================
@@ -0,0 +1,1408 @@
+//===- X86.cpp 
------------------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM 
Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ABI/ABIFunctionInfo.h"
+#include "llvm/ABI/ABIInfo.h"
+#include "llvm/ABI/ABITypeMapper.h"
+#include "llvm/ABI/TargetCodegenInfo.h"
+#include "llvm/ABI/Types.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/Alignment.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/TypeSize.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/TargetParser/Triple.h"
+#include <algorithm>
+#include <cassert>
+#include <cmath>
+#include <cstdint>
+
+namespace llvm {
+namespace abi {
+
+static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
+  switch (AVXLevel) {
+  case X86AVXABILevel::AVX512:
+    return 512;
+  case X86AVXABILevel::AVX:
+    return 256;
+  case X86AVXABILevel::None:
+    return 128;
+  }
+  llvm_unreachable("Unknown AVXLevel");
+}
+
+class X86_64ABIInfo : public ABIInfo {
+public:
+  enum Class {
+    Integer = 0,
+    SSE,
+    SSEUp,
+    X87,
+    X87UP,
+    Complex_X87,
+    NoClass,
+    Memory
+  };
+
+private:
+  TypeBuilder &TB;
+  X86AVXABILevel AVXLevel;
+  bool Has64BitPointers;
+  const llvm::Triple &TargetTriple;
+
+  static Class merge(Class Accum, Class Field);
+
+  void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
+
+  void classify(const Type *T, uint64_t OffsetBase, Class &Lo, Class &Hi,
+                bool IsNamedArg, bool IsRegCall = false) const;
+
+  const Type *getIntegerTypeAtOffset(const Type *IRType, unsigned IROffset,
+                                     const Type *SourceTy,
+                                     unsigned SourceOffset) const;
+
+  const Type *getSSETypeAtOffset(const Type *ABIType, unsigned ABIOffset,
+                                 const Type *SourceTy,
+                                 unsigned SourceOffset) const;
+  bool isIllegalVectorType(const Type *Ty) const;
+  bool containsMatrixField(const StructType *ST) const;
+
+  void computeInfo(ABIFunctionInfo &FI) const override;
+  ABIArgInfo getIndirectReturnResult(const Type *Ty) const;
+  const Type *getFPTypeAtOffset(const Type *Ty, unsigned Offset) const;
+
+  const Type *isSingleElementStruct(const Type *Ty) const;
+  const Type *getByteVectorType(const Type *Ty) const;
+
+  const Type *createPairType(const Type *Lo, const Type *Hi) const;
+  ABIArgInfo getIndirectResult(const Type *Ty, unsigned FreeIntRegs) const;
+
+  ABIArgInfo classifyReturnType(const Type *RetTy) const;
+  const char *getClassName(Class C) const;
+
+  ABIArgInfo classifyArgumentType(const Type *Ty, unsigned FreeIntRegs,
+                                  unsigned &NeededInt, unsigned &NeededSse,
+                                  bool IsNamedArg,
+                                  bool IsRegCall = false) const;
+  const Type *useFirstFieldIfTransparentUnion(const Type *Ty) const;
+
+public:
+  X86_64ABIInfo(TypeBuilder &TypeBuilder, const Triple &Triple,
+                X86AVXABILevel AVXABILevel, bool Has64BitPtrs,
+                const ABICompatInfo &Compat)
+      : ABIInfo(Compat), TB(TypeBuilder), AVXLevel(AVXABILevel),
+        Has64BitPointers(Has64BitPtrs), TargetTriple(Triple) {}
+
+  bool has64BitPointers() const { return Has64BitPointers; }
+};
+
+void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
+                              Class &Hi) const {
+  // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
+  //
+  // (a) If one of the classes is Memory, the whole argument is passed in
+  //     memory.
+  //
+  // (b) If X87UP is not preceded by X87, the whole argument is passed in
+  //     memory.
+  //
+  // (c) If the size of the aggregate exceeds two eightbytes and the first
+  //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
+  //     argument is passed in memory. NOTE: This is necessary to keep the
+  //     ABI working for processors that don't support the __m256 type.
+  //
+  // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
+  //
+  // Some of these are enforced by the merging logic.  Others can arise
+  // only with unions; for example:
+  //   union { _Complex double; unsigned; }
+  //
+  // Note that clauses (b) and (c) were added in 0.98.
+
+  if (Hi == Memory)
+    Lo = Memory;
+  if (Hi == X87UP && Lo != X87 && getABICompatInfo().Flags.HonorsRevision98)
+    Lo = Memory;
+  if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
+    Lo = Memory;
+  if (Hi == SSEUp && Lo != SSE)
+    Hi = SSE;
+}
+X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
+  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
+  // classified recursively so that always two fields are
+  // considered. The resulting class is calculated according to
+  // the classes of the fields in the eightbyte:
+  //
+  // (a) If both classes are equal, this is the resulting class.
+  //
+  // (b) If one of the classes is NO_CLASS, the resulting class is
+  // the other class.
+  //
+  // (c) If one of the classes is MEMORY, the result is the MEMORY
+  // class.
+  //
+  // (d) If one of the classes is INTEGER, the result is the
+  // INTEGER.
+  //
+  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
+  // MEMORY is used as class.
+  //
+  // (f) Otherwise class SSE is used.
+
+  // Accum should never be memory (we should have returned) or
+  // ComplexX87 (because this cannot be passed in a structure).
+  assert((Accum != Memory && Accum != Complex_X87) &&
+         "Invalid accumulated classification during merge.");
+
+  if (Accum == Field || Field == NoClass)
+    return Accum;
+  if (Accum == NoClass)
+    return Field;
+  if (Field == Memory)
+    return Memory;
+  if (Accum == Integer || Field == Integer)
+    return Integer;
+  if (Field == X87 || Field == X87UP || Field == Complex_X87 || Accum == X87 ||
+      Accum == X87UP)
+    return Memory;
+
+  return SSE;
+}
+
+bool X86_64ABIInfo::containsMatrixField(const StructType *ST) const {
+  for (const auto &Field : ST->getFields()) {
+    const Type *FieldType = Field.FieldType;
+
+    if (const auto *AT = dyn_cast<ArrayType>(FieldType))
+      return AT->isMatrixType();
+
+    if (const auto *NestedST = dyn_cast<StructType>(FieldType))
+      return containsMatrixField(NestedST);
+  }
+  return false;
+}
+
+void X86_64ABIInfo::classify(const Type *T, uint64_t OffsetBase, Class &Lo,
+                             Class &Hi, bool IsNamedArg, bool IsRegCall) const 
{
+  Lo = Hi = NoClass;
+  Class &Current = OffsetBase < 64 ? Lo : Hi;
+  Current = Memory;
+
+  if (T->isVoid()) {
+    Current = NoClass;
+    return;
+  }
+
+  if (const auto *IT = dyn_cast<IntegerType>(T)) {
+    auto BitWidth = IT->getSizeInBits().getFixedValue();
+
+    if (BitWidth == 128 ||
+        (IT->isBitInt() && BitWidth > 64 && BitWidth <= 128)) {
+      Lo = Integer;
+      Hi = Integer;
+    } else if (BitWidth <= 64)
+      Current = Integer;
+
+    return;
+  }
+
+  if (const auto *FT = dyn_cast<FloatType>(T)) {
+    const auto *FltSem = FT->getSemantics();
+
+    if (FltSem == &llvm::APFloat::IEEEsingle() ||
+        FltSem == &llvm::APFloat::IEEEdouble() ||
+        FltSem == &llvm::APFloat::IEEEhalf() ||
+        FltSem == &llvm::APFloat::BFloat()) {
+      Current = SSE;
+    } else if (FltSem == &llvm::APFloat::IEEEquad()) {
+      Lo = SSE;
+      Hi = SSEUp;
+    } else if (FltSem == &llvm::APFloat::x87DoubleExtended()) {
+      Lo = X87;
+      Hi = X87UP;
+    } else
+      Current = SSE;
+    return;
+  }
+  if (T->isPointer()) {
+    Current = Integer;
+    return;
+  }
+
+  if (const auto *MPT = dyn_cast<MemberPointerType>(T)) {
+    if (MPT->isFunctionPointer()) {
+      if (Has64BitPointers) {
+        Lo = Hi = Integer;
+      } else {
+        uint64_t EB_FuncPtr = OffsetBase / 64;
+        uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
+        if (EB_FuncPtr != EB_ThisAdj) {
+          Lo = Hi = Integer;
+        } else
+          Current = Integer;
+      }
+    } else
+      Current = Integer;
+    return;
+  }
+
+  if (const auto *VT = dyn_cast<VectorType>(T)) {
+    auto Size = VT->getSizeInBits().getFixedValue();
+    const Type *ElementType = VT->getElementType();
+
+    if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
+      // gcc passes the following as integer:
+      // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
+      // 2 bytes - <2 x char>, <1 x short>
+      // 1 byte  - <1 x char>
+      Current = Integer;
+      // If this type crosses an eightbyte boundary, it should be
+      // split.
+      uint64_t EB_Lo = (OffsetBase) / 64;
+      uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
+      if (EB_Lo != EB_Hi)
+        Hi = Lo;
+    } else if (Size == 64) {
+      if (const auto *FT = dyn_cast<FloatType>(ElementType)) {
+        // gcc passes <1 x double> in memory. :(
+        if (FT->getSemantics() == &llvm::APFloat::IEEEdouble())
+          return;
+      }
+
+      // gcc passes <1 x long long> as SSE but clang used to unconditionally
+      // pass them as integer.  For platforms where clang is the de facto
+      // platform compiler, we must continue to use integer.
+      if (const auto *IT = dyn_cast<IntegerType>(ElementType)) {
+        uint64_t ElemBits = IT->getSizeInBits().getFixedValue();
+        if (!getABICompatInfo().Flags.ClassifyIntegerMMXAsSSE &&
+            (ElemBits == 64 || ElemBits == 32)) {
+          Current = Integer;
+        } else
+          Current = SSE;
+      } else
+        Current = SSE;
+      // If this type crosses an eightbyte boundary, it should be
+      // split.
+      if (OffsetBase && OffsetBase != 64)
+        Hi = Lo;
+    } else if (Size == 128 ||
+               (IsNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) 
{
+      if (const auto *IT = dyn_cast<IntegerType>(ElementType)) {
+        uint64_t ElemBits = IT->getSizeInBits().getFixedValue();
+        // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
+        if (getABICompatInfo().Flags.PassInt128VectorsInMem && Size != 128 &&
+            ElemBits == 128)
+          return;
+      }
+
+      // Arguments of 256-bits are split into four eightbyte chunks. The
+      // least significant one belongs to class SSE and all the others to class
+      // SSEUP. The original Lo and Hi design considers that types can't be
+      // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
+      // This design isn't correct for 256-bits, but since there're no cases
+      // where the upper parts would need to be inspected, avoid adding
+      // complexity and just consider Hi to match the 64-256 part.
+      //
+      // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
+      // registers if they are "named", i.e. not part of the "..." of a
+      // variadic function.
+      //
+      // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
+      // split into eight eightbyte chunks, one SSE and seven SSEUP.
+      Lo = SSE;
+      Hi = SSEUp;
+    }
+    return;
+  }
+
+  if (const auto *CT = dyn_cast<ComplexType>(T)) {
+    const Type *ElementType = CT->getElementType();
+    uint64_t Size = T->getSizeInBits().getFixedValue();
+
+    if (const auto *EIT = dyn_cast<IntegerType>(ElementType)) {
----------------
nikic wrote:

```suggestion
    if (isa<IntegerType>(ElementType)) {
```
To avoid warning

https://github.com/llvm/llvm-project/pull/140112
_______________________________________________
cfe-commits mailing list
cfe-commits@lists.llvm.org
https://lists.llvm.org/cgi-bin/mailman/listinfo/cfe-commits

Reply via email to