tridiagonal
-     * matrix.  The Householder matrix is assumed to be the identity matrix.
-     *
-     * @param main Main diagonal of the symmetric tridiagonal form.
-     * @param secondary Secondary of the tridiagonal form.
-     * @param splitTolerance Dummy parameter (present for backward
-     * compatibility only).
-     * @throws MaxCountExceededException if the algorithm fails to converge.
-     * @deprecated in 3.1 (to be removed in 4.0) due to unused parameter
-     */
-    @Deprecated
-    public EigenDecomposition(final double[] main, final double[] secondary,
-                              final double splitTolerance) {
-        this(main, secondary);
-    }
-
-    /**
      * Gets the matrix V of the decomposition.
      * V is an orthogonal matrix, i.e. its transpose is also its inverse.
      * The columns of V are the eigenvectors of the original matrix.

http://git-wip-us.apache.org/repos/asf/commons-math/blob/e6fe53fd/src/main/java/org/apache/commons/math4/special/Beta.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math4/special/Beta.java 
b/src/main/java/org/apache/commons/math4/special/Beta.java
index 08a0d46..7861237 100644
--- a/src/main/java/org/apache/commons/math4/special/Beta.java
+++ b/src/main/java/org/apache/commons/math4/special/Beta.java
@@ -227,34 +227,6 @@ public class Beta {
     }
 
     /**
-     * Returns the natural logarithm of the beta function B(a, b).
-     *
-     * The implementation of this method is based on:
-     * <ul>
-     * <li><a href="http://mathworld.wolfram.com/BetaFunction.html";>
-     * Beta Function</a>, equation (1).</li>
-     * </ul>
-     *
-     * @param a Parameter {@code a}.
-     * @param b Parameter {@code b}.
-     * @param epsilon This parameter is ignored.
-     * @param maxIterations This parameter is ignored.
-     * @return log(B(a, b)).
-     * @deprecated as of version 3.1, this method is deprecated as the
-     * computation of the beta function is no longer iterative; it will be
-     * removed in version 4.0. Current implementation of this method
-     * internally calls {@link #logBeta(double, double)}.
-     */
-    @Deprecated
-    public static double logBeta(double a, double b,
-                                 double epsilon,
-                                 int maxIterations) {
-
-        return logBeta(a, b);
-    }
-
-
-    /**
      * Returns the value of log Γ(a + b) for 1 ≤ a, b ≤ 2. Based on the
      * <em>NSWC Library of Mathematics Subroutines</em> double precision
      * implementation, {@code DGSMLN}. In {@code BetaTest.testLogGammaSum()},

http://git-wip-us.apache.org/repos/asf/commons-math/blob/e6fe53fd/src/main/java/org/apache/commons/math4/util/ArithmeticUtils.java
----------------------------------------------------------------------
diff --git a/src/main/java/org/apache/commons/math4/util/ArithmeticUtils.java 
b/src/main/java/org/apache/commons/math4/util/ArithmeticUtils.java
index d6262a5..ab799ed 100644
--- a/src/main/java/org/apache/commons/math4/util/ArithmeticUtils.java
+++ b/src/main/java/org/apache/commons/math4/util/ArithmeticUtils.java
@@ -20,7 +20,6 @@ import java.math.BigInteger;
 
 import org.apache.commons.math4.exception.MathArithmeticException;
 import org.apache.commons.math4.exception.NotPositiveException;
-import org.apache.commons.math4.exception.NumberIsTooLargeException;
 import org.apache.commons.math4.exception.util.Localizable;
 import org.apache.commons.math4.exception.util.LocalizedFormats;
 
@@ -69,161 +68,6 @@ public final class ArithmeticUtils {
     }
 
     /**
-     * Returns an exact representation of the <a
-     * href="http://mathworld.wolfram.com/BinomialCoefficient.html";> Binomial
-     * Coefficient</a>, "{@code n choose k}", the number of
-     * {@code k}-element subsets that can be selected from an
-     * {@code n}-element set.
-     * <p>
-     * <Strong>Preconditions</strong>:
-     * <ul>
-     * <li> {@code 0 <= k <= n } (otherwise
-     * {@code IllegalArgumentException} is thrown)</li>
-     * <li> The result is small enough to fit into a {@code long}. The
-     * largest value of {@code n} for which all coefficients are
-     * {@code  < Long.MAX_VALUE} is 66. If the computed value exceeds
-     * {@code Long.MAX_VALUE} an {@code ArithMeticException} is
-     * thrown.</li>
-     * </ul></p>
-     *
-     * @param n the size of the set
-     * @param k the size of the subsets to be counted
-     * @return {@code n choose k}
-     * @throws NotPositiveException if {@code n < 0}.
-     * @throws NumberIsTooLargeException if {@code k > n}.
-     * @throws MathArithmeticException if the result is too large to be
-     * represented by a long integer.
-     * @deprecated use {@link CombinatoricsUtils#binomialCoefficient(int, int)}
-     */
-    @Deprecated
-    public static long binomialCoefficient(final int n, final int k)
-        throws NotPositiveException, NumberIsTooLargeException, 
MathArithmeticException {
-       return CombinatoricsUtils.binomialCoefficient(n, k);
-    }
-
-    /**
-     * Returns a {@code double} representation of the <a
-     * href="http://mathworld.wolfram.com/BinomialCoefficient.html";> Binomial
-     * Coefficient</a>, "{@code n choose k}", the number of
-     * {@code k}-element subsets that can be selected from an
-     * {@code n}-element set.
-     * <p>
-     * <Strong>Preconditions</strong>:
-     * <ul>
-     * <li> {@code 0 <= k <= n } (otherwise
-     * {@code IllegalArgumentException} is thrown)</li>
-     * <li> The result is small enough to fit into a {@code double}. The
-     * largest value of {@code n} for which all coefficients are <
-     * Double.MAX_VALUE is 1029. If the computed value exceeds 
Double.MAX_VALUE,
-     * Double.POSITIVE_INFINITY is returned</li>
-     * </ul></p>
-     *
-     * @param n the size of the set
-     * @param k the size of the subsets to be counted
-     * @return {@code n choose k}
-     * @throws NotPositiveException if {@code n < 0}.
-     * @throws NumberIsTooLargeException if {@code k > n}.
-     * @throws MathArithmeticException if the result is too large to be
-     * represented by a long integer.
-     * @deprecated use {@link 
CombinatoricsUtils#binomialCoefficientDouble(int, int)}
-     */
-    @Deprecated
-    public static double binomialCoefficientDouble(final int n, final int k)
-        throws NotPositiveException, NumberIsTooLargeException, 
MathArithmeticException {
-        return CombinatoricsUtils.binomialCoefficientDouble(n, k);
-    }
-
-    /**
-     * Returns the natural {@code log} of the <a
-     * href="http://mathworld.wolfram.com/BinomialCoefficient.html";> Binomial
-     * Coefficient</a>, "{@code n choose k}", the number of
-     * {@code k}-element subsets that can be selected from an
-     * {@code n}-element set.
-     * <p>
-     * <Strong>Preconditions</strong>:
-     * <ul>
-     * <li> {@code 0 <= k <= n } (otherwise
-     * {@code IllegalArgumentException} is thrown)</li>
-     * </ul></p>
-     *
-     * @param n the size of the set
-     * @param k the size of the subsets to be counted
-     * @return {@code n choose k}
-     * @throws NotPositiveException if {@code n < 0}.
-     * @throws NumberIsTooLargeException if {@code k > n}.
-     * @throws MathArithmeticException if the result is too large to be
-     * represented by a long integer.
-     * @deprecated use {@link CombinatoricsUtils#binomialCoefficientLog(int, 
int)}
-     */
-    @Deprecated
-    public static double binomialCoefficientLog(final int n, final int k)
-        throws NotPositiveException, NumberIsTooLargeException, 
MathArithmeticException {
-        return CombinatoricsUtils.binomialCoefficientLog(n, k);
-    }
-
-    /**
-     * Returns n!. Shorthand for {@code n} <a
-     * href="http://mathworld.wolfram.com/Factorial.html";> Factorial</a>, the
-     * product of the numbers {@code 1,...,n}.
-     * <p>
-     * <Strong>Preconditions</strong>:
-     * <ul>
-     * <li> {@code n >= 0} (otherwise
-     * {@code IllegalArgumentException} is thrown)</li>
-     * <li> The result is small enough to fit into a {@code long}. The
-     * largest value of {@code n} for which {@code n!} <
-     * Long.MAX_VALUE} is 20. If the computed value exceeds {@code 
Long.MAX_VALUE}
-     * an {@code ArithMeticException } is thrown.</li>
-     * </ul>
-     * </p>
-     *
-     * @param n argument
-     * @return {@code n!}
-     * @throws MathArithmeticException if the result is too large to be 
represented
-     * by a {@code long}.
-     * @throws NotPositiveException if {@code n < 0}.
-     * @throws MathArithmeticException if {@code n > 20}: The factorial value 
is too
-     * large to fit in a {@code long}.
-     * @deprecated use {@link CombinatoricsUtils#factorial(int)}
-     */
-    @Deprecated
-    public static long factorial(final int n) throws NotPositiveException, 
MathArithmeticException {
-        return CombinatoricsUtils.factorial(n);
-    }
-
-    /**
-     * Compute n!, the<a href="http://mathworld.wolfram.com/Factorial.html";>
-     * factorial</a> of {@code n} (the product of the numbers 1 to n), as a
-     * {@code double}.
-     * The result should be small enough to fit into a {@code double}: The
-     * largest {@code n} for which {@code n! < Double.MAX_VALUE} is 170.
-     * If the computed value exceeds {@code Double.MAX_VALUE},
-     * {@code Double.POSITIVE_INFINITY} is returned.
-     *
-     * @param n Argument.
-     * @return {@code n!}
-     * @throws NotPositiveException if {@code n < 0}.
-     * @deprecated use {@link CombinatoricsUtils#factorialDouble(int)}
-     */
-    @Deprecated
-    public static double factorialDouble(final int n) throws 
NotPositiveException {
-         return CombinatoricsUtils.factorialDouble(n);
-    }
-
-    /**
-     * Compute the natural logarithm of the factorial of {@code n}.
-     *
-     * @param n Argument.
-     * @return {@code n!}
-     * @throws NotPositiveException if {@code n < 0}.
-     * @deprecated use {@link CombinatoricsUtils#factorialLog(int)}
-     */
-    @Deprecated
-    public static double factorialLog(final int n) throws NotPositiveException 
{
-        return CombinatoricsUtils.factorialLog(n);
-    }
-
-    /**
      * Computes the greatest common divisor of the absolute value of two
      * numbers, using a modified version of the "binary gcd" method.
      * See Knuth 4.5.2 algorithm B.
@@ -794,33 +638,6 @@ public final class ArithmeticUtils {
     }
 
     /**
-     * Returns the <a
-     * href="http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html";>
-     * Stirling number of the second kind</a>, "{@code S(n,k)}", the number of
-     * ways of partitioning an {@code n}-element set into {@code k} non-empty
-     * subsets.
-     * <p>
-     * The preconditions are {@code 0 <= k <= n } (otherwise
-     * {@code NotPositiveException} is thrown)
-     * </p>
-     * @param n the size of the set
-     * @param k the number of non-empty subsets
-     * @return {@code S(n,k)}
-     * @throws NotPositiveException if {@code k < 0}.
-     * @throws NumberIsTooLargeException if {@code k > n}.
-     * @throws MathArithmeticException if some overflow happens, typically for 
n exceeding 25 and
-     * k between 20 and n-2 (S(n,n-1) is handled specifically and does not 
overflow)
-     * @since 3.1
-     * @deprecated use {@link CombinatoricsUtils#stirlingS2(int, int)}
-     */
-    @Deprecated
-    public static long stirlingS2(final int n, final int k)
-        throws NotPositiveException, NumberIsTooLargeException, 
MathArithmeticException {
-        return CombinatoricsUtils.stirlingS2(n, k);
-
-    }
-
-    /**
      * Add two long integers, checking for overflow.
      *
      * @param a Addend.

http://git-wip-us.apache.org/repos/asf/commons-math/blob/e6fe53fd/src/test/java/org/apache/commons/math4/analysis/integration/LegendreGaussIntegratorTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/commons/math4/analysis/integration/LegendreGaussIntegratorTest.java
 
b/src/test/java/org/apache/commons/math4/analysis/integration/LegendreGaussIntegratorTest.java
deleted file mode 100644
index f0b8af0..0000000
--- 
a/src/test/java/org/apache/commons/math4/analysis/integration/LegendreGaussIntegratorTest.java
+++ /dev/null
@@ -1,154 +0,0 @@
-/*
- * Licensed to the Apache Software Foundation (ASF) under one or more
- * contributor license agreements.  See the NOTICE file distributed with
- * this work for additional information regarding copyright ownership.
- * The ASF licenses this file to You under the Apache License, Version 2.0
- * (the "License"); you may not use this file except in compliance with
- * the License.  You may obtain a copy of the License at
- *
- *      http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-package org.apache.commons.math4.analysis.integration;
-
-import java.util.Random;
-
-import org.apache.commons.math4.analysis.QuinticFunction;
-import org.apache.commons.math4.analysis.UnivariateFunction;
-import org.apache.commons.math4.analysis.function.Sin;
-import 
org.apache.commons.math4.analysis.integration.BaseAbstractUnivariateIntegrator;
-import org.apache.commons.math4.analysis.integration.LegendreGaussIntegrator;
-import org.apache.commons.math4.analysis.integration.UnivariateIntegrator;
-import org.apache.commons.math4.analysis.polynomials.PolynomialFunction;
-import org.apache.commons.math4.exception.TooManyEvaluationsException;
-import org.apache.commons.math4.util.FastMath;
-import org.junit.Assert;
-import org.junit.Test;
-
-
-@Deprecated
-public class LegendreGaussIntegratorTest {
-
-    @Test
-    public void testSinFunction() {
-        UnivariateFunction f = new Sin();
-        BaseAbstractUnivariateIntegrator integrator = new 
LegendreGaussIntegrator(5, 1.0e-14, 1.0e-10, 2, 15);
-        double min, max, expected, result, tolerance;
-
-        min = 0; max = FastMath.PI; expected = 2;
-        tolerance = FastMath.max(integrator.getAbsoluteAccuracy(),
-                             FastMath.abs(expected * 
integrator.getRelativeAccuracy()));
-        result = integrator.integrate(10000, f, min, max);
-        Assert.assertEquals(expected, result, tolerance);
-
-        min = -FastMath.PI/3; max = 0; expected = -0.5;
-        tolerance = FastMath.max(integrator.getAbsoluteAccuracy(),
-                FastMath.abs(expected * integrator.getRelativeAccuracy()));
-        result = integrator.integrate(10000, f, min, max);
-        Assert.assertEquals(expected, result, tolerance);
-    }
-
-    @Test
-    public void testQuinticFunction() {
-        UnivariateFunction f = new QuinticFunction();
-        UnivariateIntegrator integrator =
-                new LegendreGaussIntegrator(3,
-                                            
BaseAbstractUnivariateIntegrator.DEFAULT_RELATIVE_ACCURACY,
-                                            
BaseAbstractUnivariateIntegrator.DEFAULT_ABSOLUTE_ACCURACY,
-                                            
BaseAbstractUnivariateIntegrator.DEFAULT_MIN_ITERATIONS_COUNT,
-                                            64);
-        double min, max, expected, result;
-
-        min = 0; max = 1; expected = -1.0/48;
-        result = integrator.integrate(10000, f, min, max);
-        Assert.assertEquals(expected, result, 1.0e-16);
-
-        min = 0; max = 0.5; expected = 11.0/768;
-        result = integrator.integrate(10000, f, min, max);
-        Assert.assertEquals(expected, result, 1.0e-16);
-
-        min = -1; max = 4; expected = 2048/3.0 - 78 + 1.0/48;
-        result = integrator.integrate(10000, f, min, max);
-        Assert.assertEquals(expected, result, 1.0e-16);
-    }
-
-    @Test
-    public void testExactIntegration() {
-        Random random = new Random(86343623467878363l);
-        for (int n = 2; n < 6; ++n) {
-            LegendreGaussIntegrator integrator =
-                new LegendreGaussIntegrator(n,
-                                            
BaseAbstractUnivariateIntegrator.DEFAULT_RELATIVE_ACCURACY,
-                                            
BaseAbstractUnivariateIntegrator.DEFAULT_ABSOLUTE_ACCURACY,
-                                            
BaseAbstractUnivariateIntegrator.DEFAULT_MIN_ITERATIONS_COUNT,
-                                            64);
-
-            // an n points Gauss-Legendre integrator integrates 2n-1 degree 
polynoms exactly
-            for (int degree = 0; degree <= 2 * n - 1; ++degree) {
-                for (int i = 0; i < 10; ++i) {
-                    double[] coeff = new double[degree + 1];
-                    for (int k = 0; k < coeff.length; ++k) {
-                        coeff[k] = 2 * random.nextDouble() - 1;
-                    }
-                    PolynomialFunction p = new PolynomialFunction(coeff);
-                    double result    = integrator.integrate(10000, p, -5.0, 
15.0);
-                    double reference = exactIntegration(p, -5.0, 15.0);
-                    Assert.assertEquals(n + " " + degree + " " + i, reference, 
result, 1.0e-12 * (1.0 + FastMath.abs(reference)));
-                }
-            }
-
-        }
-    }
-
-    @Test
-    public void testIssue464() {
-        final double value = 0.2;
-        UnivariateFunction f = new UnivariateFunction() {
-            public double value(double x) {
-                return (x >= 0 && x <= 5) ? value : 0.0;
-            }
-        };
-        LegendreGaussIntegrator gauss = new LegendreGaussIntegrator(5, 3, 100);
-
-        // due to the discontinuity, integration implies *many* calls
-        double maxX = 0.32462367623786328;
-        Assert.assertEquals(maxX * value, gauss.integrate(Integer.MAX_VALUE, 
f, -10, maxX), 1.0e-7);
-        Assert.assertTrue(gauss.getEvaluations() > 37000000);
-        Assert.assertTrue(gauss.getIterations() < 30);
-
-        // setting up limits prevents such large number of calls
-        try {
-            gauss.integrate(1000, f, -10, maxX);
-            Assert.fail("expected TooManyEvaluationsException");
-        } catch (TooManyEvaluationsException tmee) {
-            // expected
-            Assert.assertEquals(1000, tmee.getMax());
-        }
-
-        // integrating on the two sides should be simpler
-        double sum1 = gauss.integrate(1000, f, -10, 0);
-        int eval1   = gauss.getEvaluations();
-        double sum2 = gauss.integrate(1000, f, 0, maxX);
-        int eval2   = gauss.getEvaluations();
-        Assert.assertEquals(maxX * value, sum1 + sum2, 1.0e-7);
-        Assert.assertTrue(eval1 + eval2 < 200);
-
-    }
-
-    private double exactIntegration(PolynomialFunction p, double a, double b) {
-        final double[] coeffs = p.getCoefficients();
-        double yb = coeffs[coeffs.length - 1] / coeffs.length;
-        double ya = yb;
-        for (int i = coeffs.length - 2; i >= 0; --i) {
-            yb = yb * b + coeffs[i] / (i + 1);
-            ya = ya * a + coeffs[i] / (i + 1);
-        }
-        return yb * b - ya * a;
-    }
-
-}

http://git-wip-us.apache.org/repos/asf/commons-math/blob/e6fe53fd/src/test/java/org/apache/commons/math4/distribution/GammaDistributionTest.java
----------------------------------------------------------------------
diff --git 
a/src/test/java/org/apache/commons/math4/distribution/GammaDistributionTest.java
 
b/src/test/java/org/apache/commons/math4/distribution/GammaDistributionTest.java
index c217b9c..6945e3f 100644
--- 
a/src/test/java/org/apache/commons/math4/distribution/GammaDistributionTest.java
+++ 
b/src/test/java/org/apache/commons/math4/distribution/GammaDistributionTest.java
@@ -78,8 +78,8 @@ public class GammaDistributionTest extends 
RealDistributionAbstractTest {
     @Test
     public void testParameterAccessors() {
         GammaDistribution distribution = (GammaDistribution) getDistribution();
-        Assert.assertEquals(4d, distribution.getAlpha(), 0);
-        Assert.assertEquals(2d, distribution.getBeta(), 0);
+        Assert.assertEquals(4d, distribution.getShape(), 0);
+        Assert.assertEquals(2d, distribution.getScale(), 0);
     }
 
     @Test

Reply via email to