================
@@ -1001,3 +1001,86 @@ void foo36() {
// OGCG: %[[A_IMAG_F32:.*]] = fpext half %[[A_IMAG]] to float
// OGCG: %[[A_IMAG_F16:.*]] = fptrunc float %[[A_IMAG_F32]] to half
// OGCG: store half %[[A_IMAG_F16]], ptr %[[IMAG_ADDR]], align 2
+
+void foo38() {
+ float a;
+ float b = __real__ a;
+}
+
+// CIR: %[[A_ADDR:.*]] = cir.alloca !cir.float, !cir.ptr<!cir.float>, ["a"]
+// CIR: %[[B_ADDR:.*]] = cir.alloca !cir.float, !cir.ptr<!cir.float>, ["b",
init]
+// CIR: %[[TMP_A:.*]] = cir.load{{.*}} %[[A_ADDR]] : !cir.ptr<!cir.float>,
!cir.float
+// CIR: cir.store{{.*}} %[[TMP_A]], %[[B_ADDR]] : !cir.float,
!cir.ptr<!cir.float>
+
+// LLVM: %[[A_ADDR:.*]] = alloca float, i64 1, align 4
+// LLVM: %[[B_ADDR:.*]] = alloca float, i64 1, align 4
+// LLVM: %[[TMP_A:.*]] = load float, ptr %[[A_ADDR]], align 4
+// LLVM: store float %[[TMP_A]], ptr %[[B_ADDR]], align 4
+
+// OGCG: %[[A_ADDR:.*]] = alloca float, align 4
+// OGCG: %[[B_ADDR:.*]] = alloca float, align 4
+// OGCG: %[[TMP_A:.*]] = load float, ptr %[[A_ADDR]], align 4
+// OGCG: store float %[[TMP_A]], ptr %[[B_ADDR]], align 4
+
+void foo39() {
+ float a;
+ float b = __imag__ a;
+}
+
+// CIR: %[[A_ADDR:.*]] = cir.alloca !cir.float, !cir.ptr<!cir.float>, ["a"]
+// CIR: %[[B_ADDR:.*]] = cir.alloca !cir.float, !cir.ptr<!cir.float>, ["b",
init]
+// CIR: %[[CONST_ZERO:.*]] = cir.const #cir.fp<0.000000e+00> : !cir.float
+// CIR: cir.store{{.*}} %[[CONST_ZERO]], %[[B_ADDR]] : !cir.float,
!cir.ptr<!cir.float>
----------------
AmrDeveloper wrote:
That makes sense, I was thinking maybe instant of emitting new complex with
zero imaginary, we can update ComplexRealOp & ComplexImagOp to accept either
Complex Element Type (Int or Float), and When we introduce optimization levels
we can fold those cases to real or zero if needed 🤔, What do you think
@andykaylor @bcardosolopes ?
https://github.com/llvm/llvm-project/pull/159916
_______________________________________________
cfe-commits mailing list
[email protected]
https://lists.llvm.org/cgi-bin/mailman/listinfo/cfe-commits