Author: mturk Date: Tue Aug 11 11:42:38 2009 New Revision: 803069 URL: http://svn.apache.org/viewvc?rev=803069&view=rev Log: Add sha2 implementation 256/512 only. We can add 384 later if needed
Added: commons/sandbox/runtime/trunk/src/main/native/shared/sha2.c (with props) Modified: commons/sandbox/runtime/trunk/src/main/native/Makefile.in commons/sandbox/runtime/trunk/src/main/native/include/acr_crypto.h Modified: commons/sandbox/runtime/trunk/src/main/native/Makefile.in URL: http://svn.apache.org/viewvc/commons/sandbox/runtime/trunk/src/main/native/Makefile.in?rev=803069&r1=803068&r2=803069&view=diff ============================================================================== --- commons/sandbox/runtime/trunk/src/main/native/Makefile.in (original) +++ commons/sandbox/runtime/trunk/src/main/native/Makefile.in Tue Aug 11 11:42:38 2009 @@ -91,6 +91,7 @@ $(SRCDIR)/shared/base64.$(OBJ) \ $(SRCDIR)/shared/md5.$(OBJ) \ $(SRCDIR)/shared/sha1.$(OBJ) \ + $(SRCDIR)/shared/sha2.$(OBJ) \ $(SRCDIR)/shared/sbuf.$(OBJ) \ $(SRCDIR)/shared/string.$(OBJ) \ $(SRCDIR)/shared/tables.$(OBJ) \ Modified: commons/sandbox/runtime/trunk/src/main/native/include/acr_crypto.h URL: http://svn.apache.org/viewvc/commons/sandbox/runtime/trunk/src/main/native/include/acr_crypto.h?rev=803069&r1=803068&r2=803069&view=diff ============================================================================== --- commons/sandbox/runtime/trunk/src/main/native/include/acr_crypto.h (original) +++ commons/sandbox/runtime/trunk/src/main/native/include/acr_crypto.h Tue Aug 11 11:42:38 2009 @@ -39,17 +39,41 @@ #define ACR_MD5_DIGEST_LENGTH 16 #define ACR_MD5_DIGEST_STRING_LENGTH (ACR_MD5_DIGEST_LENGTH * 2 + 1) -typedef struct acr_sha1_ctx_t { +/*** SHA-256/384/512 Various Length Definitions ***********************/ +#define ACR_SHA256_BLOCK_LENGTH 64 +#define ACR_SHA256_DIGEST_LENGTH 32 +#define ACR_SHA256_DIGEST_STRING_LENGTH (ACR_SHA256_DIGEST_LENGTH * 2 + 1) +#define ACR_SHA384_BLOCK_LENGTH 128 +#define ACR_SHA384_DIGEST_LENGTH 48 +#define ACR_SHA384_DIGEST_STRING_LENGTH (ACR_SHA384_DIGEST_LENGTH * 2 + 1) +#define ACR_SHA512_BLOCK_LENGTH 128 +#define ACR_SHA512_DIGEST_LENGTH 64 +#define ACR_SHA512_DIGEST_STRING_LENGTH (ACR_SHA512_DIGEST_LENGTH * 2 + 1) + +typedef struct acr_sha1_ctx_t acr_sha1_ctx_t; +typedef struct acr_sha2_ctx_t acr_sha2_ctx_t; +typedef struct acr_md5_ctx_t acr_md5_ctx_t; + +struct acr_sha1_ctx_t { acr_uint32_t state[5]; acr_uint64_t count; acr_byte_t buffer[ACR_SHA1_BLOCK_LENGTH]; -} acr_sha1_ctx_t; +}; -typedef struct acr_md5_ctx_t { +struct acr_md5_ctx_t { acr_uint32_t state[4]; /* state */ acr_uint64_t count; /* number of bits, mod 2^64 */ acr_byte_t buffer[ACR_MD5_BLOCK_LENGTH]; /* input buffer */ -} acr_md5_ctx_t; +}; + +struct acr_sha2_ctx_t { + union { + acr_uint32_t st32[8]; + acr_uint64_t st64[8]; + } state; + acr_uint64_t bitcount[2]; + acr_byte_t buffer[ACR_SHA512_BLOCK_LENGTH]; +}; /** @@ -122,6 +146,96 @@ wchar_t *out); /** + * Initialize the SHA256 digest + * @param context The SHA2 context to initialize + */ +ACR_DECLARE(void) ACR_SHA256Init(acr_sha2_ctx_t *context); + +/** + * Initialize the SHA512 digest + * @param context The SHA2 context to initialize + */ +ACR_DECLARE(void) ACR_SHA512Init(acr_sha2_ctx_t *context); + +/** + * Update the SHA256 digest with binary data + * @param context The SHA2 context to update + * @param input The buffer to add to the SHA digest + * @param count The length of the input buffer + */ +ACR_DECLARE(void) ACR_SHA256Update(acr_sha2_ctx_t *context, + const unsigned char *input, + size_t count); + +/** + * Update the SHA512 digest with binary data + * @param context The SHA2 context to update + * @param input The buffer to add to the SHA digest + * @param count The length of the input buffer + */ +ACR_DECLARE(void) ACR_SHA512Update(acr_sha2_ctx_t *context, + const unsigned char *input, + size_t count); + +/** + * Finish computing the SHA256 digest + * @param digest the output buffer in which to store the digest + * @param context The context to finalize + */ +ACR_DECLARE(void) ACR_SHA256Final(unsigned char digest[ACR_SHA256_DIGEST_LENGTH], + acr_sha2_ctx_t *context); + + +/** + * Finish computing the SHA256 digest + * @param digest the output buffer in which to store the digest + * @param context The context to finalize + */ +ACR_DECLARE(void) ACR_SHA512Final(unsigned char digest[ACR_SHA512_DIGEST_LENGTH], + acr_sha2_ctx_t *context); + + +/** + * Provide a means to SHA256 crypt/encode a plaintext data using + * base 16 hexadecimal encoding. + * @param clear The plaintext data. + * @param len The length of the plaintext data + * @param out The encrypted/encoded password + */ +ACR_DECLARE(char *) ACR_SHA256EncodeA(const char *clear, size_t len, + char *out); + +/** + * Provide a means to SHA256 crypt/encode a plaintext data using + * base 16 hexadecimal encoding. + * @param clear The plaintext data. + * @param len The length of the plaintext data + * @param out The encrypted/encoded password + */ +ACR_DECLARE(wchar_t *) ACR_SHA256EncodeW(const wchar_t *clear, size_t len, + wchar_t *out); + +/** + * Provide a means to SHA256 crypt/encode a plaintext data using + * base 16 hexadecimal encoding. + * @param clear The plaintext data. + * @param len The length of the plaintext data + * @param out The encrypted/encoded password + */ +ACR_DECLARE(char *) ACR_SHA512EncodeA(const char *clear, size_t len, + char *out); + +/** + * Provide a means to SHA256 crypt/encode a plaintext data using + * base 16 hexadecimal encoding. + * @param clear The plaintext data. + * @param len The length of the plaintext data + * @param out The encrypted/encoded password + */ +ACR_DECLARE(wchar_t *) ACR_SHA512EncodeW(const wchar_t *clear, size_t len, + wchar_t *out); + +/** * Initialize the MD5 digest * @param context The MD5 context to initialize */ Added: commons/sandbox/runtime/trunk/src/main/native/shared/sha2.c URL: http://svn.apache.org/viewvc/commons/sandbox/runtime/trunk/src/main/native/shared/sha2.c?rev=803069&view=auto ============================================================================== --- commons/sandbox/runtime/trunk/src/main/native/shared/sha2.c (added) +++ commons/sandbox/runtime/trunk/src/main/native/shared/sha2.c Tue Aug 11 11:42:38 2009 @@ -0,0 +1,893 @@ +/* Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + + +/* + * FILE: sha2.c + * AUTHOR: Aaron D. Gifford <m...@aarongifford.com> + * + * Copyright (c) 2000-2001, Aaron D. Gifford + * All rights reserved. + * + */ + +/* + * UNROLLED TRANSFORM LOOP NOTE: + * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform + * loop version for the hash transform rounds (defined using macros + * later in this file). Either define on the command line, for example: + * + * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c + * + * or define below: + * + * #define SHA2_UNROLL_TRANSFORM + * + */ + +#include "acr.h" +#include "acr_private.h" +#include "acr_error.h" +#include "acr_string.h" +#include "acr_clazz.h" +#include "acr_crypto.h" + +static const char basis16[] = + "0123456789abcdef"; + +#define HI_NIBBLE_HEX(a) basis16[(a) >> 4] +#define LO_NIBBLE_HEX(a) basis16[(a) & 0x0F] + + +/*** SHA-256/384/512 Various Length Definitions ***********************/ +/* NOTE: Most of these are in sha2.h */ +#define ACR_SHA256_SHORT_BLOCK_LENGTH (ACR_SHA256_BLOCK_LENGTH - 8) +#define ACR_SHA384_SHORT_BLOCK_LENGTH (ACR_SHA384_BLOCK_LENGTH - 16) +#define ACR_SHA512_SHORT_BLOCK_LENGTH (ACR_SHA512_BLOCK_LENGTH - 16) + +/*** ENDIAN SPECIFIC COPY MACROS **************************************/ +#define BE_8_TO_32(dst, cp) do { \ + (dst) = (acr_uint32_t)(cp)[3] | ((acr_uint32_t)(cp)[2] << 8) | \ + ((acr_uint32_t)(cp)[1] << 16) | ((acr_uint32_t)(cp)[0] << 24); \ +} while(0) + +#define BE_8_TO_64(dst, cp) do { \ + (dst) = (acr_uint64_t)(cp)[7] | ((acr_uint64_t)(cp)[6] << 8) | \ + ((acr_uint64_t)(cp)[5] << 16) | ((acr_uint64_t)(cp)[4] << 24) | \ + ((acr_uint64_t)(cp)[3] << 32) | ((acr_uint64_t)(cp)[2] << 40) | \ + ((acr_uint64_t)(cp)[1] << 48) | ((acr_uint64_t)(cp)[0] << 56); \ +} while (0) + +#define BE_64_TO_8(cp, src) do { \ + (cp)[0] = (acr_byte_t)(((src) >> 56) & 0xFF); \ + (cp)[1] = (acr_byte_t)(((src) >> 48) & 0xFF); \ + (cp)[2] = (acr_byte_t)(((src) >> 40) & 0xFF); \ + (cp)[3] = (acr_byte_t)(((src) >> 32) & 0xFF); \ + (cp)[4] = (acr_byte_t)(((src) >> 24) & 0xFF); \ + (cp)[5] = (acr_byte_t)(((src) >> 16) & 0xFF); \ + (cp)[6] = (acr_byte_t)(((src) >> 8) & 0xFF); \ + (cp)[7] = (acr_byte_t)(((src) >> 0) & 0xFF); \ +} while (0) + +#define BE_32_TO_8(cp, src) do { \ + (cp)[0] = (acr_byte_t)(((src) >> 24) & 0xFF); \ + (cp)[1] = (acr_byte_t)(((src) >> 16) & 0xFF); \ + (cp)[2] = (acr_byte_t)(((src) >> 8) & 0xFF); \ + (cp)[3] = (acr_byte_t)(((src) >> 0) & 0xFF); \ +} while (0) + +/* + * Macro for incrementally adding the unsigned 64-bit integer n to the + * unsigned 128-bit integer (represented using a two-element array of + * 64-bit words): + */ +#define ADDINC128(w,n) do { \ + (w)[0] += (acr_uint64_t)(n); \ + if ((w)[0] < (n)) { \ + (w)[1]++; \ + } \ +} while (0) + +/*** THE SIX LOGICAL FUNCTIONS ****************************************/ +/* + * Bit shifting and rotation (used by the six SHA-XYZ logical functions: + * + * NOTE: The naming of R and S appears backwards here (R is a SHIFT and + * S is a ROTATION) because the SHA-256/384/512 description document + * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this + * same "backwards" definition. + */ +/* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ +#define R(b,x) ((x) >> (b)) +/* 32-bit Rotate-right (used in SHA-256): */ +#define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) +/* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ +#define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) + +/* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ +#define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) +#define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) + +/* Four of six logical functions used in SHA-256: */ +#define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) +#define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) +#define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) +#define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) + +/* Four of six logical functions used in SHA-384 and SHA-512: */ +#define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) +#define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) +#define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) +#define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) + + +/*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ +/* Hash constant words K for SHA-256: */ +const static acr_uint32_t K256[64] = { + 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, + 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, + 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, + 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, + 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, + 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, + 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, + 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, + 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, + 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, + 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, + 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, + 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, + 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, + 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, + 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 +}; + +/* Initial hash value H for SHA-256: */ +const static acr_uint32_t sha256_initial_hash_value[8] = { + 0x6a09e667, + 0xbb67ae85, + 0x3c6ef372, + 0xa54ff53a, + 0x510e527f, + 0x9b05688c, + 0x1f83d9ab, + 0x5be0cd19 +}; + +/* Hash constant words K for SHA-384 and SHA-512: */ +const static acr_uint64_t K512[80] = { + ACR_UINT64_C(0x428a2f98d728ae22), ACR_UINT64_C(0x7137449123ef65cd), + ACR_UINT64_C(0xb5c0fbcfec4d3b2f), ACR_UINT64_C(0xe9b5dba58189dbbc), + ACR_UINT64_C(0x3956c25bf348b538), ACR_UINT64_C(0x59f111f1b605d019), + ACR_UINT64_C(0x923f82a4af194f9b), ACR_UINT64_C(0xab1c5ed5da6d8118), + ACR_UINT64_C(0xd807aa98a3030242), ACR_UINT64_C(0x12835b0145706fbe), + ACR_UINT64_C(0x243185be4ee4b28c), ACR_UINT64_C(0x550c7dc3d5ffb4e2), + ACR_UINT64_C(0x72be5d74f27b896f), ACR_UINT64_C(0x80deb1fe3b1696b1), + ACR_UINT64_C(0x9bdc06a725c71235), ACR_UINT64_C(0xc19bf174cf692694), + ACR_UINT64_C(0xe49b69c19ef14ad2), ACR_UINT64_C(0xefbe4786384f25e3), + ACR_UINT64_C(0x0fc19dc68b8cd5b5), ACR_UINT64_C(0x240ca1cc77ac9c65), + ACR_UINT64_C(0x2de92c6f592b0275), ACR_UINT64_C(0x4a7484aa6ea6e483), + ACR_UINT64_C(0x5cb0a9dcbd41fbd4), ACR_UINT64_C(0x76f988da831153b5), + ACR_UINT64_C(0x983e5152ee66dfab), ACR_UINT64_C(0xa831c66d2db43210), + ACR_UINT64_C(0xb00327c898fb213f), ACR_UINT64_C(0xbf597fc7beef0ee4), + ACR_UINT64_C(0xc6e00bf33da88fc2), ACR_UINT64_C(0xd5a79147930aa725), + ACR_UINT64_C(0x06ca6351e003826f), ACR_UINT64_C(0x142929670a0e6e70), + ACR_UINT64_C(0x27b70a8546d22ffc), ACR_UINT64_C(0x2e1b21385c26c926), + ACR_UINT64_C(0x4d2c6dfc5ac42aed), ACR_UINT64_C(0x53380d139d95b3df), + ACR_UINT64_C(0x650a73548baf63de), ACR_UINT64_C(0x766a0abb3c77b2a8), + ACR_UINT64_C(0x81c2c92e47edaee6), ACR_UINT64_C(0x92722c851482353b), + ACR_UINT64_C(0xa2bfe8a14cf10364), ACR_UINT64_C(0xa81a664bbc423001), + ACR_UINT64_C(0xc24b8b70d0f89791), ACR_UINT64_C(0xc76c51a30654be30), + ACR_UINT64_C(0xd192e819d6ef5218), ACR_UINT64_C(0xd69906245565a910), + ACR_UINT64_C(0xf40e35855771202a), ACR_UINT64_C(0x106aa07032bbd1b8), + ACR_UINT64_C(0x19a4c116b8d2d0c8), ACR_UINT64_C(0x1e376c085141ab53), + ACR_UINT64_C(0x2748774cdf8eeb99), ACR_UINT64_C(0x34b0bcb5e19b48a8), + ACR_UINT64_C(0x391c0cb3c5c95a63), ACR_UINT64_C(0x4ed8aa4ae3418acb), + ACR_UINT64_C(0x5b9cca4f7763e373), ACR_UINT64_C(0x682e6ff3d6b2b8a3), + ACR_UINT64_C(0x748f82ee5defb2fc), ACR_UINT64_C(0x78a5636f43172f60), + ACR_UINT64_C(0x84c87814a1f0ab72), ACR_UINT64_C(0x8cc702081a6439ec), + ACR_UINT64_C(0x90befffa23631e28), ACR_UINT64_C(0xa4506cebde82bde9), + ACR_UINT64_C(0xbef9a3f7b2c67915), ACR_UINT64_C(0xc67178f2e372532b), + ACR_UINT64_C(0xca273eceea26619c), ACR_UINT64_C(0xd186b8c721c0c207), + ACR_UINT64_C(0xeada7dd6cde0eb1e), ACR_UINT64_C(0xf57d4f7fee6ed178), + ACR_UINT64_C(0x06f067aa72176fba), ACR_UINT64_C(0x0a637dc5a2c898a6), + ACR_UINT64_C(0x113f9804bef90dae), ACR_UINT64_C(0x1b710b35131c471b), + ACR_UINT64_C(0x28db77f523047d84), ACR_UINT64_C(0x32caab7b40c72493), + ACR_UINT64_C(0x3c9ebe0a15c9bebc), ACR_UINT64_C(0x431d67c49c100d4c), + ACR_UINT64_C(0x4cc5d4becb3e42b6), ACR_UINT64_C(0x597f299cfc657e2a), + ACR_UINT64_C(0x5fcb6fab3ad6faec), ACR_UINT64_C(0x6c44198c4a475817) +}; + +/* Initial hash value H for SHA-384 */ +const static acr_uint64_t sha384_initial_hash_value[8] = { + ACR_UINT64_C(0xcbbb9d5dc1059ed8), + ACR_UINT64_C(0x629a292a367cd507), + ACR_UINT64_C(0x9159015a3070dd17), + ACR_UINT64_C(0x152fecd8f70e5939), + ACR_UINT64_C(0x67332667ffc00b31), + ACR_UINT64_C(0x8eb44a8768581511), + ACR_UINT64_C(0xdb0c2e0d64f98fa7), + ACR_UINT64_C(0x47b5481dbefa4fa4) +}; + +/* Initial hash value H for SHA-512 */ +const static acr_uint64_t sha512_initial_hash_value[8] = { + ACR_UINT64_C(0x6a09e667f3bcc908), + ACR_UINT64_C(0xbb67ae8584caa73b), + ACR_UINT64_C(0x3c6ef372fe94f82b), + ACR_UINT64_C(0xa54ff53a5f1d36f1), + ACR_UINT64_C(0x510e527fade682d1), + ACR_UINT64_C(0x9b05688c2b3e6c1f), + ACR_UINT64_C(0x1f83d9abfb41bd6b), + ACR_UINT64_C(0x5be0cd19137e2179) +}; + +/*** SHA-256: *********************************************************/ +ACR_DECLARE(void) +ACR_SHA256Init(acr_sha2_ctx_t *context) +{ + if (context == NULL) + return; + memcpy(context->state.st32, sha256_initial_hash_value, + sizeof(sha256_initial_hash_value)); + memset(context->buffer, 0, sizeof(context->buffer)); + context->bitcount[0] = 0; +} + +#ifdef SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-256 round macros: */ + +#define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) do { \ + BE_8_TO_32(W256[j], data); \ + data += 4; \ + T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + W256[j]; \ + (d) += T1; \ + (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ + j++; \ +} while(0) + +#define ROUND256(a,b,c,d,e,f,g,h) do { \ + s0 = W256[(j+1)&0x0f]; \ + s0 = sigma0_256(s0); \ + s1 = W256[(j+14)&0x0f]; \ + s1 = sigma1_256(s1); \ + T1 = (h) + Sigma1_256((e)) + Ch((e), (f), (g)) + K256[j] + \ + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ + (d) += T1; \ + (h) = T1 + Sigma0_256((a)) + Maj((a), (b), (c)); \ + j++; \ +} while(0) + +static void +acr_SHA256Transform(acr_uint32_t state[8], + const acr_byte_t data[ACR_SHA256_BLOCK_LENGTH]) +{ + acr_uint32_t a, b, c, d, e, f, g, h, s0, s1; + acr_uint32_t T1, W256[16]; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = state[0]; + b = state[1]; + c = state[2]; + d = state[3]; + e = state[4]; + f = state[5]; + g = state[6]; + h = state[7]; + + j = 0; + do { + /* Rounds 0 to 15 (unrolled): */ + ROUND256_0_TO_15(a,b,c,d,e,f,g,h); + ROUND256_0_TO_15(h,a,b,c,d,e,f,g); + ROUND256_0_TO_15(g,h,a,b,c,d,e,f); + ROUND256_0_TO_15(f,g,h,a,b,c,d,e); + ROUND256_0_TO_15(e,f,g,h,a,b,c,d); + ROUND256_0_TO_15(d,e,f,g,h,a,b,c); + ROUND256_0_TO_15(c,d,e,f,g,h,a,b); + ROUND256_0_TO_15(b,c,d,e,f,g,h,a); + } while (j < 16); + + /* Now for the remaining rounds up to 63: */ + do { + ROUND256(a,b,c,d,e,f,g,h); + ROUND256(h,a,b,c,d,e,f,g); + ROUND256(g,h,a,b,c,d,e,f); + ROUND256(f,g,h,a,b,c,d,e); + ROUND256(e,f,g,h,a,b,c,d); + ROUND256(d,e,f,g,h,a,b,c); + ROUND256(c,d,e,f,g,h,a,b); + ROUND256(b,c,d,e,f,g,h,a); + } while (j < 64); + + /* Compute the current intermediate hash value */ + state[0] += a; + state[1] += b; + state[2] += c; + state[3] += d; + state[4] += e; + state[5] += f; + state[6] += g; + state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = 0; +} + +#else /* SHA2_UNROLL_TRANSFORM */ + +static void +acr_SHA256Transform(acr_uint32_t state[8], + const acr_byte_t data[ACR_SHA256_BLOCK_LENGTH]) +{ + acr_uint32_t a, b, c, d, e, f, g, h, s0, s1; + acr_uint32_t T1, T2, W256[16]; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = state[0]; + b = state[1]; + c = state[2]; + d = state[3]; + e = state[4]; + f = state[5]; + g = state[6]; + h = state[7]; + + j = 0; + do { + BE_8_TO_32(W256[j], data); + data += 4; + /* Apply the SHA-256 compression function to update a..h */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; + T2 = Sigma0_256(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 16); + + do { + /* Part of the message block expansion: */ + s0 = W256[(j+1)&0x0f]; + s0 = sigma0_256(s0); + s1 = W256[(j+14)&0x0f]; + s1 = sigma1_256(s1); + + /* Apply the SHA-256 compression function to update a..h */ + T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); + T2 = Sigma0_256(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 64); + + /* Compute the current intermediate hash value */ + state[0] += a; + state[1] += b; + state[2] += c; + state[3] += d; + state[4] += e; + state[5] += f; + state[6] += g; + state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = T2 = 0; +} + +#endif /* SHA2_UNROLL_TRANSFORM */ + +ACR_DECLARE(void) +ACR_SHA256Update(acr_sha2_ctx_t *context, const acr_byte_t *data, size_t len) +{ + size_t freespace, usedspace; + + /* Calling with no data is valid (we do nothing) */ + if (len == 0) + return; + + usedspace = (context->bitcount[0] >> 3) % ACR_SHA256_BLOCK_LENGTH; + if (usedspace > 0) { + /* Calculate how much free space is available in the buffer */ + freespace = ACR_SHA256_BLOCK_LENGTH - usedspace; + + if (len >= freespace) { + /* Fill the buffer completely and process it */ + memcpy(&context->buffer[usedspace], data, freespace); + context->bitcount[0] += freespace << 3; + len -= freespace; + data += freespace; + acr_SHA256Transform(context->state.st32, context->buffer); + } else { + /* The buffer is not yet full */ + memcpy(&context->buffer[usedspace], data, len); + context->bitcount[0] += len << 3; + /* Clean up: */ + usedspace = freespace = 0; + return; + } + } + while (len >= ACR_SHA256_BLOCK_LENGTH) { + /* Process as many complete blocks as we can */ + acr_SHA256Transform(context->state.st32, data); + context->bitcount[0] += ACR_SHA256_BLOCK_LENGTH << 3; + len -= ACR_SHA256_BLOCK_LENGTH; + data += ACR_SHA256_BLOCK_LENGTH; + } + if (len > 0) { + /* There's left-overs, so save 'em */ + memcpy(context->buffer, data, len); + context->bitcount[0] += len << 3; + } + /* Clean up: */ + usedspace = freespace = 0; +} + +static void +acr_SHA256Pad(acr_sha2_ctx_t *context) +{ + unsigned int usedspace; + + usedspace = (context->bitcount[0] >> 3) % ACR_SHA256_BLOCK_LENGTH; + if (usedspace > 0) { + /* Begin padding with a 1 bit: */ + context->buffer[usedspace++] = 0x80; + + if (usedspace <= ACR_SHA256_SHORT_BLOCK_LENGTH) { + /* Set-up for the last transform: */ + memset(&context->buffer[usedspace], 0, + ACR_SHA256_SHORT_BLOCK_LENGTH - usedspace); + } else { + if (usedspace < ACR_SHA256_BLOCK_LENGTH) { + memset(&context->buffer[usedspace], 0, + ACR_SHA256_BLOCK_LENGTH - usedspace); + } + /* Do second-to-last transform: */ + acr_SHA256Transform(context->state.st32, context->buffer); + + /* Prepare for last transform: */ + memset(context->buffer, 0, ACR_SHA256_SHORT_BLOCK_LENGTH); + } + } else { + /* Set-up for the last transform: */ + memset(context->buffer, 0, ACR_SHA256_SHORT_BLOCK_LENGTH); + + /* Begin padding with a 1 bit: */ + *context->buffer = 0x80; + } + /* Store the length of input data (in bits) in big endian format: */ + BE_64_TO_8(&context->buffer[ACR_SHA256_SHORT_BLOCK_LENGTH], + context->bitcount[0]); + + /* Final transform: */ + acr_SHA256Transform(context->state.st32, context->buffer); + + /* Clean up: */ + usedspace = 0; +} + +ACR_DECLARE(void) +ACR_SHA256Final(acr_byte_t digest[ACR_SHA256_DIGEST_LENGTH], acr_sha2_ctx_t *context) +{ + acr_SHA256Pad(context); + + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != NULL) { +#if !CC_IS_BIG_ENDIAN + int i; + + /* Convert TO host byte order */ + for (i = 0; i < 8; i++) + BE_32_TO_8(digest + i * 4, context->state.st32[i]); +#else + memcpy(digest, context->state.st32, ACR_SHA256_DIGEST_LENGTH); +#endif + memset(context, 0, sizeof(*context)); + } +} + +ACR_DECLARE(char *) ACR_SHA256EncodeA(const char *clear, size_t len, char *out) +{ + int i, x = 0; + acr_sha2_ctx_t context; + acr_byte_t digest[ACR_SHA256_DIGEST_LENGTH]; + + if (out == NULL && (out = malloc(ACR_SHA256_DIGEST_STRING_LENGTH)) == NULL) + return NULL; + + ACR_SHA256Init(&context); + ACR_SHA256Update(&context, (acr_byte_t *)clear, len); + ACR_SHA256Final(digest, &context); + for (i = 0; i < ACR_SHA256_DIGEST_LENGTH; i++) { + out[x++] = HI_NIBBLE_HEX(digest[i]); + out[x++] = LO_NIBBLE_HEX(digest[i]); + } + out[x] = '\0'; + + memset(digest, 0, sizeof(digest)); + return out; +} + +ACR_DECLARE(wchar_t *) ACR_SHA256EncodeW(const wchar_t *clear, size_t len, + wchar_t *out) +{ + int i, x = 0; + acr_sha2_ctx_t context; + acr_byte_t digest[ACR_SHA256_DIGEST_LENGTH]; + + if (out == NULL && + (out = malloc(ACR_SHA256_DIGEST_STRING_LENGTH * sizeof(wchar_t))) == NULL) + return NULL; + + ACR_SHA256Init(&context); + ACR_SHA256Update(&context, (acr_byte_t *)clear, len * sizeof(wchar_t)); + ACR_SHA256Final(digest, &context); + for (i = 0; i < ACR_SHA256_DIGEST_LENGTH; i++) { + out[x++] = HI_NIBBLE_HEX(digest[i]); + out[x++] = LO_NIBBLE_HEX(digest[i]); + } + out[x] = L'\0'; + + memset(digest, 0, sizeof(digest)); + return out; +} + +/*** SHA-512: *********************************************************/ +ACR_DECLARE(void) +ACR_SHA512Init(acr_sha2_ctx_t *context) +{ + if (context == NULL) + return; + memcpy(context->state.st64, sha512_initial_hash_value, + sizeof(sha512_initial_hash_value)); + memset(context->buffer, 0, sizeof(context->buffer)); + context->bitcount[0] = context->bitcount[1] = 0; +} + +#ifdef SHA2_UNROLL_TRANSFORM + +/* Unrolled SHA-512 round macros: */ + +#define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) do { \ + BE_8_TO_64(W512[j], data); \ + data += 8; \ + T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + W512[j]; \ + (d) += T1; \ + (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ + j++; \ +} while(0) + + +#define ROUND512(a,b,c,d,e,f,g,h) do { \ + s0 = W512[(j+1)&0x0f]; \ + s0 = sigma0_512(s0); \ + s1 = W512[(j+14)&0x0f]; \ + s1 = sigma1_512(s1); \ + T1 = (h) + Sigma1_512((e)) + Ch((e), (f), (g)) + K512[j] + \ + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ + (d) += T1; \ + (h) = T1 + Sigma0_512((a)) + Maj((a), (b), (c)); \ + j++; \ +} while(0) + +static void +acr_SHA512Transform(acr_uint64_t state[8], + const acr_byte_t data[ACR_SHA512_BLOCK_LENGTH]) +{ + acr_uint64_t a, b, c, d, e, f, g, h, s0, s1; + acr_uint64_t T1, W512[16]; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = state[0]; + b = state[1]; + c = state[2]; + d = state[3]; + e = state[4]; + f = state[5]; + g = state[6]; + h = state[7]; + + j = 0; + do { + /* Rounds 0 to 15 (unrolled): */ + ROUND512_0_TO_15(a,b,c,d,e,f,g,h); + ROUND512_0_TO_15(h,a,b,c,d,e,f,g); + ROUND512_0_TO_15(g,h,a,b,c,d,e,f); + ROUND512_0_TO_15(f,g,h,a,b,c,d,e); + ROUND512_0_TO_15(e,f,g,h,a,b,c,d); + ROUND512_0_TO_15(d,e,f,g,h,a,b,c); + ROUND512_0_TO_15(c,d,e,f,g,h,a,b); + ROUND512_0_TO_15(b,c,d,e,f,g,h,a); + } while (j < 16); + + /* Now for the remaining rounds up to 79: */ + do { + ROUND512(a,b,c,d,e,f,g,h); + ROUND512(h,a,b,c,d,e,f,g); + ROUND512(g,h,a,b,c,d,e,f); + ROUND512(f,g,h,a,b,c,d,e); + ROUND512(e,f,g,h,a,b,c,d); + ROUND512(d,e,f,g,h,a,b,c); + ROUND512(c,d,e,f,g,h,a,b); + ROUND512(b,c,d,e,f,g,h,a); + } while (j < 80); + + /* Compute the current intermediate hash value */ + state[0] += a; + state[1] += b; + state[2] += c; + state[3] += d; + state[4] += e; + state[5] += f; + state[6] += g; + state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = 0; +} + +#else /* SHA2_UNROLL_TRANSFORM */ + +static void +acr_SHA512Transform(acr_uint64_t state[8], + const acr_byte_t data[ACR_SHA512_BLOCK_LENGTH]) +{ + acr_uint64_t a, b, c, d, e, f, g, h, s0, s1; + acr_uint64_t T1, T2, W512[16]; + int j; + + /* Initialize registers with the prev. intermediate value */ + a = state[0]; + b = state[1]; + c = state[2]; + d = state[3]; + e = state[4]; + f = state[5]; + g = state[6]; + h = state[7]; + + j = 0; + do { + BE_8_TO_64(W512[j], data); + data += 8; + /* Apply the SHA-512 compression function to update a..h */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + W512[j]; + T2 = Sigma0_512(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 16); + + do { + /* Part of the message block expansion: */ + s0 = W512[(j+1)&0x0f]; + s0 = sigma0_512(s0); + s1 = W512[(j+14)&0x0f]; + s1 = sigma1_512(s1); + + /* Apply the SHA-512 compression function to update a..h */ + T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); + T2 = Sigma0_512(a) + Maj(a, b, c); + h = g; + g = f; + f = e; + e = d + T1; + d = c; + c = b; + b = a; + a = T1 + T2; + + j++; + } while (j < 80); + + /* Compute the current intermediate hash value */ + state[0] += a; + state[1] += b; + state[2] += c; + state[3] += d; + state[4] += e; + state[5] += f; + state[6] += g; + state[7] += h; + + /* Clean up */ + a = b = c = d = e = f = g = h = T1 = T2 = 0; +} + +#endif /* SHA2_UNROLL_TRANSFORM */ + +ACR_DECLARE(void) +ACR_SHA512Update(acr_sha2_ctx_t *context, const acr_byte_t *data, size_t len) +{ + size_t freespace, usedspace; + + /* Calling with no data is valid (we do nothing) */ + if (len == 0) + return; + + usedspace = (context->bitcount[0] >> 3) % ACR_SHA512_BLOCK_LENGTH; + if (usedspace > 0) { + /* Calculate how much free space is available in the buffer */ + freespace = ACR_SHA512_BLOCK_LENGTH - usedspace; + + if (len >= freespace) { + /* Fill the buffer completely and process it */ + memcpy(&context->buffer[usedspace], data, freespace); + ADDINC128(context->bitcount, freespace << 3); + len -= freespace; + data += freespace; + acr_SHA512Transform(context->state.st64, context->buffer); + } else { + /* The buffer is not yet full */ + memcpy(&context->buffer[usedspace], data, len); + ADDINC128(context->bitcount, len << 3); + /* Clean up: */ + usedspace = freespace = 0; + return; + } + } + while (len >= ACR_SHA512_BLOCK_LENGTH) { + /* Process as many complete blocks as we can */ + acr_SHA512Transform(context->state.st64, data); + ADDINC128(context->bitcount, ACR_SHA512_BLOCK_LENGTH << 3); + len -= ACR_SHA512_BLOCK_LENGTH; + data += ACR_SHA512_BLOCK_LENGTH; + } + if (len > 0) { + /* There's left-overs, so save 'em */ + memcpy(context->buffer, data, len); + ADDINC128(context->bitcount, len << 3); + } + /* Clean up: */ + usedspace = freespace = 0; +} + +void +acr_SHA512Pad(acr_sha2_ctx_t *context) +{ + unsigned int usedspace; + + usedspace = (context->bitcount[0] >> 3) % ACR_SHA512_BLOCK_LENGTH; + if (usedspace > 0) { + /* Begin padding with a 1 bit: */ + context->buffer[usedspace++] = 0x80; + + if (usedspace <= ACR_SHA512_SHORT_BLOCK_LENGTH) { + /* Set-up for the last transform: */ + memset(&context->buffer[usedspace], 0, ACR_SHA512_SHORT_BLOCK_LENGTH - usedspace); + } else { + if (usedspace < ACR_SHA512_BLOCK_LENGTH) { + memset(&context->buffer[usedspace], 0, ACR_SHA512_BLOCK_LENGTH - usedspace); + } + /* Do second-to-last transform: */ + acr_SHA512Transform(context->state.st64, context->buffer); + + /* And set-up for the last transform: */ + memset(context->buffer, 0, ACR_SHA512_BLOCK_LENGTH - 2); + } + } else { + /* Prepare for final transform: */ + memset(context->buffer, 0, ACR_SHA512_SHORT_BLOCK_LENGTH); + + /* Begin padding with a 1 bit: */ + *context->buffer = 0x80; + } + /* Store the length of input data (in bits) in big endian format: */ + BE_64_TO_8(&context->buffer[ACR_SHA512_SHORT_BLOCK_LENGTH], + context->bitcount[1]); + BE_64_TO_8(&context->buffer[ACR_SHA512_SHORT_BLOCK_LENGTH + 8], + context->bitcount[0]); + + /* Final transform: */ + acr_SHA512Transform(context->state.st64, context->buffer); + + /* Clean up: */ + usedspace = 0; +} + +ACR_DECLARE(void) +ACR_SHA512Final(acr_byte_t digest[ACR_SHA512_DIGEST_LENGTH], + acr_sha2_ctx_t *context) +{ + acr_SHA512Pad(context); + + /* If no digest buffer is passed, we don't bother doing this: */ + if (digest != NULL) { +#if !CC_IS_BIG_ENDIAN + int i; + + /* Convert TO host byte order */ + for (i = 0; i < 8; i++) + BE_64_TO_8(digest + i * 8, context->state.st64[i]); +#else + memcpy(digest, context->state.st64, ACR_SHA512_DIGEST_LENGTH); +#endif + memset(context, 0, sizeof(*context)); + } +} + +ACR_DECLARE(char *) ACR_SHA512EncodeA(const char *clear, size_t len, char *out) +{ + int i, x = 0; + acr_sha2_ctx_t context; + acr_byte_t digest[ACR_SHA512_DIGEST_LENGTH]; + + if (out == NULL && (out = malloc(ACR_SHA512_DIGEST_STRING_LENGTH)) == NULL) + return NULL; + + ACR_SHA512Init(&context); + ACR_SHA512Update(&context, (acr_byte_t *)clear, len); + ACR_SHA512Final(digest, &context); + for (i = 0; i < ACR_SHA512_DIGEST_LENGTH; i++) { + out[x++] = HI_NIBBLE_HEX(digest[i]); + out[x++] = LO_NIBBLE_HEX(digest[i]); + } + out[x] = '\0'; + + memset(digest, 0, sizeof(digest)); + return out; +} + +ACR_DECLARE(wchar_t *) ACR_SHA512EncodeW(const wchar_t *clear, size_t len, + wchar_t *out) +{ + int i, x = 0; + acr_sha2_ctx_t context; + acr_byte_t digest[ACR_SHA512_DIGEST_LENGTH]; + + if (out == NULL && + (out = malloc(ACR_SHA512_DIGEST_STRING_LENGTH * sizeof(wchar_t))) == NULL) + return NULL; + + ACR_SHA512Init(&context); + ACR_SHA512Update(&context, (acr_byte_t *)clear, len * sizeof(wchar_t)); + ACR_SHA512Final(digest, &context); + for (i = 0; i < ACR_SHA512_DIGEST_LENGTH; i++) { + out[x++] = HI_NIBBLE_HEX(digest[i]); + out[x++] = LO_NIBBLE_HEX(digest[i]); + } + out[x] = L'\0'; + + memset(digest, 0, sizeof(digest)); + return out; +} + Propchange: commons/sandbox/runtime/trunk/src/main/native/shared/sha2.c ------------------------------------------------------------------------------ svn:eol-style = native