Author: luc Date: Mon Oct 28 07:10:12 2013 New Revision: 1536265 URL: http://svn.apache.org/r1536265 Log: Fixed userguide typos.
Thanks to Matt Adereth for the patch. JIRA: MATH-1048 Modified: commons/proper/math/trunk/src/site/xdoc/userguide/stat.xml Modified: commons/proper/math/trunk/src/site/xdoc/userguide/stat.xml URL: http://svn.apache.org/viewvc/commons/proper/math/trunk/src/site/xdoc/userguide/stat.xml?rev=1536265&r1=1536264&r2=1536265&view=diff ============================================================================== --- commons/proper/math/trunk/src/site/xdoc/userguide/stat.xml (original) +++ commons/proper/math/trunk/src/site/xdoc/userguide/stat.xml Mon Oct 28 07:10:12 2013 @@ -302,7 +302,7 @@ double totalSampleSum = aggregatedStats. Strings, integers, longs and chars are all supported as value types, as well as instances of any class that implements <code>Comparable.</code> The ordering of values used in computing cumulative frequencies is by - default the <i>natural ordering,</i> but this can be overriden by supplying a + default the <i>natural ordering,</i> but this can be overridden by supplying a <code>Comparator</code> to the constructor. Adding values that are not comparable to those that have already been added results in an <code>IllegalArgumentException.</code> @@ -385,7 +385,7 @@ System.out.println(f.getCumPct("z")); / <li> When there are fewer than two observations in the model, or when there is no variation in the x values (i.e. all x values are the same) all statistics return <code>NaN</code>. At least two observations with - different x coordinates are requred to estimate a bivariate regression + different x coordinates are required to estimate a bivariate regression model.</li> <li> getters for the statistics always compute values based on the current set of observations -- i.e., you can get statistics, then add more data @@ -529,7 +529,7 @@ System.out.println(regression.getInterce OLSMultipleLinearRegression</a> provides Ordinary Least Squares Regression, and <a href="../apidocs/org/apache/commons/math3/stat/regression/GLSMultipleLinearRegression.html"> GLSMultipleLinearRegression</a> implements Generalized Least Squares. See the javadoc for these - classes for details on the algorithms and forumlas used. + classes for details on the algorithms and formulas used. </p> <p> Data for OLS models can be loaded in a single double[] array, consisting of concatenated rows of data, each containing @@ -864,7 +864,7 @@ new PearsonsCorrelation().correlation(ra assumptions of the parametric t-test procedure, as discussed <a href="http://www.basic.nwu.edu/statguidefiles/ttest_unpaired_ass_viol.html"> here</a></li> - <li>p-values returned by t-, chi-square and Anova tests are exact, based + <li>p-values returned by t-, chi-square and ANOVA tests are exact, based on numerical approximations to the t-, chi-square and F distributions in the <code>distributions</code> package. </li> <li>The G test implementation provides two p-values: @@ -893,7 +893,7 @@ double[] observed = {1d, 2d, 3d}; double mu = 2.5d; System.out.println(TestUtils.t(mu, observed)); </source> - The code above will display the t-statisitic associated with a one-sample + The code above will display the t-statistic associated with a one-sample t-test comparing the mean of the <code>observed</code> values against <code>mu.</code> </dd> @@ -1026,7 +1026,7 @@ TestUtils.chiSquareTest(expected, observ </source> </dd> <dd> To test the null hypothesis that <code>observed</code> conforms to - <code>expected</code> with <code>alpha</code> siginficance level + <code>expected</code> with <code>alpha</code> significance level (equiv. <code>100 * (1-alpha)%</code> confidence) where <code> 0 < alpha < 1 </code> use: <source> @@ -1058,7 +1058,7 @@ TestUtils.chiSquareTest(counts); </source> </dd> <dd>To perform a chi-square test of independence with <code>alpha</code> - siginficance level (equiv. <code>100 * (1-alpha)%</code> confidence) + significance level (equiv. <code>100 * (1-alpha)%</code> confidence) where <code>0 < alpha < 1 </code> use: <source> TestUtils.chiSquareTest(counts, alpha); @@ -1070,12 +1070,12 @@ TestUtils.chiSquareTest(counts, alpha); <dt><strong>G tests</strong></dt> <br></br> <dd>G tests are an alternative to chi-square tests that are recommended - when observed counts are small and / or incidence probabillities for + when observed counts are small and / or incidence probabilities for some cells are small. See Ted Dunning's paper, <a href="http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.5962"> Accurate Methods for the Statistics of Surprise and Coincidence</a> for background and an empirical analysis showing now chi-square - statistics can be misldeading in the presence of low incidence probabilities. + statistics can be misleading in the presence of low incidence probabilities. This paper also derives the formulas used in computing G statistics and the root log likelihood ratio provided by the <code>GTest</code> class.</dd> <dd> @@ -1116,7 +1116,7 @@ System.out.println(TestUtils.gDataSetsCo System.out.println(TestUtils.gTestDataSetsComparison(obs1, obs2)); // p-value </source> </dd> - <dd>For 2 x 2 designs, the <code>rootLogLikelihoodRaio</code> method + <dd>For 2 x 2 designs, the <code>rootLogLikelihoodRatio</code> method computes the <a href="http://tdunning.blogspot.com/2008/03/surprise-and-coincidence.html"> signed root log likelihood ratio.</a> For example, suppose that for two events @@ -1129,7 +1129,7 @@ new GTest().rootLogLikelihoodRatio(5, 19 and B are independent. </dd> <br></br> - <dt><strong>One-Way Anova tests</strong></dt> + <dt><strong>One-Way ANOVA tests</strong></dt> <br></br> <source> double[] classA = @@ -1151,7 +1151,7 @@ classes.add(classC); double fStatistic = TestUtils.oneWayAnovaFValue(classes); // F-value double pValue = TestUtils.oneWayAnovaPValue(classes); // P-value </source> - To test perform a One-Way Anova test with signficance level set at 0.01 + To test perform a One-Way ANOVA test with significance level set at 0.01 (so the test will, assuming assumptions are met, reject the null hypothesis incorrectly only about one in 100 times), use <source>