Author: tn Date: Wed Mar 27 21:54:36 2013 New Revision: 1461866 URL: http://svn.apache.org/r1461866 Log: Add clarification about default distance measure to javadoc.
Modified: commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/DBSCANClusterer.java commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/KMeansPlusPlusClusterer.java Modified: commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/DBSCANClusterer.java URL: http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/DBSCANClusterer.java?rev=1461866&r1=1461865&r2=1461866&view=diff ============================================================================== --- commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/DBSCANClusterer.java (original) +++ commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/DBSCANClusterer.java Wed Mar 27 21:54:36 2013 @@ -74,6 +74,8 @@ public class DBSCANClusterer<T extends C /** * Creates a new instance of a DBSCANClusterer. + * <p> + * The euclidean distance will be used as default distance measure. * * @param eps maximum radius of the neighborhood to be considered * @param minPts minimum number of points needed for a cluster Modified: commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/KMeansPlusPlusClusterer.java URL: http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/KMeansPlusPlusClusterer.java?rev=1461866&r1=1461865&r2=1461866&view=diff ============================================================================== --- commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/KMeansPlusPlusClusterer.java (original) +++ commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/KMeansPlusPlusClusterer.java Wed Mar 27 21:54:36 2013 @@ -75,6 +75,8 @@ public class KMeansPlusPlusClusterer<T e * <p> * The default strategy for handling empty clusters that may appear during * algorithm iterations is to split the cluster with largest distance variance. + * <p> + * The euclidean distance will be used as default distance measure. * * @param k the number of clusters to split the data into */ @@ -86,6 +88,8 @@ public class KMeansPlusPlusClusterer<T e * <p> * The default strategy for handling empty clusters that may appear during * algorithm iterations is to split the cluster with largest distance variance. + * <p> + * The euclidean distance will be used as default distance measure. * * @param k the number of clusters to split the data into * @param maxIterations the maximum number of iterations to run the algorithm for.