Author: psteitz Date: Sun Jan 4 10:38:29 2009 New Revision: 731320 URL: http://svn.apache.org/viewvc?rev=731320&view=rev Log: Javadoc only. Cleanup formatting.
Modified: commons/proper/math/trunk/src/java/org/apache/commons/math/stat/regression/OLSMultipleLinearRegression.java Modified: commons/proper/math/trunk/src/java/org/apache/commons/math/stat/regression/OLSMultipleLinearRegression.java URL: http://svn.apache.org/viewvc/commons/proper/math/trunk/src/java/org/apache/commons/math/stat/regression/OLSMultipleLinearRegression.java?rev=731320&r1=731319&r2=731320&view=diff ============================================================================== --- commons/proper/math/trunk/src/java/org/apache/commons/math/stat/regression/OLSMultipleLinearRegression.java (original) +++ commons/proper/math/trunk/src/java/org/apache/commons/math/stat/regression/OLSMultipleLinearRegression.java Sun Jan 4 10:38:29 2009 @@ -27,27 +27,27 @@ * multiple linear regression model.</p> * * <p>OLS assumes the covariance matrix of the error to be diagonal and with - * equal variance. - * <pre> - * u ~ N(0, sigma^2*I) - * </pre></p> + * equal variance.</p> + * <p> + * u ~ N(0, σ<sup>2</sup>I) + * </p> * * <p>The regression coefficients, b, satisfy the normal equations: - * <pre> - * X^T X b = X^T y - * </pre></p> + * <p> + * X<sup>T</sup> X b = X<sup>T</sup> y + * </p> * * <p>To solve the normal equations, this implementation uses QR decomposition * of the X matrix. (See {...@link QRDecompositionImpl} for details on the * decomposition algorithm.) - * <pre> - * X^T X b = X^T y - * (QR)^T (QR) b = (QR)^T y - * R^T (Q^T Q) R b = R^T Q^T y - * R^T R b = R^T Q^T y - * (R^T)^{-1} R^T R b = (R^T)^{-1} R^T Q^T y - * R b = Q^T y - * </pre> + * </p> + * <p>X<sup>T</sup>X b = X<sup>T</sup> y <br/> + * (QR)<sup>T</sup> (QR) b = (QR)<sup>T</sup>y <br/> + * R<sup>T</sup> (Q<sup>T</sup>Q) R b = R<sup>T</sup> Q<sup>T</sup> y <br/> + * R<sup>T</sup> R b = R<sup>T</sup> Q<sup>T</sup> y <br/> + * (R<sup>T</sup>)<sup>-1</sup> R<sup>T</sup> R b = (R<sup>T</sup>)<sup>-1</sup> R<sup>T</sup> Q<sup>T</sup> y <br/> + * R b = Q<sup>T</sup> y + * </p> * Given Q and R, the last equation is solved by back-subsitution.</p> * * @version $Revision$ $Date$ @@ -83,13 +83,14 @@ * <p>Compute the "hat" matrix. * </p> * <p>The hat matrix is defined in terms of the design matrix X - * by X(X^TX)^-1X^T - * <p> + * by X(X<sup>T</sup>X)<sup>-1</sup>X<sup>T</sup> + * </p> * <p>The implementation here uses the QR decomposition to compute the - * hat matrix as QIpQ^T where Ip is the p-dimensional identity matrix - * augmented by 0's. This computational formula is from "The Hat Matrix - * in Regression and ANOVA", David C. Hoaglin and Roy E. Welsch, - * The American Statistician, Vol. 32, No. 1 (Feb., 1978), pp. 17-22. + * hat matrix as Q I<sub>p</sub>Q<sup>T</sup> where I<sub>p</sub> is the + * p-dimensional identity matrix augmented by 0's. This computational + * formula is from "The Hat Matrix in Regression and ANOVA", + * David C. Hoaglin and Roy E. Welsch, + * <i>The American Statistician</i>, Vol. 32, No. 1 (Feb., 1978), pp. 17-22. * * @return the hat matrix */ @@ -134,10 +135,11 @@ } /** - * Calculates the variance on the beta by OLS. - * <pre> - * Var(b)=(X'X)^-1 - * </pre> + * <p>Calculates the variance on the beta by OLS. + * </p> + * <p>Var(b) = (X<sup>T</sup>X)<sup>-1</sup> + * </p> + * * @return The beta variance */ protected RealMatrix calculateBetaVariance() { @@ -147,10 +149,10 @@ /** - * Calculates the variance on the Y by OLS. - * <pre> - * Var(y)=Tr(u'u)/(n-k) - * </pre> + * <p>Calculates the variance on the Y by OLS. + * </p> + * <p> Var(y) = Tr(u<sup>T</sup>u)/(n - k) + * </p> * @return The Y variance */ protected double calculateYVariance() {