Author: celestin Date: Mon Apr 30 06:38:00 2012 New Revision: 1332076 URL: http://svn.apache.org/viewvc?rev=1332076&view=rev Log: In o.a.c.m3.optimization.general.AbstractLeastSquaresOptimizer, improved the javadoc of guessParametersErrors() (MATH-784).
Modified: commons/proper/math/trunk/src/main/java/org/apache/commons/math3/optimization/general/AbstractLeastSquaresOptimizer.java Modified: commons/proper/math/trunk/src/main/java/org/apache/commons/math3/optimization/general/AbstractLeastSquaresOptimizer.java URL: http://svn.apache.org/viewvc/commons/proper/math/trunk/src/main/java/org/apache/commons/math3/optimization/general/AbstractLeastSquaresOptimizer.java?rev=1332076&r1=1332075&r2=1332076&view=diff ============================================================================== --- commons/proper/math/trunk/src/main/java/org/apache/commons/math3/optimization/general/AbstractLeastSquaresOptimizer.java (original) +++ commons/proper/math/trunk/src/main/java/org/apache/commons/math3/optimization/general/AbstractLeastSquaresOptimizer.java Mon Apr 30 06:38:00 2012 @@ -224,12 +224,27 @@ public abstract class AbstractLeastSquar } /** - * Guess the errors in optimized parameters. - * Guessing is covariance-based: It only gives a rough order of magnitude. + * <p> + * Returns an estimate of the standard deviation of each parameter. The + * returned values are the so-called (asymptotic) standard errors on the + * parameters, defined as {@code sd(a[i]) = sqrt(S / (n - m) * C[i][i])}, + * where {@code a[i]} is the optimized value of the {@code i}-th parameter, + * {@code S} is the minimized value of the sum of squares objective function + * (as returned by {@link #getChiSquare()}), {@code n} is the number of + * observations, {@code m} is the number of parameters and {@code C} is the + * covariance matrix. + * </p> + * <p> + * See also + * <a href="http://en.wikipedia.org/wiki/Least_squares">Wikipedia</a>, + * or + * <a href="http://mathworld.wolfram.com/LeastSquaresFitting.html">MathWorld</a>, + * equations (34) and (35) for a particular case. + * </p> * - * @return errors in optimized parameters + * @return an estimate of the standard deviation of the optimized parameters * @throws org.apache.commons.math3.linear.SingularMatrixException - * if the covariances matrix cannot be computed. + * if the covariance matrix cannot be computed. * @throws NumberIsTooSmallException if the number of degrees of freedom is not * positive, i.e. the number of measurements is less or equal to the number of * parameters.