This is an automated email from the ASF dual-hosted git repository.

alenka pushed a commit to branch main
in repository https://gitbox.apache.org/repos/asf/arrow.git


The following commit(s) were added to refs/heads/main by this push:
     new 811a273b9d GH-48961: [Docs][Python] Doctest fails on pandas 3.0 
(#48969)
811a273b9d is described below

commit 811a273b9d6c1a6cea179637f05feca05c100ae8
Author: tadeja <[email protected]>
AuthorDate: Wed Jan 28 15:22:05 2026 +0100

    GH-48961: [Docs][Python] Doctest fails on pandas 3.0 (#48969)
    
    ### Rationale for this change
    See issue #48961
    Pandas 3.0.0 string storage type changes 
https://github.com/pandas-dev/pandas/pull/62118/changes
    and 
https://pandas.pydata.org/docs/whatsnew/v3.0.0.html#dedicated-string-data-type-by-default
    
    ### What changes are included in this PR?
    Updating several doctest examples from `string` to `large_string`.
    
    ### Are these changes tested?
    Yes, locally.
    
    ### Are there any user-facing changes?
    No.
    
    Closes #48961
    * GitHub Issue: #48961
    
    Authored-by: Tadeja Kadunc <[email protected]>
    Signed-off-by: AlenkaF <[email protected]>
---
 python/pyarrow/table.pxi | 218 ++++++++++++++++++++---------------------------
 python/pyarrow/types.pxi |   6 +-
 2 files changed, 97 insertions(+), 127 deletions(-)

diff --git a/python/pyarrow/table.pxi b/python/pyarrow/table.pxi
index 8e258e38af..de839a9a50 100644
--- a/python/pyarrow/table.pxi
+++ b/python/pyarrow/table.pxi
@@ -1877,10 +1877,12 @@ cdef class _Tabular(_PandasConvertible):
         >>> df = pd.DataFrame({'year': [None, 2022, 2019, 2021],
         ...                   'n_legs': [2, 4, 5, 100],
         ...                   'animals': ["Flamingo", "Horse", None, 
"Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[None, 2022, 2019, 2021], [2, 4, 5, 100], ["Flamingo", 
"Horse", None, "Centipede"]],
+        ...     names=['year', 'n_legs', 'animals'])
         >>> table.drop_null()
         pyarrow.Table
-        year: double
+        year: int64
         n_legs: int64
         animals: string
         ----
@@ -1909,10 +1911,9 @@ cdef class _Tabular(_PandasConvertible):
         Table (works similarly for RecordBatch)
 
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100],
-        ...                    'animals': ["Flamingo", "Horse", "Brittle 
stars", "Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[2, 4, 5, 100], ["Flamingo", "Horse", "Brittle stars", 
"Centipede"]],
+        ...     names=['n_legs', 'animals'])
         >>> table.field(0)
         pyarrow.Field<n_legs: int64>
         >>> table.field(1)
@@ -2064,10 +2065,9 @@ cdef class _Tabular(_PandasConvertible):
         Table (works similarly for RecordBatch)
 
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'n_legs': [None, 4, 5, None],
-        ...                    'animals': ["Flamingo", "Horse", None, 
"Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[None, 4, 5, None], ["Flamingo", "Horse", None, "Centipede"]],
+        ...     names=['n_legs', 'animals'])
         >>> for i in table.itercolumns():
         ...     print(i.null_count)
         ...
@@ -2133,13 +2133,12 @@ cdef class _Tabular(_PandasConvertible):
         --------
         Table (works similarly for RecordBatch)
 
-        >>> import pandas as pd
         >>> import pyarrow as pa
-        >>> df = pd.DataFrame({'year': [2020, 2022, 2021, 2022, 2019, 2021],
-        ...                    'n_legs': [2, 2, 4, 4, 5, 100],
-        ...                    'animal': ["Flamingo", "Parrot", "Dog", "Horse",
-        ...                    "Brittle stars", "Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[2020, 2022, 2021, 2022, 2019, 2021],
+        ...      [2, 2, 4, 4, 5, 100],
+        ...      ["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", 
"Centipede"]],
+        ...     names=['year', 'n_legs', 'animal'])
         >>> table.sort_by('animal')
         pyarrow.Table
         year: int64
@@ -2181,11 +2180,10 @@ cdef class _Tabular(_PandasConvertible):
         Table (works similarly for RecordBatch)
 
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'year': [2020, 2022, 2019, 2021],
-        ...                    'n_legs': [2, 4, 5, 100],
-        ...                    'animals': ["Flamingo", "Horse", "Brittle 
stars", "Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[2020, 2022, 2019, 2021], [2, 4, 5, 100],
+        ...      ["Flamingo", "Horse", "Brittle stars", "Centipede"]],
+        ...     names=['year', 'n_legs', 'animals'])
         >>> table.take([1,3])
         pyarrow.Table
         year: int64
@@ -2473,10 +2471,9 @@ cdef class _Tabular(_PandasConvertible):
         Examples
         --------
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100],
-        ...                    'animals': ["Flamingo", "Horse", "Brittle 
stars", "Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[2, 4, 5, 100], ["Flamingo", "Horse", "Brittle stars", 
"Centipede"]],
+        ...     names=['n_legs', 'animals'])
 
         Append column at the end:
 
@@ -2545,7 +2542,7 @@ cdef class RecordBatch(_Tabular):
     month: int64
     day: int64
     n_legs: int64
-    animals: string
+    animals: ...string
     ----
     year: [2020,2022,2021,2022]
     month: [3,5,7,9]
@@ -2585,7 +2582,7 @@ cdef class RecordBatch(_Tabular):
     month: int64
     day: int64
     n_legs: int64
-    animals: string
+    animals: ...string
     ----
     year: [2020,2022,2021,2022]
     month: [3,5,7,9]
@@ -2858,10 +2855,9 @@ cdef class RecordBatch(_Tabular):
         Examples
         --------
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100],
-        ...                    'animals': ["Flamingo", "Horse", "Brittle 
stars", "Centipede"]})
-        >>> batch = pa.RecordBatch.from_pandas(df)
+        >>> batch = pa.RecordBatch.from_arrays(
+        ...     [[2, 4, 5, 100], ["Flamingo", "Horse", "Brittle stars", 
"Centipede"]],
+        ...     names=['n_legs', 'animals'])
 
         Add column:
 
@@ -2931,10 +2927,9 @@ cdef class RecordBatch(_Tabular):
         Examples
         --------
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100],
-        ...                    'animals': ["Flamingo", "Horse", "Brittle 
stars", "Centipede"]})
-        >>> batch = pa.RecordBatch.from_pandas(df)
+        >>> batch = pa.RecordBatch.from_arrays(
+        ...     [[2, 4, 5, 100], ["Flamingo", "Horse", "Brittle stars", 
"Centipede"]],
+        ...     names=['n_legs', 'animals'])
         >>> batch.remove_column(1)
         pyarrow.RecordBatch
         n_legs: int64
@@ -2970,10 +2965,9 @@ cdef class RecordBatch(_Tabular):
         Examples
         --------
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100],
-        ...                    'animals': ["Flamingo", "Horse", "Brittle 
stars", "Centipede"]})
-        >>> batch = pa.RecordBatch.from_pandas(df)
+        >>> batch = pa.RecordBatch.from_arrays(
+        ...     [[2, 4, 5, 100], ["Flamingo", "Horse", "Brittle stars", 
"Centipede"]],
+        ...     names=['n_legs', 'animals'])
 
         Replace a column:
 
@@ -3039,10 +3033,9 @@ cdef class RecordBatch(_Tabular):
         Examples
         --------
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100],
-        ...                    'animals': ["Flamingo", "Horse", "Brittle 
stars", "Centipede"]})
-        >>> batch = pa.RecordBatch.from_pandas(df)
+        >>> batch = pa.RecordBatch.from_arrays(
+        ...     [[2, 4, 5, 100], ["Flamingo", "Horse", "Brittle stars", 
"Centipede"]],
+        ...     names=['n_legs', 'animals'])
         >>> new_names = ["n", "name"]
         >>> batch.rename_columns(new_names)
         pyarrow.RecordBatch
@@ -3318,15 +3311,12 @@ cdef class RecordBatch(_Tabular):
         Examples
         --------
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100],
-        ...                    'animals': ["Flamingo", "Horse", "Brittle 
stars", "Centipede"]})
-        >>> batch = pa.RecordBatch.from_pandas(df)
+        >>> batch = pa.RecordBatch.from_arrays(
+        ...     [[2, 4, 5, 100], ["Flamingo", "Horse", "Brittle stars", 
"Centipede"]],
+        ...     names=['n_legs', 'animals'])
         >>> batch.schema
         n_legs: int64
         animals: string
-        -- schema metadata --
-        pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 
0, ...
 
         Define new schema and cast batch values:
 
@@ -3416,7 +3406,7 @@ cdef class RecordBatch(_Tabular):
         month: int64
         day: int64
         n_legs: int64
-        animals: string
+        animals: ...string
         ----
         year: [2020,2022,2021,2022]
         month: [3,5,7,9]
@@ -3579,11 +3569,11 @@ cdef class RecordBatch(_Tabular):
         --------
         >>> import pyarrow as pa
         >>> struct = pa.array([{'n_legs': 2, 'animals': 'Parrot'},
-        ...                    {'year': 2022, 'n_legs': 4}])
+        ...                    {'year': 2022, 'n_legs': 4, 'animals': 'Goat'}])
         >>> pa.RecordBatch.from_struct_array(struct).to_pandas()
            n_legs animals    year
         0       2  Parrot     NaN
-        1       4    None  2022.0
+        1       4    Goat  2022.0
         """
         cdef:
             shared_ptr[CRecordBatch] c_record_batch
@@ -4156,7 +4146,7 @@ cdef class Table(_Tabular):
     pyarrow.Table
     year: int64
     n_legs: int64
-    animals: string
+    animals: ...string
     ----
     year: [[2020,2022,2019,2021]]
     n_legs: [[2,4,5,100]]
@@ -4282,11 +4272,10 @@ cdef class Table(_Tabular):
         Examples
         --------
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'year': [2020, 2022, 2019, 2021],
-        ...                    'n_legs': [2, 4, 5, 100],
-        ...                    'animals': ["Flamingo", "Horse", "Brittle 
stars", "Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[2020, 2022, 2019, 2021], [2, 4, 5, 100],
+        ...      ["Flamingo", "Horse", "Brittle stars", "Centipede"]],
+        ...     names=['year', 'n_legs', 'animals'])
         >>> table.slice(length=3)
         pyarrow.Table
         year: int64
@@ -4347,11 +4336,10 @@ cdef class Table(_Tabular):
         Examples
         --------
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'year': [2020, 2022, 2019, 2021],
-        ...                    'n_legs': [2, 4, 5, 100],
-        ...                    'animals': ["Flamingo", "Horse", "Brittle 
stars", "Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[2020, 2022, 2019, 2021], [2, 4, 5, 100],
+        ...      ["Flamingo", "Horse", "Brittle stars", "Centipede"]],
+        ...     names=['year', 'n_legs', 'animals'])
         >>> table.select([0,1])
         pyarrow.Table
         year: int64
@@ -4687,15 +4675,12 @@ cdef class Table(_Tabular):
         Examples
         --------
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100],
-        ...                    'animals': ["Flamingo", "Horse", "Brittle 
stars", "Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[2, 4, 5, 100], ["Flamingo", "Horse", "Brittle stars", 
"Centipede"]],
+        ...     names=['n_legs', 'animals'])
         >>> table.schema
         n_legs: int64
         animals: string
-        -- schema metadata --
-        pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 
0, ...
 
         Define new schema and cast table values:
 
@@ -4787,7 +4772,7 @@ cdef class Table(_Tabular):
         >>> pa.Table.from_pandas(df)
         pyarrow.Table
         n_legs: int64
-        animals: string
+        animals: ...string
         ----
         n_legs: [[2,4,5,100]]
         animals: [["Flamingo","Horse","Brittle stars","Centipede"]]
@@ -4934,11 +4919,11 @@ cdef class Table(_Tabular):
         --------
         >>> import pyarrow as pa
         >>> struct = pa.array([{'n_legs': 2, 'animals': 'Parrot'},
-        ...                    {'year': 2022, 'n_legs': 4}])
+        ...                    {'year': 2022, 'n_legs': 4, 'animals': 'Goat'}])
         >>> pa.Table.from_struct_array(struct).to_pandas()
            n_legs animals    year
         0       2  Parrot     NaN
-        1       4    None  2022.0
+        1       4    Goat  2022.0
         """
         if isinstance(struct_array, Array):
             return 
Table.from_batches([RecordBatch.from_struct_array(struct_array)])
@@ -5132,10 +5117,9 @@ cdef class Table(_Tabular):
         Examples
         --------
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100],
-        ...                    'animals': ["Flamingo", "Horse", "Brittle 
stars", "Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[2, 4, 5, 100], ["Flamingo", "Horse", "Brittle stars", 
"Centipede"]],
+        ...     names=['n_legs', 'animals'])
 
         Convert a Table to a RecordBatchReader:
 
@@ -5146,8 +5130,6 @@ cdef class Table(_Tabular):
         >>> reader.schema
         n_legs: int64
         animals: string
-        -- schema metadata --
-        pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 
0, ...
         >>> reader.read_all()
         pyarrow.Table
         n_legs: int64
@@ -5193,15 +5175,12 @@ cdef class Table(_Tabular):
         Examples
         --------
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100],
-        ...                    'animals': ["Flamingo", "Horse", "Brittle 
stars", "Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[2, 4, 5, 100], ["Flamingo", "Horse", "Brittle stars", 
"Centipede"]],
+        ...     names=['n_legs', 'animals'])
         >>> table.schema
         n_legs: int64
         animals: string
-        -- schema metadata --
-        pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 
0, "' ...
         """
         return pyarrow_wrap_schema(self.table.schema())
 
@@ -5288,10 +5267,9 @@ cdef class Table(_Tabular):
         Examples
         --------
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'n_legs': [None, 4, 5, None],
-        ...                    'animals': ["Flamingo", "Horse", None, 
"Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[None, 4, 5, None], ["Flamingo", "Horse", None, "Centipede"]],
+        ...     names=['n_legs', 'animals'])
         >>> table.nbytes
         72
         """
@@ -5318,10 +5296,9 @@ cdef class Table(_Tabular):
         Examples
         --------
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'n_legs': [None, 4, 5, None],
-        ...                    'animals': ["Flamingo", "Horse", None, 
"Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[None, 4, 5, None], ["Flamingo", "Horse", None, "Centipede"]],
+        ...     names=['n_legs', 'animals'])
         >>> table.get_total_buffer_size()
         76
         """
@@ -5360,10 +5337,9 @@ cdef class Table(_Tabular):
         Examples
         --------
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100],
-        ...                    'animals': ["Flamingo", "Horse", "Brittle 
stars", "Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[2, 4, 5, 100], ["Flamingo", "Horse", "Brittle stars", 
"Centipede"]],
+        ...     names=['n_legs', 'animals'])
 
         Add column:
 
@@ -5426,10 +5402,9 @@ cdef class Table(_Tabular):
         Examples
         --------
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100],
-        ...                    'animals': ["Flamingo", "Horse", "Brittle 
stars", "Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[2, 4, 5, 100], ["Flamingo", "Horse", "Brittle stars", 
"Centipede"]],
+        ...     names=['n_legs', 'animals'])
         >>> table.remove_column(1)
         pyarrow.Table
         n_legs: int64
@@ -5465,10 +5440,9 @@ cdef class Table(_Tabular):
         Examples
         --------
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100],
-        ...                    'animals': ["Flamingo", "Horse", "Brittle 
stars", "Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[2, 4, 5, 100], ["Flamingo", "Horse", "Brittle stars", 
"Centipede"]],
+        ...     names=['n_legs', 'animals'])
 
         Replace a column:
 
@@ -5527,10 +5501,9 @@ cdef class Table(_Tabular):
         Examples
         --------
         >>> import pyarrow as pa
-        >>> import pandas as pd
-        >>> df = pd.DataFrame({'n_legs': [2, 4, 5, 100],
-        ...                    'animals': ["Flamingo", "Horse", "Brittle 
stars", "Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[2, 4, 5, 100], ["Flamingo", "Horse", "Brittle stars", 
"Centipede"]],
+        ...     names=['n_legs', 'animals'])
         >>> new_names = ["n", "name"]
         >>> table.rename_columns(new_names)
         pyarrow.Table
@@ -5619,13 +5592,12 @@ cdef class Table(_Tabular):
 
         Examples
         --------
-        >>> import pandas as pd
         >>> import pyarrow as pa
-        >>> df = pd.DataFrame({'year': [2020, 2022, 2021, 2022, 2019, 2021],
-        ...                    'n_legs': [2, 2, 4, 4, 5, 100],
-        ...                    'animal': ["Flamingo", "Parrot", "Dog", "Horse",
-        ...                    "Brittle stars", "Centipede"]})
-        >>> table = pa.Table.from_pandas(df)
+        >>> table = pa.Table.from_arrays(
+        ...     [[2020, 2022, 2021, 2022, 2019, 2021],
+        ...      [2, 2, 4, 4, 5, 100],
+        ...      ["Flamingo", "Parrot", "Dog", "Horse", "Brittle stars", 
"Centipede"]],
+        ...     names=['year', 'n_legs', 'animal'])
         >>> table.group_by('year').aggregate([('n_legs', 'sum')])
         pyarrow.Table
         year: int64
@@ -5682,16 +5654,14 @@ cdef class Table(_Tabular):
 
         Examples
         --------
-        >>> import pandas as pd
         >>> import pyarrow as pa
         >>> import pyarrow.compute as pc
-        >>> df1 = pd.DataFrame({'id': [1, 2, 3],
-        ...                     'year': [2020, 2022, 2019]})
-        >>> df2 = pd.DataFrame({'id': [3, 4],
-        ...                     'n_legs': [5, 100],
-        ...                     'animal': ["Brittle stars", "Centipede"]})
-        >>> t1 = pa.Table.from_pandas(df1)
-        >>> t2 = pa.Table.from_pandas(df2)
+        >>> t1 = pa.Table.from_arrays(
+        ...     [[1, 2, 3], [2020, 2022, 2019]],
+        ...     names=['id', 'year'])
+        >>> t2 = pa.Table.from_arrays(
+        ...     [[3, 4], [5, 100], ["Brittle stars", "Centipede"]],
+        ...     names=['id', 'n_legs', 'animal'])
 
         Left outer join:
 
@@ -6003,7 +5973,7 @@ def record_batch(data, names=None, schema=None, 
metadata=None):
     month: int64
     day: int64
     n_legs: int64
-    animals: string
+    animals: ...string
     ----
     year: [2020,2022,2021,2022]
     month: [3,5,7,9]
@@ -6164,7 +6134,7 @@ def table(data, names=None, schema=None, metadata=None, 
nthreads=None):
     pyarrow.Table
     year: int64
     n_legs: int64
-    animals: string
+    animals: ...string
     ----
     year: [[2020,2022,2019,2021]]
     n_legs: [[2,4,5,100]]
diff --git a/python/pyarrow/types.pxi b/python/pyarrow/types.pxi
index 792c0840f8..e84f1b073f 100644
--- a/python/pyarrow/types.pxi
+++ b/python/pyarrow/types.pxi
@@ -3111,7 +3111,7 @@ cdef class Schema(_Weakrefable):
     @classmethod
     def from_pandas(cls, df, preserve_index=None):
         """
-        Returns implied schema from dataframe
+        Returns implied schema from DataFrame
 
         Parameters
         ----------
@@ -3136,11 +3136,11 @@ cdef class Schema(_Weakrefable):
         ...     'str': ['a', 'b']
         ... })
 
-        Create an Arrow Schema from the schema of a pandas dataframe:
+        Create an Arrow Schema from the schema of a pandas DataFrame:
 
         >>> pa.Schema.from_pandas(df)
         int: int64
-        str: string
+        str: ...string
         -- schema metadata --
         pandas: '{"index_columns": [{"kind": "range", "name": null, ...
         """

Reply via email to