Author: erans
Date: Thu Aug 18 13:38:29 2011
New Revision: 1159214

URL: http://svn.apache.org/viewvc?rev=1159214&view=rev
Log:
Removed "try" blocks.

Modified:
    
commons/proper/math/trunk/src/test/java/org/apache/commons/math/optimization/general/GaussNewtonOptimizerTest.java

Modified: 
commons/proper/math/trunk/src/test/java/org/apache/commons/math/optimization/general/GaussNewtonOptimizerTest.java
URL: 
http://svn.apache.org/viewvc/commons/proper/math/trunk/src/test/java/org/apache/commons/math/optimization/general/GaussNewtonOptimizerTest.java?rev=1159214&r1=1159213&r2=1159214&view=diff
==============================================================================
--- 
commons/proper/math/trunk/src/test/java/org/apache/commons/math/optimization/general/GaussNewtonOptimizerTest.java
 (original)
+++ 
commons/proper/math/trunk/src/test/java/org/apache/commons/math/optimization/general/GaussNewtonOptimizerTest.java
 Thu Aug 18 13:38:29 2011
@@ -201,7 +201,7 @@ public class GaussNewtonOptimizerTest {
 
     }
 
-    @Test
+    @Test(expected=ConvergenceException.class)
     public void testNonInversible() throws Exception {
 
         LinearProblem problem = new LinearProblem(new double[][] {
@@ -211,12 +211,7 @@ public class GaussNewtonOptimizerTest {
         }, new double[] { 1, 1, 1 });
         GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
         optimizer.setConvergenceChecker(new 
SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
-        try {
-            optimizer.optimize(100, problem, problem.target, new double[] { 1, 
1, 1 }, new double[] { 0, 0, 0 });
-            Assert.fail("an exception should have been caught");
-        } catch (ConvergenceException ee) {
-            // expected behavior
-        }
+        optimizer.optimize(100, problem, problem.target, new double[] { 1, 1, 
1 }, new double[] { 0, 0, 0 });
     }
 
     @Test
@@ -255,7 +250,7 @@ public class GaussNewtonOptimizerTest {
 
     }
 
-    @Test
+    @Test(expected=ConvergenceException.class)
     public void testMoreEstimatedParametersSimple() throws Exception {
 
         LinearProblem problem = new LinearProblem(new double[][] {
@@ -266,16 +261,11 @@ public class GaussNewtonOptimizerTest {
 
         GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
         optimizer.setConvergenceChecker(new 
SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
-        try {
-            optimizer.optimize(100, problem, problem.target, new double[] { 1, 
1, 1 },
-                               new double[] { 7, 6, 5, 4 });
-            Assert.fail("an exception should have been caught");
-        } catch (ConvergenceException ee) {
-            // expected behavior
-        }
+        optimizer.optimize(100, problem, problem.target, new double[] { 1, 1, 
1 },
+                           new double[] { 7, 6, 5, 4 });
     }
 
-    @Test
+    @Test(expected=ConvergenceException.class)
     public void testMoreEstimatedParametersUnsorted() throws Exception {
         LinearProblem problem = new LinearProblem(new double[][] {
                  { 1.0, 1.0,  0.0,  0.0, 0.0,  0.0 },
@@ -286,13 +276,8 @@ public class GaussNewtonOptimizerTest {
         }, new double[] { 3.0, 12.0, -1.0, 7.0, 1.0 });
         GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
         optimizer.setConvergenceChecker(new 
SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
-        try {
-            optimizer.optimize(100, problem, problem.target, new double[] { 1, 
1, 1, 1, 1 },
-                               new double[] { 2, 2, 2, 2, 2, 2 });
-            Assert.fail("an exception should have been caught");
-        } catch (ConvergenceException ee) {
-            // expected behavior
-        }
+        optimizer.optimize(100, problem, problem.target, new double[] { 1, 1, 
1, 1, 1 },
+                           new double[] { 2, 2, 2, 2, 2, 2 });
     }
 
     @Test
@@ -311,7 +296,6 @@ public class GaussNewtonOptimizerTest {
         Assert.assertEquals(0, optimizer.getRMS(), 1.0e-10);
         Assert.assertEquals(2.0, optimum.getPoint()[0], 1.0e-8);
         Assert.assertEquals(1.0, optimum.getPoint()[1], 1.0e-8);
-
     }
 
     @Test
@@ -329,8 +313,8 @@ public class GaussNewtonOptimizerTest {
 
     }
 
-    @Test
-    public void testInconsistentSizes() throws MathUserException {
+    @Test(expected=DimensionMismatchException.class)
+    public void testInconsistentSizes1() throws MathUserException {
         LinearProblem problem =
             new LinearProblem(new double[][] { { 1, 0 }, { 0, 1 } }, new 
double[] { -1, 1 });
         GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
@@ -342,27 +326,30 @@ public class GaussNewtonOptimizerTest {
         Assert.assertEquals(-1, optimum.getPoint()[0], 1.0e-10);
         Assert.assertEquals(+1, optimum.getPoint()[1], 1.0e-10);
 
-        try {
-            optimizer.optimize(100, problem, problem.target,
-                               new double[] { 1 },
-                               new double[] { 0, 0 });
-            Assert.fail("an exception should have been thrown");
-        } catch (DimensionMismatchException oe) {
-            // expected behavior
-        }
+        optimizer.optimize(100, problem, problem.target,
+                           new double[] { 1 },
+                           new double[] { 0, 0 });
+    }
 
-        try {
-            optimizer.optimize(100, problem, new double[] { 1 },
-                               new double[] { 1 },
-                               new double[] { 0, 0 });
-            Assert.fail("an exception should have been thrown");
-        } catch (DimensionMismatchException oe) {
-            // expected behavior
-        }
+    @Test(expected=DimensionMismatchException.class)
+    public void testInconsistentSizes2() throws MathUserException {
+        LinearProblem problem =
+            new LinearProblem(new double[][] { { 1, 0 }, { 0, 1 } }, new 
double[] { -1, 1 });
+        GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
+        optimizer.setConvergenceChecker(new 
SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
+
+        VectorialPointValuePair optimum =
+            optimizer.optimize(100, problem, problem.target, new double[] { 1, 
1 }, new double[] { 0, 0 });
+        Assert.assertEquals(0, optimizer.getRMS(), 1.0e-10);
+        Assert.assertEquals(-1, optimum.getPoint()[0], 1.0e-10);
+        Assert.assertEquals(+1, optimum.getPoint()[1], 1.0e-10);
 
+        optimizer.optimize(100, problem, new double[] { 1 },
+                           new double[] { 1 },
+                           new double[] { 0, 0 });
     }
 
-    @Test
+    @Test(expected=TooManyEvaluationsException.class)
     public void testMaxEvaluations() throws Exception {
         CircleVectorial circle = new CircleVectorial();
         circle.addPoint( 30.0,  68.0);
@@ -372,14 +359,10 @@ public class GaussNewtonOptimizerTest {
         circle.addPoint( 45.0,  97.0);
         GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
         optimizer.setConvergenceChecker(new 
SimpleVectorialPointChecker(1.0e-30, 1.0e-30));
-        try {
-            optimizer.optimize(100, circle, new double[] { 0, 0, 0, 0, 0 },
-                               new double[] { 1, 1, 1, 1, 1 },
-                               new double[] { 98.680, 47.345 });
-            Assert.fail("an exception should have been caught");
-        } catch (TooManyEvaluationsException ee) {
-            // expected behavior
-        }
+
+        optimizer.optimize(100, circle, new double[] { 0, 0, 0, 0, 0 },
+                           new double[] { 1, 1, 1, 1, 1 },
+                           new double[] { 98.680, 47.345 });
     }
 
     @Test
@@ -403,40 +386,10 @@ public class GaussNewtonOptimizerTest {
         Assert.assertEquals(48.135167894714,   center.y, 1.0e-10);
     }
 
-    @Test
+    @Test(expected=ConvergenceException.class)
     public void testCircleFittingBadInit() throws MathUserException {
         CircleVectorial circle = new CircleVectorial();
-        double[][] points = new double[][] {
-                {-0.312967,  0.072366}, {-0.339248,  0.132965}, {-0.379780,  
0.202724},
-                {-0.390426,  0.260487}, {-0.361212,  0.328325}, {-0.346039,  
0.392619},
-                {-0.280579,  0.444306}, {-0.216035,  0.470009}, {-0.149127,  
0.493832},
-                {-0.075133,  0.483271}, {-0.007759,  0.452680}, { 0.060071,  
0.410235},
-                { 0.103037,  0.341076}, { 0.118438,  0.273884}, { 0.131293,  
0.192201},
-                { 0.115869,  0.129797}, { 0.072223,  0.058396}, { 0.022884,  
0.000718},
-                {-0.053355, -0.020405}, {-0.123584, -0.032451}, {-0.216248, 
-0.032862},
-                {-0.278592, -0.005008}, {-0.337655,  0.056658}, {-0.385899,  
0.112526},
-                {-0.405517,  0.186957}, {-0.415374,  0.262071}, {-0.387482,  
0.343398},
-                {-0.347322,  0.397943}, {-0.287623,  0.458425}, {-0.223502,  
0.475513},
-                {-0.135352,  0.478186}, {-0.061221,  0.483371}, { 0.003711,  
0.422737},
-                { 0.065054,  0.375830}, { 0.108108,  0.297099}, { 0.123882,  
0.222850},
-                { 0.117729,  0.134382}, { 0.085195,  0.056820}, { 0.029800, 
-0.019138},
-                {-0.027520, -0.072374}, {-0.102268, -0.091555}, {-0.200299, 
-0.106578},
-                {-0.292731, -0.091473}, {-0.356288, -0.051108}, {-0.420561,  
0.014926},
-                {-0.471036,  0.074716}, {-0.488638,  0.182508}, {-0.485990,  
0.254068},
-                {-0.463943,  0.338438}, {-0.406453,  0.404704}, {-0.334287,  
0.466119},
-                {-0.254244,  0.503188}, {-0.161548,  0.495769}, {-0.075733,  
0.495560},
-                { 0.001375,  0.434937}, { 0.082787,  0.385806}, { 0.115490,  
0.323807},
-                { 0.141089,  0.223450}, { 0.138693,  0.131703}, { 0.126415,  
0.049174},
-                { 0.066518, -0.010217}, {-0.005184, -0.070647}, {-0.080985, 
-0.103635},
-                {-0.177377, -0.116887}, {-0.260628, -0.100258}, {-0.335756, 
-0.056251},
-                {-0.405195, -0.000895}, {-0.444937,  0.085456}, {-0.484357,  
0.175597},
-                {-0.472453,  0.248681}, {-0.438580,  0.347463}, {-0.402304,  
0.422428},
-                {-0.326777,  0.479438}, {-0.247797,  0.505581}, {-0.152676,  
0.519380},
-                {-0.071754,  0.516264}, { 0.015942,  0.472802}, { 0.076608,  
0.419077},
-                { 0.127673,  0.330264}, { 0.159951,  0.262150}, { 0.153530,  
0.172681},
-                { 0.140653,  0.089229}, { 0.078666,  0.024981}, { 0.023807, 
-0.037022},
-                {-0.048837, -0.077056}, {-0.127729, -0.075338}, {-0.221271, 
-0.067526}
-        };
+        double[][] points = circlePoints;
         double[] target = new double[points.length];
         Arrays.fill(target, 0.0);
         double[] weights = new double[points.length];
@@ -446,19 +399,29 @@ public class GaussNewtonOptimizerTest {
         }
         GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
         optimizer.setConvergenceChecker(new 
SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
-        try {
-            optimizer.optimize(100, circle, target, weights, new double[] { 
-12, -12 });
-            Assert.fail("an exception should have been caught");
-        } catch (ConvergenceException ee) {
-            // expected behavior
+
+        optimizer.optimize(100, circle, target, weights, new double[] { -12, 
-12 });
+    }
+
+    @Test
+    public void testCircleFittingGoodInit() throws MathUserException {
+        CircleVectorial circle = new CircleVectorial();
+        double[][] points = circlePoints;
+        double[] target = new double[points.length];
+        Arrays.fill(target, 0.0);
+        double[] weights = new double[points.length];
+        Arrays.fill(weights, 2.0);
+        for (int i = 0; i < points.length; ++i) {
+            circle.addPoint(points[i][0], points[i][1]);
         }
+        GaussNewtonOptimizer optimizer = new GaussNewtonOptimizer(true);
+        optimizer.setConvergenceChecker(new 
SimpleVectorialValueChecker(1.0e-6, 1.0e-6));
 
         VectorialPointValuePair optimum =
             optimizer.optimize(100, circle, target, weights, new double[] { 0, 
0 });
         Assert.assertEquals(-0.1517383071957963, optimum.getPointRef()[0], 
1.0e-6);
         Assert.assertEquals(0.2074999736353867,  optimum.getPointRef()[1], 
1.0e-6);
         Assert.assertEquals(0.04268731682389561, optimizer.getRMS(),       
1.0e-8);
-
     }
 
     private static class LinearProblem implements 
DifferentiableMultivariateVectorialFunction, Serializable {
@@ -483,4 +446,36 @@ public class GaussNewtonOptimizerTest {
             };
         }
     }
+
+    private final double[][] circlePoints = new double[][] {
+        {-0.312967,  0.072366}, {-0.339248,  0.132965}, {-0.379780,  0.202724},
+        {-0.390426,  0.260487}, {-0.361212,  0.328325}, {-0.346039,  0.392619},
+        {-0.280579,  0.444306}, {-0.216035,  0.470009}, {-0.149127,  0.493832},
+        {-0.075133,  0.483271}, {-0.007759,  0.452680}, { 0.060071,  0.410235},
+        { 0.103037,  0.341076}, { 0.118438,  0.273884}, { 0.131293,  0.192201},
+        { 0.115869,  0.129797}, { 0.072223,  0.058396}, { 0.022884,  0.000718},
+        {-0.053355, -0.020405}, {-0.123584, -0.032451}, {-0.216248, -0.032862},
+        {-0.278592, -0.005008}, {-0.337655,  0.056658}, {-0.385899,  0.112526},
+        {-0.405517,  0.186957}, {-0.415374,  0.262071}, {-0.387482,  0.343398},
+        {-0.347322,  0.397943}, {-0.287623,  0.458425}, {-0.223502,  0.475513},
+        {-0.135352,  0.478186}, {-0.061221,  0.483371}, { 0.003711,  0.422737},
+        { 0.065054,  0.375830}, { 0.108108,  0.297099}, { 0.123882,  0.222850},
+        { 0.117729,  0.134382}, { 0.085195,  0.056820}, { 0.029800, -0.019138},
+        {-0.027520, -0.072374}, {-0.102268, -0.091555}, {-0.200299, -0.106578},
+        {-0.292731, -0.091473}, {-0.356288, -0.051108}, {-0.420561,  0.014926},
+        {-0.471036,  0.074716}, {-0.488638,  0.182508}, {-0.485990,  0.254068},
+        {-0.463943,  0.338438}, {-0.406453,  0.404704}, {-0.334287,  0.466119},
+        {-0.254244,  0.503188}, {-0.161548,  0.495769}, {-0.075733,  0.495560},
+        { 0.001375,  0.434937}, { 0.082787,  0.385806}, { 0.115490,  0.323807},
+        { 0.141089,  0.223450}, { 0.138693,  0.131703}, { 0.126415,  0.049174},
+        { 0.066518, -0.010217}, {-0.005184, -0.070647}, {-0.080985, -0.103635},
+        {-0.177377, -0.116887}, {-0.260628, -0.100258}, {-0.335756, -0.056251},
+        {-0.405195, -0.000895}, {-0.444937,  0.085456}, {-0.484357,  0.175597},
+        {-0.472453,  0.248681}, {-0.438580,  0.347463}, {-0.402304,  0.422428},
+        {-0.326777,  0.479438}, {-0.247797,  0.505581}, {-0.152676,  0.519380},
+        {-0.071754,  0.516264}, { 0.015942,  0.472802}, { 0.076608,  0.419077},
+        { 0.127673,  0.330264}, { 0.159951,  0.262150}, { 0.153530,  0.172681},
+        { 0.140653,  0.089229}, { 0.078666,  0.024981}, { 0.023807, -0.037022},
+        {-0.048837, -0.077056}, {-0.127729, -0.075338}, {-0.221271, -0.067526}
+    };
 }


Reply via email to