Author: luc
Date: Tue Mar 12 17:08:52 2013
New Revision: 1455627

URL: http://svn.apache.org/r1455627
Log:
Added rank revealing QR decomposition.

Patch applied after conversion to current status and slight adaptations.

JIRA: MATH-630

Added:
    
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/linear/RRQRDecomposition.java
   (with props)
    
commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/RRQRDecompositionTest.java
      - copied, changed from r1455260, 
commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/QRDecompositionTest.java
    
commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/RRQRSolverTest.java
   (with props)
Modified:
    commons/proper/math/trunk/src/changes/changes.xml
    
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/linear/QRDecomposition.java
    
commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/QRDecompositionTest.java

Modified: commons/proper/math/trunk/src/changes/changes.xml
URL: 
http://svn.apache.org/viewvc/commons/proper/math/trunk/src/changes/changes.xml?rev=1455627&r1=1455626&r2=1455627&view=diff
==============================================================================
--- commons/proper/math/trunk/src/changes/changes.xml (original)
+++ commons/proper/math/trunk/src/changes/changes.xml Tue Mar 12 17:08:52 2013
@@ -55,6 +55,9 @@ This is a minor release: It combines bug
   Changes to existing features were made in a backwards-compatible
   way such as to allow drop-in replacement of the v3.1[.1] JAR file.
 ">
+      <action dev="luc" type="fix" issue="MATH-630" due-to="Christopher Nix" >
+        Added rank revealing QR decomposition.
+      </action>
       <action dev="luc" type="fix" issue="MATH-570" due-to="Arne Plöse" >
         ArrayFieldVector can now be constructed from any FieldVector.
       </action>

Modified: 
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/linear/QRDecomposition.java
URL: 
http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math3/linear/QRDecomposition.java?rev=1455627&r1=1455626&r2=1455627&view=diff
==============================================================================
--- 
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/linear/QRDecomposition.java
 (original)
+++ 
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/linear/QRDecomposition.java
 Tue Mar 12 17:08:52 2013
@@ -100,71 +100,83 @@ public class QRDecomposition {
         cachedR  = null;
         cachedH  = null;
 
+        decompose(qrt);
+
+    }
+
+    /** Decompose matrix.
+     * @param qrt transposed matrix
+     */
+    protected void decompose(double[][] qrt) {
+        for (int minor = 0; minor < FastMath.min(qrt.length, qrt[0].length); 
minor++) {
+            performHouseholderReflection(minor, qrt);
+        }
+    }
+
+    /** Perform Householder reflection for a minor A(minor, minor) of A.
+     * @param minor minor index
+     * @param qrt transposed matrix
+     */
+    protected void performHouseholderReflection(int minor, double[][] qrt) {
+
+        final double[] qrtMinor = qrt[minor];
+
         /*
-         * The QR decomposition of a matrix A is calculated using Householder
-         * reflectors by repeating the following operations to each minor
-         * A(minor,minor) of A:
+         * Let x be the first column of the minor, and a^2 = |x|^2.
+         * x will be in the positions qr[minor][minor] through qr[m][minor].
+         * The first column of the transformed minor will be (a,0,0,..)'
+         * The sign of a is chosen to be opposite to the sign of the first
+         * component of x. Let's find a:
          */
-        for (int minor = 0; minor < FastMath.min(m, n); minor++) {
+        double xNormSqr = 0;
+        for (int row = minor; row < qrtMinor.length; row++) {
+            final double c = qrtMinor[row];
+            xNormSqr += c * c;
+        }
+        final double a = (qrtMinor[minor] > 0) ? -FastMath.sqrt(xNormSqr) : 
FastMath.sqrt(xNormSqr);
+        rDiag[minor] = a;
 
-            final double[] qrtMinor = qrt[minor];
+        if (a != 0.0) {
 
             /*
-             * Let x be the first column of the minor, and a^2 = |x|^2.
-             * x will be in the positions qr[minor][minor] through 
qr[m][minor].
-             * The first column of the transformed minor will be (a,0,0,..)'
-             * The sign of a is chosen to be opposite to the sign of the first
-             * component of x. Let's find a:
+             * Calculate the normalized reflection vector v and transform
+             * the first column. We know the norm of v beforehand: v = x-ae
+             * so |v|^2 = <x-ae,x-ae> = <x,x>-2a<x,e>+a^2<e,e> =
+             * a^2+a^2-2a<x,e> = 2a*(a - <x,e>).
+             * Here <x, e> is now qr[minor][minor].
+             * v = x-ae is stored in the column at qr:
              */
-            double xNormSqr = 0;
-            for (int row = minor; row < m; row++) {
-                final double c = qrtMinor[row];
-                xNormSqr += c * c;
-            }
-            final double a = (qrtMinor[minor] > 0) ? -FastMath.sqrt(xNormSqr) 
: FastMath.sqrt(xNormSqr);
-            rDiag[minor] = a;
-
-            if (a != 0.0) {
-
-                /*
-                 * Calculate the normalized reflection vector v and transform
-                 * the first column. We know the norm of v beforehand: v = x-ae
-                 * so |v|^2 = <x-ae,x-ae> = <x,x>-2a<x,e>+a^2<e,e> =
-                 * a^2+a^2-2a<x,e> = 2a*(a - <x,e>).
-                 * Here <x, e> is now qr[minor][minor].
-                 * v = x-ae is stored in the column at qr:
-                 */
-                qrtMinor[minor] -= a; // now |v|^2 = -2a*(qr[minor][minor])
-
-                /*
-                 * Transform the rest of the columns of the minor:
-                 * They will be transformed by the matrix H = I-2vv'/|v|^2.
-                 * If x is a column vector of the minor, then
-                 * Hx = (I-2vv'/|v|^2)x = x-2vv'x/|v|^2 = x - 2<x,v>/|v|^2 v.
-                 * Therefore the transformation is easily calculated by
-                 * subtracting the column vector (2<x,v>/|v|^2)v from x.
-                 *
-                 * Let 2<x,v>/|v|^2 = alpha. From above we have
-                 * |v|^2 = -2a*(qr[minor][minor]), so
-                 * alpha = -<x,v>/(a*qr[minor][minor])
-                 */
-                for (int col = minor+1; col < n; col++) {
-                    final double[] qrtCol = qrt[col];
-                    double alpha = 0;
-                    for (int row = minor; row < m; row++) {
-                        alpha -= qrtCol[row] * qrtMinor[row];
-                    }
-                    alpha /= a * qrtMinor[minor];
+            qrtMinor[minor] -= a; // now |v|^2 = -2a*(qr[minor][minor])
 
-                    // Subtract the column vector alpha*v from x.
-                    for (int row = minor; row < m; row++) {
-                        qrtCol[row] -= alpha * qrtMinor[row];
-                    }
+            /*
+             * Transform the rest of the columns of the minor:
+             * They will be transformed by the matrix H = I-2vv'/|v|^2.
+             * If x is a column vector of the minor, then
+             * Hx = (I-2vv'/|v|^2)x = x-2vv'x/|v|^2 = x - 2<x,v>/|v|^2 v.
+             * Therefore the transformation is easily calculated by
+             * subtracting the column vector (2<x,v>/|v|^2)v from x.
+             *
+             * Let 2<x,v>/|v|^2 = alpha. From above we have
+             * |v|^2 = -2a*(qr[minor][minor]), so
+             * alpha = -<x,v>/(a*qr[minor][minor])
+             */
+            for (int col = minor+1; col < qrt.length; col++) {
+                final double[] qrtCol = qrt[col];
+                double alpha = 0;
+                for (int row = minor; row < qrtCol.length; row++) {
+                    alpha -= qrtCol[row] * qrtMinor[row];
+                }
+                alpha /= a * qrtMinor[minor];
+
+                // Subtract the column vector alpha*v from x.
+                for (int row = minor; row < qrtCol.length; row++) {
+                    qrtCol[row] -= alpha * qrtMinor[row];
                 }
             }
         }
     }
 
+
     /**
      * Returns the matrix R of the decomposition.
      * <p>R is an upper-triangular matrix</p>

Added: 
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/linear/RRQRDecomposition.java
URL: 
http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math3/linear/RRQRDecomposition.java?rev=1455627&view=auto
==============================================================================
--- 
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/linear/RRQRDecomposition.java
 (added)
+++ 
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/linear/RRQRDecomposition.java
 Tue Mar 12 17:08:52 2013
@@ -0,0 +1,230 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.linear;
+
+import org.apache.commons.math3.util.FastMath;
+
+
+/**
+ * Calculates the rank-revealing QR-decomposition of a matrix, with column 
pivoting.
+ * <p>The rank-revealing QR-decomposition of a matrix A consists of three 
matrices Q,
+ * R and P such that AP=QR.  Q is orthogonal (Q<sup>T</sup>Q = I), and R is 
upper triangular.
+ * If A is m&times;n, Q is m&times;m and R is m&times;n and P is n&times;n.</p>
+ * <p>QR decomposition with column pivoting produces a rank-revealing QR
+ * decomposition and the {@link #getRank(double)} method may be used to return 
the rank of the
+ * input matrix A.</p>
+ * <p>This class compute the decomposition using Householder reflectors.</p>
+ * <p>For efficiency purposes, the decomposition in packed form is transposed.
+ * This allows inner loop to iterate inside rows, which is much more 
cache-efficient
+ * in Java.</p>
+ * <p>This class is based on the class with similar name from the
+ * <a href="http://math.nist.gov/javanumerics/jama/";>JAMA</a> library, with the
+ * following changes:</p>
+ * <ul>
+ *   <li>a {@link #getQT() getQT} method has been added,</li>
+ *   <li>the {@code solve} and {@code isFullRank} methods have been replaced
+ *   by a {@link #getSolver() getSolver} method and the equivalent methods
+ *   provided by the returned {@link DecompositionSolver}.</li>
+ * </ul>
+ *
+ * @see <a 
href="http://mathworld.wolfram.com/QRDecomposition.html";>MathWorld</a>
+ * @see <a href="http://en.wikipedia.org/wiki/QR_decomposition";>Wikipedia</a>
+ *
+ * @version $Id$
+ * @since 3.2
+ */
+public class RRQRDecomposition extends QRDecomposition {
+
+    /** An array to record the column pivoting for later creation of P. */
+    private int[] p;
+
+    /** Cached value of P. */
+    private RealMatrix cachedP;
+
+
+    /**
+     * Calculates the QR-decomposition of the given matrix.
+     * The singularity threshold defaults to zero.
+     *
+     * @param matrix The matrix to decompose.
+     *
+     * @see #QRDecomposition(RealMatrix,double)
+     */
+    public RRQRDecomposition(RealMatrix matrix) {
+        this(matrix, 0d);
+    }
+
+   /**
+     * Calculates the QR-decomposition of the given matrix.
+     *
+     * @param matrix The matrix to decompose.
+     * @param threshold Singularity threshold.
+     */
+    public RRQRDecomposition(RealMatrix matrix,  double threshold) {
+        super(matrix, threshold);
+    }
+
+    /** Decompose matrix.
+     * @param qrt transposed matrix
+     */
+    protected void decompose(double[][] qrt) {
+        p = new int[qrt.length];
+        for (int i = 0; i < p.length; i++) {
+            p[i] = i;
+        }
+        super.decompose(qrt);
+    }
+
+    /** Perform Householder reflection for a minor A(minor, minor) of A.
+     * @param minor minor index
+     * @param qrt transposed matrix
+     */
+    protected void performHouseholderReflection(int minor, double[][] qrt) {
+
+        double l2NormSquaredMax = 0;
+        // Find the unreduced column with the greatest L2-Norm
+        int l2NormSquaredMaxIndex = minor;
+        for (int i = minor; i < qrt.length; i++) {
+            double l2NormSquared = 0;
+            for (int j = 0; j < qrt[i].length; j++) {
+                l2NormSquared += qrt[i][j] * qrt[i][j];
+            }
+            if (l2NormSquared > l2NormSquaredMax) {
+                l2NormSquaredMax = l2NormSquared;
+                l2NormSquaredMaxIndex = i;
+            }
+        }
+        // swap the current column with that with the greated L2-Norm and 
record in p
+        if (l2NormSquaredMaxIndex != minor) {
+            double[] tmp1 = qrt[minor];
+            qrt[minor] = qrt[l2NormSquaredMaxIndex];
+            qrt[l2NormSquaredMaxIndex] = tmp1;
+            int tmp2 = p[minor];
+            p[minor] = p[l2NormSquaredMaxIndex];
+            p[l2NormSquaredMaxIndex] = tmp2;
+        }
+
+        super.performHouseholderReflection(minor, qrt);
+
+    }
+
+
+    /**
+     * Returns the pivot matrix, P, used in the QR Decomposition of matrix A 
such that AP = QR.
+     *
+     * If no pivoting is used in this decomposition then P is equal to the 
identity matrix.
+     *
+     * @return a permutation matrix.
+     */
+    public RealMatrix getP() {
+        if (cachedP == null) {
+            int n = p.length;
+            cachedP = MatrixUtils.createRealMatrix(n,n);
+            for (int i = 0; i < n; i++) {
+                cachedP.setEntry(p[i], i, 1);
+            }
+        }
+        return cachedP ;
+    }
+
+    /**
+     * Return the effective numerical matrix rank.
+     * <p>The effective numerical rank is the number of non-negligible
+     * singular values.</p>
+     * <p>This implementation looks at Frobenius norms of the sequence of
+     * bottom right submatrices.  When a large fall in norm is seen,
+     * the rank is returned. The drop is computed as:</p>
+     * <pre>
+     *   (thisNorm/lastNorm) * rNorm < dropThreshold
+     * </pre>
+     * <p>
+     * where thisNorm is the Frobenius norm of the current submatrix,
+     * lastNorm is the Frobenius norm of the previous submatrix,
+     * rNorm is is the Frobenius norm of the complete matrix
+     * </p>
+     *
+     * @param dropThreshold threshold triggering rank computation
+     * @return effective numerical matrix rank
+     */
+    public int getRank(final double dropThreshold) {
+        RealMatrix r    = getR();
+        int rows        = r.getRowDimension();
+        int columns     = r.getColumnDimension();
+        int rank        = 1;
+        double lastNorm = r.getFrobeniusNorm();
+        double rNorm    = lastNorm;
+        while (rank < FastMath.min(rows, columns)) {
+            double thisNorm = r.getSubMatrix(rank, rows - 1, rank, columns - 
1).getFrobeniusNorm();
+            if (thisNorm == 0 || (thisNorm / lastNorm) * rNorm < 
dropThreshold) {
+                break;
+            }
+            lastNorm = thisNorm;
+            rank++;
+        }
+        return rank;
+    }
+
+    /**
+     * Get a solver for finding the A &times; X = B solution in least square 
sense.
+     * @return a solver
+     */
+    public DecompositionSolver getSolver() {
+        return new Solver(super.getSolver(), this.getP());
+    }
+
+    /** Specialized solver. */
+    private static class Solver implements DecompositionSolver {
+
+        /** Upper level solver. */
+        private final DecompositionSolver upper;
+
+        /** A permutation matrix for the pivots used in the QR decomposition */
+        private RealMatrix p;
+
+        /**
+         * Build a solver from decomposed matrix.
+         *
+         * @param upper upper level solver.
+         * @param p permutation matrix
+         */
+        private Solver(final DecompositionSolver upper, final RealMatrix p) {
+            this.upper = upper;
+            this.p     = p;
+        }
+
+        /** {@inheritDoc} */
+        public boolean isNonSingular() {
+            return upper.isNonSingular();
+        }
+
+        /** {@inheritDoc} */
+        public RealVector solve(RealVector b) {
+            return p.operate(upper.solve(b));
+        }
+
+        /** {@inheritDoc} */
+        public RealMatrix solve(RealMatrix b) {
+            return p.multiply(upper.solve(b));
+        }
+
+        /** {@inheritDoc} */
+        public RealMatrix getInverse() {
+            return 
solve(MatrixUtils.createRealIdentityMatrix(p.getRowDimension()));
+        }
+    }
+}

Propchange: 
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/linear/RRQRDecomposition.java
------------------------------------------------------------------------------
    svn:eol-style = native

Propchange: 
commons/proper/math/trunk/src/main/java/org/apache/commons/math3/linear/RRQRDecomposition.java
------------------------------------------------------------------------------
    svn:keywords = "Author Date Id Revision"

Modified: 
commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/QRDecompositionTest.java
URL: 
http://svn.apache.org/viewvc/commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/QRDecompositionTest.java?rev=1455627&r1=1455626&r2=1455627&view=diff
==============================================================================
--- 
commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/QRDecompositionTest.java
 (original)
+++ 
commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/QRDecompositionTest.java
 Tue Mar 12 17:08:52 2013
@@ -245,8 +245,7 @@ public class QRDecompositionTest {
     public void testNonInvertible() {
         QRDecomposition qr =
             new 
QRDecomposition(MatrixUtils.createRealMatrix(testData3x3Singular));
-
-        final RealMatrix inv = qr.getSolver().getInverse();
+        qr.getSolver().getInverse();
     }
 
     private RealMatrix createTestMatrix(final Random r, final int rows, final 
int columns) {

Copied: 
commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/RRQRDecompositionTest.java
 (from r1455260, 
commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/QRDecompositionTest.java)
URL: 
http://svn.apache.org/viewvc/commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/RRQRDecompositionTest.java?p2=commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/RRQRDecompositionTest.java&p1=commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/QRDecompositionTest.java&r1=1455260&r2=1455627&rev=1455627&view=diff
==============================================================================
--- 
commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/QRDecompositionTest.java
 (original)
+++ 
commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/RRQRDecompositionTest.java
 Tue Mar 12 17:08:52 2013
@@ -18,13 +18,12 @@
 package org.apache.commons.math3.linear;
 
 import java.util.Random;
-import org.apache.commons.math3.linear.SingularMatrixException;
 
 import org.junit.Assert;
 import org.junit.Test;
 
 
-public class QRDecompositionTest {
+public class RRQRDecompositionTest {
     private double[][] testData3x3NonSingular = {
             { 12, -51, 4 },
             { 6, 167, -68 },
@@ -70,36 +69,36 @@ public class QRDecompositionTest {
     private void checkDimension(RealMatrix m) {
         int rows = m.getRowDimension();
         int columns = m.getColumnDimension();
-        QRDecomposition qr = new QRDecomposition(m);
+        RRQRDecomposition qr = new RRQRDecomposition(m);
         Assert.assertEquals(rows,    qr.getQ().getRowDimension());
         Assert.assertEquals(rows,    qr.getQ().getColumnDimension());
         Assert.assertEquals(rows,    qr.getR().getRowDimension());
         Assert.assertEquals(columns, qr.getR().getColumnDimension());
     }
 
-    /** test A = QR */
+    /** test AP = QR */
     @Test
-    public void testAEqualQR() {
-        checkAEqualQR(MatrixUtils.createRealMatrix(testData3x3NonSingular));
+    public void testAPEqualQR() {
+        checkAPEqualQR(MatrixUtils.createRealMatrix(testData3x3NonSingular));
 
-        checkAEqualQR(MatrixUtils.createRealMatrix(testData3x3Singular));
+        checkAPEqualQR(MatrixUtils.createRealMatrix(testData3x3Singular));
 
-        checkAEqualQR(MatrixUtils.createRealMatrix(testData3x4));
+        checkAPEqualQR(MatrixUtils.createRealMatrix(testData3x4));
 
-        checkAEqualQR(MatrixUtils.createRealMatrix(testData4x3));
+        checkAPEqualQR(MatrixUtils.createRealMatrix(testData4x3));
 
         Random r = new Random(643895747384642l);
         int    p = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
         int    q = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
-        checkAEqualQR(createTestMatrix(r, p, q));
+        checkAPEqualQR(createTestMatrix(r, p, q));
 
-        checkAEqualQR(createTestMatrix(r, q, p));
+        checkAPEqualQR(createTestMatrix(r, q, p));
 
     }
 
-    private void checkAEqualQR(RealMatrix m) {
-        QRDecomposition qr = new QRDecomposition(m);
-        double norm = qr.getQ().multiply(qr.getR()).subtract(m).getNorm();
+    private void checkAPEqualQR(RealMatrix m) {
+        RRQRDecomposition rrqr = new RRQRDecomposition(m);
+        double norm = 
rrqr.getQ().multiply(rrqr.getR()).subtract(m.multiply(rrqr.getP())).getNorm();
         Assert.assertEquals(0, norm, normTolerance);
     }
 
@@ -124,7 +123,7 @@ public class QRDecompositionTest {
     }
 
     private void checkQOrthogonal(RealMatrix m) {
-        QRDecomposition qr = new QRDecomposition(m);
+        RRQRDecomposition qr = new RRQRDecomposition(m);
         RealMatrix eye = 
MatrixUtils.createRealIdentityMatrix(m.getRowDimension());
         double norm = qr.getQT().multiply(qr.getQ()).subtract(eye).getNorm();
         Assert.assertEquals(0, norm, normTolerance);
@@ -134,25 +133,25 @@ public class QRDecompositionTest {
     @Test
     public void testRUpperTriangular() {
         RealMatrix matrix = 
MatrixUtils.createRealMatrix(testData3x3NonSingular);
-        checkUpperTriangular(new QRDecomposition(matrix).getR());
+        checkUpperTriangular(new RRQRDecomposition(matrix).getR());
 
         matrix = MatrixUtils.createRealMatrix(testData3x3Singular);
-        checkUpperTriangular(new QRDecomposition(matrix).getR());
+        checkUpperTriangular(new RRQRDecomposition(matrix).getR());
 
         matrix = MatrixUtils.createRealMatrix(testData3x4);
-        checkUpperTriangular(new QRDecomposition(matrix).getR());
+        checkUpperTriangular(new RRQRDecomposition(matrix).getR());
 
         matrix = MatrixUtils.createRealMatrix(testData4x3);
-        checkUpperTriangular(new QRDecomposition(matrix).getR());
+        checkUpperTriangular(new RRQRDecomposition(matrix).getR());
 
         Random r = new Random(643895747384642l);
         int    p = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
         int    q = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
         matrix = createTestMatrix(r, p, q);
-        checkUpperTriangular(new QRDecomposition(matrix).getR());
+        checkUpperTriangular(new RRQRDecomposition(matrix).getR());
 
         matrix = createTestMatrix(r, p, q);
-        checkUpperTriangular(new QRDecomposition(matrix).getR());
+        checkUpperTriangular(new RRQRDecomposition(matrix).getR());
 
     }
 
@@ -171,25 +170,25 @@ public class QRDecompositionTest {
     @Test
     public void testHTrapezoidal() {
         RealMatrix matrix = 
MatrixUtils.createRealMatrix(testData3x3NonSingular);
-        checkTrapezoidal(new QRDecomposition(matrix).getH());
+        checkTrapezoidal(new RRQRDecomposition(matrix).getH());
 
         matrix = MatrixUtils.createRealMatrix(testData3x3Singular);
-        checkTrapezoidal(new QRDecomposition(matrix).getH());
+        checkTrapezoidal(new RRQRDecomposition(matrix).getH());
 
         matrix = MatrixUtils.createRealMatrix(testData3x4);
-        checkTrapezoidal(new QRDecomposition(matrix).getH());
+        checkTrapezoidal(new RRQRDecomposition(matrix).getH());
 
         matrix = MatrixUtils.createRealMatrix(testData4x3);
-        checkTrapezoidal(new QRDecomposition(matrix).getH());
+        checkTrapezoidal(new RRQRDecomposition(matrix).getH());
 
         Random r = new Random(643895747384642l);
         int    p = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
         int    q = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
         matrix = createTestMatrix(r, p, q);
-        checkTrapezoidal(new QRDecomposition(matrix).getH());
+        checkTrapezoidal(new RRQRDecomposition(matrix).getH());
 
         matrix = createTestMatrix(r, p, q);
-        checkTrapezoidal(new QRDecomposition(matrix).getH());
+        checkTrapezoidal(new RRQRDecomposition(matrix).getH());
 
     }
 
@@ -203,50 +202,12 @@ public class QRDecompositionTest {
             }
         });
     }
-    /** test matrices values */
-    @Test
-    public void testMatricesValues() {
-        QRDecomposition qr =
-            new 
QRDecomposition(MatrixUtils.createRealMatrix(testData3x3NonSingular));
-        RealMatrix qRef = MatrixUtils.createRealMatrix(new double[][] {
-                { -12.0 / 14.0,   69.0 / 175.0,  -58.0 / 175.0 },
-                {  -6.0 / 14.0, -158.0 / 175.0,    6.0 / 175.0 },
-                {   4.0 / 14.0,  -30.0 / 175.0, -165.0 / 175.0 }
-        });
-        RealMatrix rRef = MatrixUtils.createRealMatrix(new double[][] {
-                { -14.0,  -21.0, 14.0 },
-                {   0.0, -175.0, 70.0 },
-                {   0.0,    0.0, 35.0 }
-        });
-        RealMatrix hRef = MatrixUtils.createRealMatrix(new double[][] {
-                { 26.0 / 14.0, 0.0, 0.0 },
-                {  6.0 / 14.0, 648.0 / 325.0, 0.0 },
-                { -4.0 / 14.0,  36.0 / 325.0, 2.0 }
-        });
-
-        // check values against known references
-        RealMatrix q = qr.getQ();
-        Assert.assertEquals(0, q.subtract(qRef).getNorm(), 1.0e-13);
-        RealMatrix qT = qr.getQT();
-        Assert.assertEquals(0, qT.subtract(qRef.transpose()).getNorm(), 
1.0e-13);
-        RealMatrix r = qr.getR();
-        Assert.assertEquals(0, r.subtract(rRef).getNorm(), 1.0e-13);
-        RealMatrix h = qr.getH();
-        Assert.assertEquals(0, h.subtract(hRef).getNorm(), 1.0e-13);
-
-        // check the same cached instance is returned the second time
-        Assert.assertTrue(q == qr.getQ());
-        Assert.assertTrue(r == qr.getR());
-        Assert.assertTrue(h == qr.getH());
-
-    }
 
     @Test(expected=SingularMatrixException.class)
     public void testNonInvertible() {
-        QRDecomposition qr =
-            new 
QRDecomposition(MatrixUtils.createRealMatrix(testData3x3Singular));
-
-        final RealMatrix inv = qr.getSolver().getInverse();
+        RRQRDecomposition qr =
+            new 
RRQRDecomposition(MatrixUtils.createRealMatrix(testData3x3Singular), 3.0e-16);
+        qr.getSolver().getInverse();
     }
 
     private RealMatrix createTestMatrix(final Random r, final int rows, final 
int columns) {
@@ -260,4 +221,13 @@ public class QRDecompositionTest {
         return m;
     }
 
+    /** test the rank is returned correctly */
+    @Test
+    public void testRank() {
+        double[][] d = { { 1, 1, 1 }, { 0, 0, 0 }, { 1, 2, 3 } };
+        RealMatrix m = new Array2DRowRealMatrix(d);
+        RRQRDecomposition qr = new RRQRDecomposition(m);
+        Assert.assertEquals(2, qr.getRank(1.0e-16));
+    }
+
 }

Added: 
commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/RRQRSolverTest.java
URL: 
http://svn.apache.org/viewvc/commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/RRQRSolverTest.java?rev=1455627&view=auto
==============================================================================
--- 
commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/RRQRSolverTest.java
 (added)
+++ 
commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/RRQRSolverTest.java
 Tue Mar 12 17:08:52 2013
@@ -0,0 +1,202 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements.  See the NOTICE file distributed with
+ * this work for additional information regarding copyright ownership.
+ * The ASF licenses this file to You under the Apache License, Version 2.0
+ * (the "License"); you may not use this file except in compliance with
+ * the License.  You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package org.apache.commons.math3.linear;
+
+import java.util.Random;
+
+import org.apache.commons.math3.exception.MathIllegalArgumentException;
+
+import org.junit.Test;
+import org.junit.Assert;
+
+public class RRQRSolverTest {
+    double[][] testData3x3NonSingular = {
+            { 12, -51,   4 },
+            {  6, 167, -68 },
+            { -4,  24, -41 }
+    };
+
+    double[][] testData3x3Singular = {
+            { 1, 2,  2 },
+            { 2, 4,  6 },
+            { 4, 8, 12 }
+    };
+
+    double[][] testData3x4 = {
+            { 12, -51,   4, 1 },
+            {  6, 167, -68, 2 },
+            { -4,  24, -41, 3 }
+    };
+
+    double[][] testData4x3 = {
+            { 12, -51,   4 },
+            {  6, 167, -68 },
+            { -4,  24, -41 },
+            { -5,  34,   7 }
+    };
+
+    /** test rank */
+    @Test
+    public void testRank() {
+        DecompositionSolver solver =
+            new 
RRQRDecomposition(MatrixUtils.createRealMatrix(testData3x3NonSingular), 
1.0e-16).getSolver();
+        Assert.assertTrue(solver.isNonSingular());
+
+        solver = new 
RRQRDecomposition(MatrixUtils.createRealMatrix(testData3x3Singular), 
1.0e-16).getSolver();
+        Assert.assertFalse(solver.isNonSingular());
+
+        solver = new 
RRQRDecomposition(MatrixUtils.createRealMatrix(testData3x4), 
1.0e-16).getSolver();
+        Assert.assertTrue(solver.isNonSingular());
+
+        solver = new 
RRQRDecomposition(MatrixUtils.createRealMatrix(testData4x3), 
1.0e-16).getSolver();
+        Assert.assertTrue(solver.isNonSingular());
+
+    }
+
+    /** test solve dimension errors */
+    @Test
+    public void testSolveDimensionErrors() {
+        DecompositionSolver solver =
+            new 
RRQRDecomposition(MatrixUtils.createRealMatrix(testData3x3NonSingular)).getSolver();
+        RealMatrix b = MatrixUtils.createRealMatrix(new double[2][2]);
+        try {
+            solver.solve(b);
+            Assert.fail("an exception should have been thrown");
+        } catch (MathIllegalArgumentException iae) {
+            // expected behavior
+        }
+        try {
+            solver.solve(b.getColumnVector(0));
+            Assert.fail("an exception should have been thrown");
+        } catch (MathIllegalArgumentException iae) {
+            // expected behavior
+        }
+
+    }
+
+    /** test solve rank errors */
+    @Test
+    public void testSolveRankErrors() {
+        DecompositionSolver solver =
+            new 
RRQRDecomposition(MatrixUtils.createRealMatrix(testData3x3Singular), 
1.0e-16).getSolver();
+        RealMatrix b = MatrixUtils.createRealMatrix(new double[3][2]);
+        try {
+            solver.solve(b);
+            Assert.fail("an exception should have been thrown");
+        } catch (SingularMatrixException iae) {
+            // expected behavior
+        }
+        try {
+            solver.solve(b.getColumnVector(0));
+            Assert.fail("an exception should have been thrown");
+        } catch (SingularMatrixException iae) {
+            // expected behavior
+        }
+
+    }
+
+    /** test solve */
+    @Test
+    public void testSolve() {
+        RealMatrix b = MatrixUtils.createRealMatrix(new double[][] {
+                { -102, 12250 }, { 544, 24500 }, { 167, -36750 }
+        });
+        RealMatrix xRef = MatrixUtils.createRealMatrix(new double[][] {
+                { 1, 2515 }, { 2, 422 }, { -3, 898 }
+        });
+
+        
+        RRQRDecomposition decomposition = new 
RRQRDecomposition(MatrixUtils.createRealMatrix(testData3x3NonSingular));
+        DecompositionSolver solver = decomposition.getSolver();
+        
+        // using RealMatrix
+        Assert.assertEquals(0, solver.solve(b).subtract(xRef).getNorm(), 
3.0e-16 * xRef.getNorm());
+
+        // using ArrayRealVector
+        for (int i = 0; i < b.getColumnDimension(); ++i) {
+            final RealVector x = solver.solve(b.getColumnVector(i));
+            final double error = x.subtract(xRef.getColumnVector(i)).getNorm();
+            Assert.assertEquals(0, error, 3.0e-16 * 
xRef.getColumnVector(i).getNorm());
+        }
+
+        // using RealVector with an alternate implementation
+        for (int i = 0; i < b.getColumnDimension(); ++i) {
+            ArrayRealVectorTest.RealVectorTestImpl v =
+                new ArrayRealVectorTest.RealVectorTestImpl(b.getColumn(i));
+            final RealVector x = solver.solve(v);
+            final double error = x.subtract(xRef.getColumnVector(i)).getNorm();
+            Assert.assertEquals(0, error, 3.0e-16 * 
xRef.getColumnVector(i).getNorm());
+        }
+
+    }
+
+    @Test
+    public void testOverdetermined() {
+        final Random r    = new Random(5559252868205245l);
+        int          p    = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
+        int          q    = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
+        RealMatrix   a    = createTestMatrix(r, p, q);
+        RealMatrix   xRef = createTestMatrix(r, q, BlockRealMatrix.BLOCK_SIZE 
+ 3);
+
+        // build a perturbed system: A.X + noise = B
+        RealMatrix b = a.multiply(xRef);
+        final double noise = 0.001;
+        b.walkInOptimizedOrder(new DefaultRealMatrixChangingVisitor() {
+            @Override
+            public double visit(int row, int column, double value) {
+                return value * (1.0 + noise * (2 * r.nextDouble() - 1));
+            }
+        });
+
+        // despite perturbation, the least square solution should be pretty 
good
+        RealMatrix x = new RRQRDecomposition(a).getSolver().solve(b);
+        Assert.assertEquals(0, x.subtract(xRef).getNorm(), 0.01 * noise * p * 
q);
+
+    }
+
+    @Test
+    public void testUnderdetermined() {
+        final Random r    = new Random(42185006424567123l);
+        int          p    = (5 * BlockRealMatrix.BLOCK_SIZE) / 4;
+        int          q    = (7 * BlockRealMatrix.BLOCK_SIZE) / 4;
+        RealMatrix   a    = createTestMatrix(r, p, q);
+        RealMatrix   xRef = createTestMatrix(r, q, BlockRealMatrix.BLOCK_SIZE 
+ 3);
+        RealMatrix   b    = a.multiply(xRef);
+        RRQRDecomposition rrqrd = new RRQRDecomposition(a);
+        RealMatrix   x = rrqrd.getSolver().solve(b);
+
+        // too many equations, the system cannot be solved at all
+        Assert.assertTrue(x.subtract(xRef).getNorm() / (p * q) > 0.01);
+
+        // the last permuted unknown should have been set to 0
+        RealMatrix permuted = rrqrd.getP().transpose().multiply(x);
+        Assert.assertEquals(0.0, permuted.getSubMatrix(p, q - 1, 0, 
permuted.getColumnDimension() - 1).getNorm(), 0);
+
+    }
+
+    private RealMatrix createTestMatrix(final Random r, final int rows, final 
int columns) {
+        RealMatrix m = MatrixUtils.createRealMatrix(rows, columns);
+        m.walkInOptimizedOrder(new DefaultRealMatrixChangingVisitor() {
+                @Override
+                    public double visit(int row, int column, double value) {
+                    return 2.0 * r.nextDouble() - 1.0;
+                }
+            });
+        return m;
+    }
+}

Propchange: 
commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/RRQRSolverTest.java
------------------------------------------------------------------------------
    svn:eol-style = native

Propchange: 
commons/proper/math/trunk/src/test/java/org/apache/commons/math3/linear/RRQRSolverTest.java
------------------------------------------------------------------------------
    svn:keywords = "Author Date Id Revision"


Reply via email to