Author: tn
Date: Wed Mar 27 21:54:36 2013
New Revision: 1461866

URL: http://svn.apache.org/r1461866
Log:
Add clarification about default distance measure to javadoc.

Modified:
    
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/DBSCANClusterer.java
    
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/KMeansPlusPlusClusterer.java

Modified: 
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/DBSCANClusterer.java
URL: 
http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/DBSCANClusterer.java?rev=1461866&r1=1461865&r2=1461866&view=diff
==============================================================================
--- 
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/DBSCANClusterer.java
 (original)
+++ 
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/DBSCANClusterer.java
 Wed Mar 27 21:54:36 2013
@@ -74,6 +74,8 @@ public class DBSCANClusterer<T extends C
 
     /**
      * Creates a new instance of a DBSCANClusterer.
+     * <p>
+     * The euclidean distance will be used as default distance measure.
      *
      * @param eps maximum radius of the neighborhood to be considered
      * @param minPts minimum number of points needed for a cluster

Modified: 
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/KMeansPlusPlusClusterer.java
URL: 
http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/KMeansPlusPlusClusterer.java?rev=1461866&r1=1461865&r2=1461866&view=diff
==============================================================================
--- 
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/KMeansPlusPlusClusterer.java
 (original)
+++ 
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/ml/clustering/KMeansPlusPlusClusterer.java
 Wed Mar 27 21:54:36 2013
@@ -75,6 +75,8 @@ public class KMeansPlusPlusClusterer<T e
      * <p>
      * The default strategy for handling empty clusters that may appear during
      * algorithm iterations is to split the cluster with largest distance 
variance.
+     * <p>
+     * The euclidean distance will be used as default distance measure.
      *
      * @param k the number of clusters to split the data into
      */
@@ -86,6 +88,8 @@ public class KMeansPlusPlusClusterer<T e
      * <p>
      * The default strategy for handling empty clusters that may appear during
      * algorithm iterations is to split the cluster with largest distance 
variance.
+     * <p>
+     * The euclidean distance will be used as default distance measure.
      *
      * @param k the number of clusters to split the data into
      * @param maxIterations the maximum number of iterations to run the 
algorithm for.


Reply via email to