llvmbot wrote:

<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-clangir

Author: Erich Keane (erichkeane)

<details>
<summary>Changes</summary>

The 'atomic capture' variant of the `atomic` construct accepts either a single 
statement, or a compound statement containing two statements. Each of the 
statements it accepts meet a form of the previous read/write/update forms, or 
is a combination of two.

The IR node for atomic capture takes two separate other acc.atomics, plus a 
terminator.

This patch implements all of the lowering for these.

---

Patch is 51.84 KiB, truncated to 20.00 KiB below, full version: 
https://github.com/llvm/llvm-project/pull/168422.diff


5 Files Affected:

- (modified) clang/include/clang/AST/StmtOpenACC.h (+46-3) 
- (modified) clang/lib/AST/StmtOpenACC.cpp (+207-50) 
- (modified) clang/lib/CIR/CodeGen/CIRGenStmtOpenACC.cpp (+137-61) 
- (added) clang/test/CIR/CodeGenOpenACC/atomic-capture.cpp (+508) 
- (modified) clang/test/CIR/CodeGenOpenACC/openacc-not-implemented.cpp (+1-5) 


``````````diff
diff --git a/clang/include/clang/AST/StmtOpenACC.h 
b/clang/include/clang/AST/StmtOpenACC.h
index ae8029797a36e..ad4e2d65771b8 100644
--- a/clang/include/clang/AST/StmtOpenACC.h
+++ b/clang/include/clang/AST/StmtOpenACC.h
@@ -818,14 +818,57 @@ class OpenACCAtomicConstruct final
 
   // A struct to represent a broken-down version of the associated statement,
   // providing the information specified in OpenACC3.3 Section 2.12.
-  struct StmtInfo {
+  struct SingleStmtInfo {
+    // Holds the entire expression for this. In the case of a normal
+    // read/write/update, this should just be the associated statement.  in the
+    // case of an update, this is going to be the sub-expression this
+    // represents.
+    const Expr *WholeExpr;
     const Expr *V;
     const Expr *X;
     // Listed as 'expr' in the standard, this is typically a generic expression
     // as a component.
     const Expr *RefExpr;
-    // TODO: OpenACC: We should expand this as we're implementing the other
-    // atomic construct kinds.
+    static SingleStmtInfo Empty() {
+      return {nullptr, nullptr, nullptr, nullptr};
+    }
+
+    static SingleStmtInfo createRead(const Expr *WholeExpr, const Expr *V,
+                                     const Expr *X) {
+      return {WholeExpr, V, X, /*RefExpr=*/nullptr};
+    }
+    static SingleStmtInfo createWrite(const Expr *WholeExpr, const Expr *X,
+                                      const Expr *RefExpr) {
+      return {WholeExpr, /*V=*/nullptr, X, RefExpr};
+    }
+    static SingleStmtInfo createUpdate(const Expr *WholeExpr, const Expr *X) {
+      return {WholeExpr, /*V=*/nullptr, X, /*RefExpr=*/nullptr};
+    }
+  };
+
+  struct StmtInfo {
+    enum class StmtForm {
+      Read,
+      Write,
+      Update,
+      ReadWrite,
+      ReadUpdate,
+      UpdateRead
+    } Form;
+    SingleStmtInfo First, Second;
+
+    static StmtInfo createUpdateRead(SingleStmtInfo First,
+                                     SingleStmtInfo Second) {
+      return {StmtForm::UpdateRead, First, Second};
+    }
+    static StmtInfo createReadWrite(SingleStmtInfo First,
+                                    SingleStmtInfo Second) {
+      return {StmtForm::ReadWrite, First, Second};
+    }
+    static StmtInfo createReadUpdate(SingleStmtInfo First,
+                                     SingleStmtInfo Second) {
+      return {StmtForm::ReadUpdate, First, Second};
+    }
   };
 
   const StmtInfo getAssociatedStmtInfo() const;
diff --git a/clang/lib/AST/StmtOpenACC.cpp b/clang/lib/AST/StmtOpenACC.cpp
index 39dfa19002da8..91d1e28582ec8 100644
--- a/clang/lib/AST/StmtOpenACC.cpp
+++ b/clang/lib/AST/StmtOpenACC.cpp
@@ -324,30 +324,207 @@ OpenACCAtomicConstruct *OpenACCAtomicConstruct::Create(
   return Inst;
 }
 
-static std::pair<const Expr *, const Expr *> getBinaryOpArgs(const Expr *Op) {
+static std::optional<std::pair<const Expr *, const Expr *>>
+getBinaryAssignOpArgs(const Expr *Op, bool &isCompoundAssign) {
   if (const auto *BO = dyn_cast<BinaryOperator>(Op)) {
-    assert(BO->isAssignmentOp());
-    return {BO->getLHS(), BO->getRHS()};
+    if (!BO->isAssignmentOp())
+      return std::nullopt;
+    isCompoundAssign = BO->isCompoundAssignmentOp();
+    return std::pair<const Expr *, const Expr *>({BO->getLHS(), BO->getRHS()});
   }
 
-  const auto *OO = cast<CXXOperatorCallExpr>(Op);
-  assert(OO->isAssignmentOp());
-  return {OO->getArg(0), OO->getArg(1)};
+  if (const auto *OO = dyn_cast<CXXOperatorCallExpr>(Op)) {
+    if (!OO->isAssignmentOp())
+      return std::nullopt;
+    isCompoundAssign = OO->getOperator() != OO_Equal;
+    return std::pair<const Expr *, const Expr *>(
+        {OO->getArg(0), OO->getArg(1)});
+  }
+  return std::nullopt;
+}
+static std::optional<std::pair<const Expr *, const Expr *>>
+getBinaryAssignOpArgs(const Expr *Op) {
+  bool isCompoundAssign;
+  return getBinaryAssignOpArgs(Op, isCompoundAssign);
 }
 
-static std::pair<bool, const Expr *> getUnaryOpArgs(const Expr *Op) {
+static std::optional<const Expr *> getUnaryOpArgs(const Expr *Op) {
   if (const auto *UO = dyn_cast<UnaryOperator>(Op))
-    return {true, UO->getSubExpr()};
+    return UO->getSubExpr();
 
   if (const auto *OpCall = dyn_cast<CXXOperatorCallExpr>(Op)) {
     // Post-inc/dec have a second unused argument to differentiate it, so we
     // accept -- or ++ as unary, or any operator call with only 1 arg.
     if (OpCall->getNumArgs() == 1 || OpCall->getOperator() != OO_PlusPlus ||
         OpCall->getOperator() != OO_MinusMinus)
-      return {true, OpCall->getArg(0)};
+      return {OpCall->getArg(0)};
   }
 
-  return {false, nullptr};
+  return std::nullopt;
+}
+
+// Read is of the form `v = x;`, where both sides are scalar L-values. This is 
a
+// BinaryOperator or CXXOperatorCallExpr.
+static std::optional<OpenACCAtomicConstruct::SingleStmtInfo>
+getReadStmtInfo(const Expr *E, bool ForAtomicComputeSingleStmt = false) {
+  std::optional<std::pair<const Expr *, const Expr *>> BinaryArgs =
+      getBinaryAssignOpArgs(E);
+
+  if (!BinaryArgs)
+    return std::nullopt;
+
+  // We want the L-value for each side, so we ignore implicit casts.
+  auto Res = OpenACCAtomicConstruct::SingleStmtInfo::createRead(
+      E, BinaryArgs->first->IgnoreImpCasts(),
+      BinaryArgs->second->IgnoreImpCasts());
+
+  // The atomic compute single-stmt variant has to do a 'fixup' step for the 
'X'
+  // value, since it is dependent on the RHS.  So if we're in that version, we
+  // skip the checks on X.
+  if ((!ForAtomicComputeSingleStmt &&
+       (!Res.X->isLValue() || !Res.X->getType()->isScalarType())) ||
+      !Res.V->isLValue() || !Res.V->getType()->isScalarType())
+    return std::nullopt;
+
+  return Res;
+}
+
+// Write supports only the format 'x = expr', where the expression is scalar
+// type, and 'x' is a scalar l value. As above, this can come in 2 forms;
+// Binary Operator or CXXOperatorCallExpr.
+static std::optional<OpenACCAtomicConstruct::SingleStmtInfo>
+getWriteStmtInfo(const Expr *E) {
+  std::optional<std::pair<const Expr *, const Expr *>> BinaryArgs =
+      getBinaryAssignOpArgs(E);
+  if (!BinaryArgs)
+    return std::nullopt;
+  // We want the L-value for ONLY the X side, so we ignore implicit casts. For
+  // the right side (the expr), we emit it as an r-value so we need to
+  // maintain implicit casts.
+  auto Res = OpenACCAtomicConstruct::SingleStmtInfo::createWrite(
+      E, BinaryArgs->first->IgnoreImpCasts(), BinaryArgs->second);
+
+  if (!Res.X->isLValue() || !Res.X->getType()->isScalarType())
+    return std::nullopt;
+  return Res;
+}
+
+static std::optional<OpenACCAtomicConstruct::SingleStmtInfo>
+getUpdateStmtInfo(const Expr *E) {
+  std::optional<const Expr *> UnaryArgs = getUnaryOpArgs(E);
+  if (UnaryArgs) {
+    auto Res = OpenACCAtomicConstruct::SingleStmtInfo::createUpdate(
+        E, (*UnaryArgs)->IgnoreImpCasts());
+
+    if (!Res.X->isLValue() || !Res.X->getType()->isScalarType())
+      return std::nullopt;
+
+    return Res;
+  }
+
+  bool isRHSCompoundAssign = false;
+  std::optional<std::pair<const Expr *, const Expr *>> BinaryArgs =
+      getBinaryAssignOpArgs(E, isRHSCompoundAssign);
+  if (!BinaryArgs)
+    return std::nullopt;
+
+  auto Res = OpenACCAtomicConstruct::SingleStmtInfo::createUpdate(
+      E, BinaryArgs->first->IgnoreImpCasts());
+
+  if (!Res.X->isLValue() || !Res.X->getType()->isScalarType())
+    return std::nullopt;
+
+  // 'update' has to be either a compound-assignment operation, or
+  // assignment-to-a-binary-op. Return nullopt if these are not the case.
+  // If we are already compound-assign, we're done!
+  if (isRHSCompoundAssign)
+    return Res;
+
+  // else we have to check that we have a binary operator.
+  const Expr *RHS = BinaryArgs->second->IgnoreImpCasts();
+
+  if (isa<BinaryOperator>(RHS))
+    return Res;
+  else if (const auto *OO = dyn_cast<CXXOperatorCallExpr>(RHS)) {
+    if (OO->isInfixBinaryOp())
+      return Res;
+  }
+
+  return std::nullopt;
+}
+
+static OpenACCAtomicConstruct::StmtInfo
+getCaptureStmtInfo(const Stmt *AssocStmt) {
+  if (const auto *CmpdStmt = dyn_cast<CompoundStmt>(AssocStmt)) {
+    // We checked during Sema to ensure we only have 2 statements here, and
+    // that both are expressions, we can look at these to see what the valid
+    // options are.
+    const Expr *Stmt1 = 
cast<Expr>(*CmpdStmt->body().begin())->IgnoreImpCasts();
+    const Expr *Stmt2 =
+        cast<Expr>(*(CmpdStmt->body().begin() + 1))->IgnoreImpCasts();
+    std::optional<OpenACCAtomicConstruct::SingleStmtInfo> Read =
+        getReadStmtInfo(Stmt1);
+
+    if (Read) {
+      // READ : WRITE
+      // v = x; x = expr
+      // READ : UPDATE
+      // v = x; x binop = expr
+      // v = x; x = x binop expr
+      // v = x; x = expr binop x
+      // v = x; x++
+      // v = x; ++x
+      // v = x; x--
+      // v = x; --x
+      std::optional<OpenACCAtomicConstruct::SingleStmtInfo> Update =
+          getUpdateStmtInfo(Stmt2);
+      if (Update)
+        return OpenACCAtomicConstruct::StmtInfo::createReadUpdate(*Read,
+                                                                  *Update);
+
+      std::optional<OpenACCAtomicConstruct::SingleStmtInfo> Write =
+          getWriteStmtInfo(Stmt2);
+      return OpenACCAtomicConstruct::StmtInfo::createReadWrite(*Read, *Write);
+    }
+    // UPDATE: READ
+    // x binop = expr; v = x
+    // x = x binop expr; v = x
+    // x = expr binop x ; v = x
+    // ++ x; v = x
+    // x++; v = x
+    // --x; v = x
+    // x--; v = x
+    std::optional<OpenACCAtomicConstruct::SingleStmtInfo> Update =
+        getUpdateStmtInfo(Stmt1);
+    Read = getReadStmtInfo(Stmt2);
+
+    return OpenACCAtomicConstruct::StmtInfo::createUpdateRead(*Update, *Read);
+  } else {
+    // All of the possible forms (listed below) that are writable as a single
+    // line are expressed as an update, then as a read.  We should be able to
+    // just run these two in the right order.
+    // UPDATE: READ
+    // v = x++;
+    // v = x--;
+    // v = ++x;
+    // v = --x;
+    // v = x binop=expr
+    // v = x = x binop expr
+    // v = x = expr binop x
+
+    const Expr *E = cast<const Expr>(AssocStmt);
+
+    std::optional<OpenACCAtomicConstruct::SingleStmtInfo> Read =
+        getReadStmtInfo(E, /*ForAtomicComputeSingleStmt=*/true);
+    std::optional<OpenACCAtomicConstruct::SingleStmtInfo> Update =
+        getUpdateStmtInfo(Read->X);
+
+    // Fixup this, since the 'X' for the read is the result after write, but is
+    // the same value as the LHS-most variable of the update(its X).
+    Read->X = Update->X;
+    return OpenACCAtomicConstruct::StmtInfo::createUpdateRead(*Update, *Read);
+  }
+  return {};
 }
 
 const OpenACCAtomicConstruct::StmtInfo
@@ -357,48 +534,28 @@ OpenACCAtomicConstruct::getAssociatedStmtInfo() const {
   // asserts to ensure we don't get off into the weeds.
   assert(getAssociatedStmt() && "invalid associated stmt?");
 
-  const Expr *AssocStmt = cast<const Expr>(getAssociatedStmt());
   switch (AtomicKind) {
-  case OpenACCAtomicKind::Capture:
-    assert(false && "Only 'read'/'write'/'update' have been implemented here");
-    return {};
-  case OpenACCAtomicKind::Read: {
-    // Read only supports the format 'v = x'; where both sides are a scalar
-    // expression. This can come in 2 forms; BinaryOperator or
-    // CXXOperatorCallExpr (rarely).
-    std::pair<const Expr *, const Expr *> BinaryArgs =
-        getBinaryOpArgs(AssocStmt);
-    // We want the L-value for each side, so we ignore implicit casts.
-    return {BinaryArgs.first->IgnoreImpCasts(),
-            BinaryArgs.second->IgnoreImpCasts(), /*expr=*/nullptr};
-  }
-  case OpenACCAtomicKind::Write: {
-    // Write supports only the format 'x = expr', where the expression is 
scalar
-    // type, and 'x' is a scalar l value. As above, this can come in 2 forms;
-    // Binary Operator or CXXOperatorCallExpr.
-    std::pair<const Expr *, const Expr *> BinaryArgs =
-        getBinaryOpArgs(AssocStmt);
-    // We want the L-value for ONLY the X side, so we ignore implicit casts. 
For
-    // the right side (the expr), we emit it as an r-value so we need to
-    // maintain implicit casts.
-    return {/*v=*/nullptr, BinaryArgs.first->IgnoreImpCasts(),
-            BinaryArgs.second};
-  }
+  case OpenACCAtomicKind::Read:
+    return OpenACCAtomicConstruct::StmtInfo{
+        OpenACCAtomicConstruct::StmtInfo::StmtForm::Read,
+        *getReadStmtInfo(cast<const Expr>(getAssociatedStmt())),
+        OpenACCAtomicConstruct::SingleStmtInfo::Empty()};
+
+  case OpenACCAtomicKind::Write:
+    return OpenACCAtomicConstruct::StmtInfo{
+        OpenACCAtomicConstruct::StmtInfo::StmtForm::Write,
+        *getWriteStmtInfo(cast<const Expr>(getAssociatedStmt())),
+        OpenACCAtomicConstruct::SingleStmtInfo::Empty()};
+
   case OpenACCAtomicKind::None:
-  case OpenACCAtomicKind::Update: {
-    std::pair<bool, const Expr *> UnaryArgs = getUnaryOpArgs(AssocStmt);
-    if (UnaryArgs.first)
-      return {/*v=*/nullptr, UnaryArgs.second->IgnoreImpCasts(),
-              /*expr=*/nullptr};
-
-    std::pair<const Expr *, const Expr *> BinaryArgs =
-        getBinaryOpArgs(AssocStmt);
-    // For binary args, we just store the RHS as an expression (in the
-    // expression slot), since the codegen just wants the whole thing for a
-    // recipe.
-    return {/*v=*/nullptr, BinaryArgs.first->IgnoreImpCasts(),
-            BinaryArgs.second};
-  }
+  case OpenACCAtomicKind::Update:
+    return OpenACCAtomicConstruct::StmtInfo{
+        OpenACCAtomicConstruct::StmtInfo::StmtForm::Update,
+        *getUpdateStmtInfo(cast<const Expr>(getAssociatedStmt())),
+        OpenACCAtomicConstruct::SingleStmtInfo::Empty()};
+
+  case OpenACCAtomicKind::Capture:
+    return getCaptureStmtInfo(getAssociatedStmt());
   }
 
   llvm_unreachable("unknown OpenACC atomic kind");
diff --git a/clang/lib/CIR/CodeGen/CIRGenStmtOpenACC.cpp 
b/clang/lib/CIR/CodeGen/CIRGenStmtOpenACC.cpp
index 9e55bd5b7ae71..e103c66549b4d 100644
--- a/clang/lib/CIR/CodeGen/CIRGenStmtOpenACC.cpp
+++ b/clang/lib/CIR/CodeGen/CIRGenStmtOpenACC.cpp
@@ -314,15 +314,80 @@ const VarDecl *getLValueDecl(const Expr *e) {
   return cast<VarDecl>(dre->getDecl());
 }
 
-mlir::LogicalResult
-CIRGenFunction::emitOpenACCAtomicConstruct(const OpenACCAtomicConstruct &s) {
-  // For now, we are only support 'read'/'write'/'update', so diagnose. We can
-  // switch on the kind later once we implement the 'capture' form.
-  if (s.getAtomicKind() == OpenACCAtomicKind::Capture) {
-    cgm.errorNYI(s.getSourceRange(), "OpenACC Atomic Construct");
-    return mlir::failure();
+static mlir::acc::AtomicReadOp
+emitAtomicRead(CIRGenFunction &cgf, CIRGenBuilderTy &builder,
+               mlir::Location start,
+               OpenACCAtomicConstruct::SingleStmtInfo inf) {
+  // Atomic 'read' only permits 'v = x', where v and x are both scalar L
+  // values. The getAssociatedStmtInfo strips off implicit casts, which
+  // includes implicit conversions and L-to-R-Value conversions, so we can
+  // just emit it as an L value.  The Flang implementation has no problem with
+  // different types, so it appears that the dialect can handle the
+  // conversions.
+  mlir::Value v = cgf.emitLValue(inf.V).getPointer();
+  mlir::Value x = cgf.emitLValue(inf.X).getPointer();
+  mlir::Type resTy = cgf.convertType(inf.V->getType());
+  return mlir::acc::AtomicReadOp::create(builder, start, x, v, resTy,
+                                         /*ifCond=*/{});
+}
+
+static mlir::acc::AtomicWriteOp
+emitAtomicWrite(CIRGenFunction &cgf, CIRGenBuilderTy &builder,
+                mlir::Location start,
+                OpenACCAtomicConstruct::SingleStmtInfo inf) {
+  mlir::Value x = cgf.emitLValue(inf.X).getPointer();
+  mlir::Value expr = cgf.emitAnyExpr(inf.RefExpr).getValue();
+  return mlir::acc::AtomicWriteOp::create(builder, start, x, expr,
+                                          /*ifCond=*/{});
+}
+
+static std::pair<mlir::LogicalResult, mlir::acc::AtomicUpdateOp>
+emitAtomicUpdate(CIRGenFunction &cgf, CIRGenBuilderTy &builder,
+                 mlir::Location start, mlir::Location end,
+                 OpenACCAtomicConstruct::SingleStmtInfo inf) {
+  mlir::Value x = cgf.emitLValue(inf.X).getPointer();
+  auto op = mlir::acc::AtomicUpdateOp::create(builder, start, x, 
/*ifCond=*/{});
+
+  mlir::LogicalResult res = mlir::success();
+  {
+    mlir::OpBuilder::InsertionGuard guardCase(builder);
+    mlir::Type argTy = cast<cir::PointerType>(x.getType()).getPointee();
+    std::array<mlir::Type, 1> recipeType{argTy};
+    std::array<mlir::Location, 1> recipeLoc{start};
+    auto *recipeBlock = builder.createBlock(
+        &op.getRegion(), op.getRegion().end(), recipeType, recipeLoc);
+    builder.setInsertionPointToEnd(recipeBlock);
+    // Since we have an initial value that we know is a scalar type, we can
+    // just emit the entire statement here after sneaking-in our 'alloca' in
+    // the right place, then loading out of it. Flang does a lot less work
+    // (probably does its own emitting!), but we have more complicated AST
+    // nodes to worry about, so we can just count on opt to remove the extra
+    // alloca/load/store set.
+    auto alloca = cir::AllocaOp::create(
+        builder, start, x.getType(), argTy, "x_var",
+        cgf.cgm.getSize(
+            cgf.getContext().getTypeAlignInChars(inf.X->getType())));
+
+    alloca.setInitAttr(mlir::UnitAttr::get(&cgf.getMLIRContext()));
+    builder.CIRBaseBuilderTy::createStore(start, recipeBlock->getArgument(0),
+                                          alloca);
+
+    const VarDecl *xval = getLValueDecl(inf.X);
+    CIRGenFunction::DeclMapRevertingRAII declMapRAII{cgf, xval};
+    cgf.replaceAddrOfLocalVar(
+        xval, Address{alloca, argTy, cgf.getContext().getDeclAlign(xval)});
+
+    res = cgf.emitStmt(inf.WholeExpr, /*useCurrentScope=*/true);
+
+    auto load = cir::LoadOp::create(builder, start, {alloca});
+    mlir::acc::YieldOp::create(builder, end, {load});
   }
 
+  return {res, op};
+}
+
+mlir::LogicalResult
+CIRGenFunction::emitOpenACCAtomicConstruct(const OpenACCAtomicConstruct &s) {
   // While Atomic is an 'associated statement' construct, it 'steals' the
   // expression it is associated with rather than emitting it inside of it.  So
   // it has custom emit logic.
@@ -331,78 +396,89 @@ CIRGenFunction::emitOpenACCAtomicConstruct(const 
OpenACCAtomicConstruct &s) {
   OpenACCAtomicConstruct::StmtInfo inf = s.getAssociatedStmtInfo();
 
   switch (s.getAtomicKind()) {
-  case OpenACCAtomicKind::Capture:
-    llvm_unreachable("Unimplemented atomic construct type, should have "
-                     "diagnosed/returned above");
-    return mlir::failure();
   case OpenACCAtomicKind::Read: {
-
-    // Atomic 'read' only permits 'v = x', where v and x are both scalar L
-    // values. The getAssociatedStmtInfo strips off implicit casts, which
-    // includes implicit conversions and L-to-R-Value conversions, so we can
-    // just emit it as an L value.  The Flang implementation has no problem 
with
-    // different types, so it appears that the dialect can handle the
-    // conversions.
-    mlir::Value v = emitLValue(inf.V).getPointer();
-    mlir::Value x = emitLValue(inf.X).getPointer();
-    mlir::Type resTy = convertType(inf.V->getType());
-    auto op = mlir::acc::AtomicReadOp::create(builder, start, x, v, resTy,
-                                              /*ifCond=*/{});
+    assert(inf.Form == OpenACCAtomicConstruct::StmtInfo::StmtForm::Read);
+    mlir::acc::AtomicReadOp op =
+        emitAtomicRead(*this, builder, start, inf.First);
     emitOpenACCClauses(op, s.getDirectiveKind(), s.getDirectiveLoc(),
                        s.clauses());
     return mlir::success();
   }
   case OpenACCAtomicKind::Write: {
-    mlir::Value x = emitLValue(inf.X).getPointer();
-    mlir::Value expr = emitAnyExpr(inf.RefExpr).getValue();
-    auto op = mlir::acc::AtomicWriteOp::create(builder, start, x, expr,
-                                               /*ifCond=*/{});
+    assert(inf.Form == OpenACCAtomicConstruct::StmtInfo::StmtForm::Write);
+    auto op = emitAtomicWrite(*this, builder, start, inf.First);
     emitOpenACCClauses(op, s.getDirectiveKind(), s.getDirectiveLoc(),
                        s.clauses());
     return mlir::success();
   }
   case OpenACCAtomicKind::None:
   case OpenACCAtomicKind::Update...
[truncated]

``````````

</details>


https://github.com/llvm/llvm-project/pull/168422
_______________________________________________
cfe-commits mailing list
[email protected]
https://lists.llvm.org/cgi-bin/mailman/listinfo/cfe-commits

Reply via email to