aaronpuchert created this revision. aaronpuchert added reviewers: aaron.ballman, delesley. Herald added a reviewer: NoQ. Herald added a project: All. aaronpuchert requested review of this revision. Herald added a project: clang. Herald added a subscriber: cfe-commits.
When support for copy elision was initially added in e97654b2f2807, it was taking attributes from a constructor call, although that constructor call is actually not involved. It seems more natural to use attributes on the function returning the scoped capability, which is where it's actually coming from. This would also support a number of interesting use cases, like producing different scope kinds without the need for tag types, or producing scopes from a private mutex. Changing the behavior was surprisingly difficult: we were not handling CXXConstructorExpr calls like regular calls but instead handled them through the DeclStmt they're contained in. This was based on the assumption that constructors are basically only called in variable declarations (not true because of temporaries), and that variable declarations necessitate constructors (not true with C++17 anymore). Untangling this required separating construction from assigning a variable name. When a call produces an object, we use a placeholder til::LiteralPtr for `this`, and we collect the call expression and placeholder in a map. Later when going through a DeclStmt, we look up the call expression and set the placeholder to the new VarDecl. The change has a couple of nice side effects: - We don't miss constructor calls not contained in DeclStmts anymore, allowing patterns like MutexLock{&mu}, requiresMutex(); The scoped lock temporary will be destructed at the end of the full statement, so it protects the following call without the need for a scope, but with the ability to unlock in case of an exception. - We support lifetime extension of temporaries. While unusual, one can now write const MutexLock &scope = MutexLock(&mu); and have it behave as expected. - Destructors used to be handled in a weird way: since there is no expression in the AST for implicit destructor calls, we instead provided a made-up DeclRefExpr to the variable being destructed, and passed that instead of a CallExpr. Then later in translateAttrExpr there was special code that knew that destructor expressions worked a bit different. - We were producing dummy DeclRefExprs in a number of places, this has been eliminated. We now use til::SExprs instead. Technically this could break existing code, but the current handling seems unexpected enough to justify this change. Repository: rG LLVM Github Monorepo https://reviews.llvm.org/D129755 Files: clang/docs/ThreadSafetyAnalysis.rst clang/include/clang/Analysis/Analyses/ThreadSafetyCommon.h clang/include/clang/Analysis/Analyses/ThreadSafetyTIL.h clang/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h clang/lib/Analysis/ThreadSafety.cpp clang/lib/Analysis/ThreadSafetyCommon.cpp clang/test/SemaCXX/warn-thread-safety-analysis.cpp
Index: clang/test/SemaCXX/warn-thread-safety-analysis.cpp =================================================================== --- clang/test/SemaCXX/warn-thread-safety-analysis.cpp +++ clang/test/SemaCXX/warn-thread-safety-analysis.cpp @@ -1690,6 +1690,15 @@ } #endif + void temporary() { + MutexLock{&mu1}, a = 5; + } + + void lifetime_extension() { + const MutexLock &mulock = MutexLock(&mu1); + a = 5; + } + void foo2() { ReaderMutexLock mulock1(&mu1); if (getBool()) { @@ -1708,6 +1717,12 @@ // expected-warning {{acquiring mutex 'mu1' that is already held}} } + void temporary_double_lock() { + MutexLock mulock_a(&mu1); // expected-note{{mutex acquired here}} + MutexLock{&mu1}; // \ + // expected-warning {{acquiring mutex 'mu1' that is already held}} + } + void foo4() { MutexLock mulock1(&mu1), mulock2(&mu2); a = b+1; @@ -5892,47 +5907,41 @@ void f() { c[A()]->g(); } } // namespace PR34800 -namespace ReturnScopedLockable { - template<typename Object> class SCOPED_LOCKABLE ReadLockedPtr { - public: - ReadLockedPtr(Object *ptr) SHARED_LOCK_FUNCTION((*this)->mutex); - ReadLockedPtr(ReadLockedPtr &&) SHARED_LOCK_FUNCTION((*this)->mutex); - ~ReadLockedPtr() UNLOCK_FUNCTION(); +#ifdef __cpp_guaranteed_copy_elision - Object *operator->() const { return object; } +namespace ReturnScopedLockable { - private: - Object *object; - }; +class Object { +public: + MutexLock lock() EXCLUSIVE_LOCK_FUNCTION(mutex) { + // TODO: False positive because scoped lock isn't destructed. + return MutexLock(&mutex); // expected-note {{mutex acquired here}} + } // expected-warning {{mutex 'mutex' is still held at the end of function}} - struct Object { - int f() SHARED_LOCKS_REQUIRED(mutex); - Mutex mutex; - }; + int x GUARDED_BY(mutex); + void needsLock() EXCLUSIVE_LOCKS_REQUIRED(mutex); - ReadLockedPtr<Object> get(); - int use() { - auto ptr = get(); - return ptr->f(); - } - void use_constructor() { - auto ptr = ReadLockedPtr<Object>(nullptr); - ptr->f(); - auto ptr2 = ReadLockedPtr<Object>{nullptr}; - ptr2->f(); - auto ptr3 = (ReadLockedPtr<Object>{nullptr}); - ptr3->f(); - } - struct Convertible { - Convertible(); - operator ReadLockedPtr<Object>(); - }; - void use_conversion() { - ReadLockedPtr<Object> ptr = Convertible(); - ptr->f(); + void testInside() { + MutexLock scope = lock(); + x = 1; + needsLock(); } + +private: + Mutex mutex; +}; + +void testOutside() { + Object obj; + MutexLock scope = obj.lock(); + obj.x = 1; + obj.needsLock(); } +} // namespace ReturnScopedLockable + +#endif + namespace PR38640 { void f() { // Self-referencing assignment previously caused an infinite loop when thread Index: clang/lib/Analysis/ThreadSafetyCommon.cpp =================================================================== --- clang/lib/Analysis/ThreadSafetyCommon.cpp +++ clang/lib/Analysis/ThreadSafetyCommon.cpp @@ -115,19 +115,22 @@ /// \param D The declaration to which the attribute is attached. /// \param DeclExp An expression involving the Decl to which the attribute /// is attached. E.g. the call to a function. +/// \param Self S-expression to substitute for a \ref CXXThisExpr. CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp, const NamedDecl *D, const Expr *DeclExp, - VarDecl *SelfDecl) { + til::SExpr *Self) { // If we are processing a raw attribute expression, with no substitutions. - if (!DeclExp) + if (!DeclExp && !Self) return translateAttrExpr(AttrExp, nullptr); CallingContext Ctx(nullptr, D); // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute // for formal parameters when we call buildMutexID later. - if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) { + if (!DeclExp) + /* We'll use Self. */; + else if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) { Ctx.SelfArg = ME->getBase(); Ctx.SelfArrow = ME->isArrow(); } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) { @@ -142,29 +145,24 @@ Ctx.SelfArg = nullptr; // Will be set below Ctx.NumArgs = CE->getNumArgs(); Ctx.FunArgs = CE->getArgs(); - } else if (D && isa<CXXDestructorDecl>(D)) { - // There's no such thing as a "destructor call" in the AST. - Ctx.SelfArg = DeclExp; } - // Hack to handle constructors, where self cannot be recovered from - // the expression. - if (SelfDecl && !Ctx.SelfArg) { - DeclRefExpr SelfDRE(SelfDecl->getASTContext(), SelfDecl, false, - SelfDecl->getType(), VK_LValue, - SelfDecl->getLocation()); - Ctx.SelfArg = &SelfDRE; + if (Self) { + assert(!Ctx.SelfArg && "Ambiguous self argument"); + Ctx.SelfArg = Self; // If the attribute has no arguments, then assume the argument is "this". if (!AttrExp) - return translateAttrExpr(Ctx.SelfArg, nullptr); + return CapabilityExpr( + Self, ClassifyDiagnostic(cast<CXXMethodDecl>(D)->getThisObjectType()), + false); else // For most attributes. return translateAttrExpr(AttrExp, &Ctx); } // If the attribute has no arguments, then assume the argument is "this". if (!AttrExp) - return translateAttrExpr(Ctx.SelfArg, nullptr); + return translateAttrExpr(cast<const Expr *>(Ctx.SelfArg), nullptr); else // For most attributes. return translateAttrExpr(AttrExp, &Ctx); } @@ -218,6 +216,16 @@ return CapabilityExpr(E, Kind, Neg); } +til::LiteralPtr *SExprBuilder::createVariable(const VarDecl *VD) { + return new (Arena) til::LiteralPtr(VD); +} + +std::pair<til::LiteralPtr *, StringRef> +SExprBuilder::createThisPlaceholder(const Expr *Exp) { + return {new (Arena) til::LiteralPtr(nullptr), + ClassifyDiagnostic(Exp->getType())}; +} + // Translate a clang statement or expression to a TIL expression. // Also performs substitution of variables; Ctx provides the context. // Dispatches on the type of S. @@ -327,8 +335,12 @@ til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE, CallingContext *Ctx) { // Substitute for 'this' - if (Ctx && Ctx->SelfArg) - return translate(Ctx->SelfArg, Ctx->Prev); + if (Ctx && Ctx->SelfArg) { + if (const Expr *SelfArg = dyn_cast<const Expr *>(Ctx->SelfArg)) + return translate(SelfArg, Ctx->Prev); + else + return cast<til::SExpr *>(Ctx->SelfArg); + } assert(SelfVar && "We have no variable for 'this'!"); return SelfVar; } Index: clang/lib/Analysis/ThreadSafety.cpp =================================================================== --- clang/lib/Analysis/ThreadSafety.cpp +++ clang/lib/Analysis/ThreadSafety.cpp @@ -1029,7 +1029,7 @@ template <typename AttrType> void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, - const NamedDecl *D, VarDecl *SelfDecl = nullptr); + const NamedDecl *D, til::SExpr *Self = nullptr); template <class AttrType> void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, @@ -1220,7 +1220,7 @@ if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) { const ValueDecl *VD = LP->clangDecl(); // Variables defined in a function are always inaccessible. - if (!VD->isDefinedOutsideFunctionOrMethod()) + if (!VD || !VD->isDefinedOutsideFunctionOrMethod()) return false; // For now we consider static class members to be inaccessible. if (isa<CXXRecordDecl>(VD->getDeclContext())) @@ -1311,10 +1311,10 @@ template <typename AttrType> void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp, const NamedDecl *D, - VarDecl *SelfDecl) { + til::SExpr *Self) { if (Attr->args_size() == 0) { // The mutex held is the "this" object. - CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl); + CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, Self); if (Cp.isInvalid()) { warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind()); return; @@ -1326,7 +1326,7 @@ } for (const auto *Arg : Attr->args()) { - CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl); + CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, Self); if (Cp.isInvalid()) { warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind()); continue; @@ -1527,8 +1527,15 @@ class BuildLockset : public ConstStmtVisitor<BuildLockset> { friend class ThreadSafetyAnalyzer; + /// Constructed object that hasn't been assigned to a variable yet. + struct ConstructedObject { + const Expr *ConstructExpr; + til::LiteralPtr *Self; ///< Placeholder for `this` to fill on construction. + }; + ThreadSafetyAnalyzer *Analyzer; FactSet FSet; + SmallVector<ConstructedObject, 2> ConstructedObjects; LocalVariableMap::Context LVarCtx; unsigned CtxIndex; @@ -1536,14 +1543,17 @@ void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, Expr *MutexExp, ProtectedOperationKind POK, SourceLocation Loc); - void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp); + void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, + SourceLocation Loc); void checkAccess(const Expr *Exp, AccessKind AK, ProtectedOperationKind POK = POK_VarAccess); void checkPtAccess(const Expr *Exp, AccessKind AK, ProtectedOperationKind POK = POK_VarAccess); - void handleCall(const Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr); + void handleCall(const Expr *Exp, const NamedDecl *D, + til::LiteralPtr *Self = nullptr, + SourceLocation Loc = SourceLocation()); void examineArguments(const FunctionDecl *FD, CallExpr::const_arg_iterator ArgBegin, CallExpr::const_arg_iterator ArgEnd, @@ -1560,6 +1570,7 @@ void VisitCallExpr(const CallExpr *Exp); void VisitCXXConstructExpr(const CXXConstructExpr *Exp); void VisitDeclStmt(const DeclStmt *S); + void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Exp); }; } // namespace @@ -1629,7 +1640,7 @@ /// Warn if the LSet contains the given lock. void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, - Expr *MutexExp) { + Expr *MutexExp, SourceLocation Loc) { CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp); if (Cp.isInvalid()) { warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, Cp.getKind()); @@ -1641,7 +1652,7 @@ const FactEntry *LDat = FSet.findLock(Analyzer->FactMan, Cp); if (LDat) { Analyzer->Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(), - Cp.toString(), Exp->getExprLoc()); + Cp.toString(), Loc); } } @@ -1761,21 +1772,33 @@ /// and check that the appropriate locks are held. Non-const method calls with /// the same signature as const method calls can be also treated as reads. /// +/// \param Exp The call expression. +/// \param D The callee declaration. +/// \param Self If \p Exp = nullptr, the implicit this argument. +/// \param Loc If \p Exp = nullptr, the location. void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D, - VarDecl *VD) { - SourceLocation Loc = Exp->getExprLoc(); + til::LiteralPtr *Self, SourceLocation Loc) { CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd; CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; CapExprSet ScopedReqsAndExcludes; // Figure out if we're constructing an object of scoped lockable class - bool isScopedVar = false; - if (VD) { - if (const auto *CD = dyn_cast<const CXXConstructorDecl>(D)) { - const CXXRecordDecl* PD = CD->getParent(); - if (PD && PD->hasAttr<ScopedLockableAttr>()) - isScopedVar = true; + CapabilityExpr Scp; + if (Exp) { + assert(!Self); + const auto *TagT = Exp->getType()->getAs<TagType>(); + if (TagT && Exp->isPRValue()) { + std::pair<til::LiteralPtr *, StringRef> Placeholder = + Analyzer->SxBuilder.createThisPlaceholder(Exp); + ConstructedObjects.push_back(ConstructedObject{Exp, Placeholder.first}); + if (isa<CXXConstructExpr>(Exp)) + Self = Placeholder.first; + if (TagT->getDecl()->hasAttr<ScopedLockableAttr>()) + Scp = CapabilityExpr(Placeholder.first, Placeholder.second, false); } + + assert(Loc.isInvalid()); + Loc = Exp->getExprLoc(); } for(const Attr *At : D->attrs()) { @@ -1786,7 +1809,7 @@ const auto *A = cast<AcquireCapabilityAttr>(At); Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, - A, Exp, D, VD); + A, Exp, D, Self); break; } @@ -1797,7 +1820,7 @@ const auto *A = cast<AssertExclusiveLockAttr>(At); CapExprSet AssertLocks; - Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); + Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); for (const auto &AssertLock : AssertLocks) Analyzer->addLock( FSet, std::make_unique<LockableFactEntry>( @@ -1808,7 +1831,7 @@ const auto *A = cast<AssertSharedLockAttr>(At); CapExprSet AssertLocks; - Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); + Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); for (const auto &AssertLock : AssertLocks) Analyzer->addLock( FSet, std::make_unique<LockableFactEntry>( @@ -1819,7 +1842,7 @@ case attr::AssertCapability: { const auto *A = cast<AssertCapabilityAttr>(At); CapExprSet AssertLocks; - Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); + Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self); for (const auto &AssertLock : AssertLocks) Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>( AssertLock, @@ -1833,11 +1856,11 @@ case attr::ReleaseCapability: { const auto *A = cast<ReleaseCapabilityAttr>(At); if (A->isGeneric()) - Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD); + Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, Self); else if (A->isShared()) - Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD); + Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, Self); else - Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD); + Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, Self); break; } @@ -1845,10 +1868,10 @@ const auto *A = cast<RequiresCapabilityAttr>(At); for (auto *Arg : A->args()) { warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg, - POK_FunctionCall, Exp->getExprLoc()); + POK_FunctionCall, Loc); // use for adopting a lock - if (isScopedVar) - Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, VD); + if (!Scp.shouldIgnore()) + Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self); } break; } @@ -1856,10 +1879,10 @@ case attr::LocksExcluded: { const auto *A = cast<LocksExcludedAttr>(At); for (auto *Arg : A->args()) { - warnIfMutexHeld(D, Exp, Arg); + warnIfMutexHeld(D, Exp, Arg, Loc); // use for deferring a lock - if (isScopedVar) - Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, VD); + if (!Scp.shouldIgnore()) + Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self); } break; } @@ -1882,7 +1905,7 @@ // Add locks. FactEntry::SourceKind Source = - isScopedVar ? FactEntry::Managed : FactEntry::Acquired; + !Scp.shouldIgnore() ? FactEntry::Managed : FactEntry::Acquired; for (const auto &M : ExclusiveLocksToAdd) Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive, Loc, Source)); @@ -1890,15 +1913,9 @@ Analyzer->addLock( FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source)); - if (isScopedVar) { + if (!Scp.shouldIgnore()) { // Add the managing object as a dummy mutex, mapped to the underlying mutex. - SourceLocation MLoc = VD->getLocation(); - DeclRefExpr DRE(VD->getASTContext(), VD, false, VD->getType(), VK_LValue, - VD->getLocation()); - // FIXME: does this store a pointer to DRE? - CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr); - - auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, MLoc); + auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, Loc); for (const auto &M : ExclusiveLocksToAdd) ScopedEntry->addLock(M); for (const auto &M : SharedLocksToAdd) @@ -2058,36 +2075,11 @@ } else { examineArguments(D, Exp->arg_begin(), Exp->arg_end()); } + if (D && D->hasAttrs()) + handleCall(Exp, D); } -static CXXConstructorDecl * -findConstructorForByValueReturn(const CXXRecordDecl *RD) { - // Prefer a move constructor over a copy constructor. If there's more than - // one copy constructor or more than one move constructor, we arbitrarily - // pick the first declared such constructor rather than trying to guess which - // one is more appropriate. - CXXConstructorDecl *CopyCtor = nullptr; - for (auto *Ctor : RD->ctors()) { - if (Ctor->isDeleted()) - continue; - if (Ctor->isMoveConstructor()) - return Ctor; - if (!CopyCtor && Ctor->isCopyConstructor()) - CopyCtor = Ctor; - } - return CopyCtor; -} - -static Expr *buildFakeCtorCall(CXXConstructorDecl *CD, ArrayRef<Expr *> Args, - SourceLocation Loc) { - ASTContext &Ctx = CD->getASTContext(); - return CXXConstructExpr::Create(Ctx, Ctx.getRecordType(CD->getParent()), Loc, - CD, true, Args, false, false, false, false, - CXXConstructExpr::CK_Complete, - SourceRange(Loc, Loc)); -} - -static Expr *UnpackConstruction(Expr *E) { +static const Expr *UnpackConstruction(const Expr *E) { if (auto *CE = dyn_cast<CastExpr>(E)) if (CE->getCastKind() == CK_NoOp) E = CE->getSubExpr()->IgnoreParens(); @@ -2106,7 +2098,7 @@ for (auto *D : S->getDeclGroup()) { if (auto *VD = dyn_cast_or_null<VarDecl>(D)) { - Expr *E = VD->getInit(); + const Expr *E = VD->getInit(); if (!E) continue; E = E->IgnoreParens(); @@ -2116,29 +2108,32 @@ E = EWC->getSubExpr()->IgnoreParens(); E = UnpackConstruction(E); - if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) { - const auto *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor()); - if (!CtorD || !CtorD->hasAttrs()) - continue; - handleCall(E, CtorD, VD); - } else if (isa<CallExpr>(E) && E->isPRValue()) { - // If the object is initialized by a function call that returns a - // scoped lockable by value, use the attributes on the copy or move - // constructor to figure out what effect that should have on the - // lockset. - // FIXME: Is this really the best way to handle this situation? - auto *RD = E->getType()->getAsCXXRecordDecl(); - if (!RD || !RD->hasAttr<ScopedLockableAttr>()) - continue; - CXXConstructorDecl *CtorD = findConstructorForByValueReturn(RD); - if (!CtorD || !CtorD->hasAttrs()) - continue; - handleCall(buildFakeCtorCall(CtorD, {E}, E->getBeginLoc()), CtorD, VD); + auto Object = + llvm::find_if(ConstructedObjects, [E](const ConstructedObject &CS) { + return CS.ConstructExpr == E; + }); + if (Object != ConstructedObjects.end()) { + Object->Self->setClangDecl(VD); + ConstructedObjects.erase(Object); } } } } +void BuildLockset::VisitMaterializeTemporaryExpr( + const MaterializeTemporaryExpr *Exp) { + if (const ValueDecl *ExtD = Exp->getExtendingDecl()) { + auto Object = llvm::find_if( + ConstructedObjects, + [E = UnpackConstruction(Exp->getSubExpr())]( + const ConstructedObject &CS) { return CS.ConstructExpr == E; }); + if (Object != ConstructedObjects.end()) { + Object->Self->setClangDecl(ExtD); + ConstructedObjects.erase(Object); + } + } +} + /// Given two facts merging on a join point, possibly warn and decide whether to /// keep or replace. /// @@ -2411,19 +2406,37 @@ LocksetBuilder.Visit(CS.getStmt()); break; } - // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. + // Ignore BaseDtor and MemberDtor for now. case CFGElement::AutomaticObjectDtor: { CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>(); const auto *DD = AD.getDestructorDecl(AC.getASTContext()); if (!DD->hasAttrs()) break; - // Create a dummy expression, - auto *VD = const_cast<VarDecl *>(AD.getVarDecl()); - DeclRefExpr DRE(VD->getASTContext(), VD, false, - VD->getType().getNonReferenceType(), VK_LValue, - AD.getTriggerStmt()->getEndLoc()); - LocksetBuilder.handleCall(&DRE, DD); + LocksetBuilder.handleCall(nullptr, DD, + SxBuilder.createVariable(AD.getVarDecl()), + AD.getTriggerStmt()->getEndLoc()); + break; + } + case CFGElement::TemporaryDtor: { + CFGTemporaryDtor TD = BI.castAs<CFGTemporaryDtor>(); + + // Clean up constructed object even if there are no attributes to + // keep the number of objects in limbo as small as possible. + auto Object = llvm::find_if( + LocksetBuilder.ConstructedObjects, + [Temporary = TD.getBindTemporaryExpr()->getSubExpr()]( + const BuildLockset::ConstructedObject &Scope) { + return Scope.ConstructExpr == Temporary; + }); + if (Object != LocksetBuilder.ConstructedObjects.end()) { + const auto *DD = TD.getDestructorDecl(AC.getASTContext()); + if (DD->hasAttrs()) + // TODO: the location here isn't quite correct. + LocksetBuilder.handleCall(nullptr, DD, Object->Self, + TD.getBindTemporaryExpr()->getEndLoc()); + LocksetBuilder.ConstructedObjects.erase(Object); + } break; } default: Index: clang/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h =================================================================== --- clang/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h +++ clang/include/clang/Analysis/Analyses/ThreadSafetyTraverse.h @@ -623,7 +623,10 @@ } void printLiteralPtr(const LiteralPtr *E, StreamType &SS) { - SS << E->clangDecl()->getNameAsString(); + if (const NamedDecl *D = E->clangDecl()) + SS << D->getNameAsString(); + else + SS << "<temporary>"; } void printVariable(const Variable *V, StreamType &SS, bool IsVarDecl=false) { Index: clang/include/clang/Analysis/Analyses/ThreadSafetyTIL.h =================================================================== --- clang/include/clang/Analysis/Analyses/ThreadSafetyTIL.h +++ clang/include/clang/Analysis/Analyses/ThreadSafetyTIL.h @@ -634,15 +634,14 @@ /// At compile time, pointer literals are represented by symbolic names. class LiteralPtr : public SExpr { public: - LiteralPtr(const ValueDecl *D) : SExpr(COP_LiteralPtr), Cvdecl(D) { - assert(D && "ValueDecl must not be null"); - } + LiteralPtr(const ValueDecl *D) : SExpr(COP_LiteralPtr), Cvdecl(D) {} LiteralPtr(const LiteralPtr &) = default; static bool classof(const SExpr *E) { return E->opcode() == COP_LiteralPtr; } // The clang declaration for the value that this pointer points to. const ValueDecl *clangDecl() const { return Cvdecl; } + void setClangDecl(const ValueDecl *VD) { Cvdecl = VD; } template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) { @@ -651,6 +650,8 @@ template <class C> typename C::CType compare(const LiteralPtr* E, C& Cmp) const { + if (!Cvdecl || !E->Cvdecl) + return Cmp.comparePointers(this, E); return Cmp.comparePointers(Cvdecl, E->Cvdecl); } Index: clang/include/clang/Analysis/Analyses/ThreadSafetyCommon.h =================================================================== --- clang/include/clang/Analysis/Analyses/ThreadSafetyCommon.h +++ clang/include/clang/Analysis/Analyses/ThreadSafetyCommon.h @@ -31,6 +31,7 @@ #include "clang/Basic/LLVM.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/PointerIntPair.h" +#include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Support/Casting.h" #include <sstream> @@ -354,7 +355,7 @@ const NamedDecl *AttrDecl; // Implicit object argument -- e.g. 'this' - const Expr *SelfArg = nullptr; + llvm::PointerUnion<const Expr *, til::SExpr *> SelfArg = nullptr; // Number of funArgs unsigned NumArgs = 0; @@ -378,10 +379,18 @@ // Translate a clang expression in an attribute to a til::SExpr. // Constructs the context from D, DeclExp, and SelfDecl. CapabilityExpr translateAttrExpr(const Expr *AttrExp, const NamedDecl *D, - const Expr *DeclExp, VarDecl *SelfD=nullptr); + const Expr *DeclExp, + til::SExpr *Self = nullptr); CapabilityExpr translateAttrExpr(const Expr *AttrExp, CallingContext *Ctx); + // Translate a variable reference. + til::LiteralPtr *createVariable(const VarDecl *VD); + + // Create placeholder for this: we don't know the VarDecl on construction yet. + std::pair<til::LiteralPtr *, StringRef> + createThisPlaceholder(const Expr *Exp); + // Translate a clang statement or expression to a TIL expression. // Also performs substitution of variables; Ctx provides the context. // Dispatches on the type of S. Index: clang/docs/ThreadSafetyAnalysis.rst =================================================================== --- clang/docs/ThreadSafetyAnalysis.rst +++ clang/docs/ThreadSafetyAnalysis.rst @@ -408,7 +408,8 @@ Scoped capabilities are treated as capabilities that are implicitly acquired on construction and released on destruction. They are associated with the set of (regular) capabilities named in thread safety attributes on the -constructor. Acquire-type attributes on other member functions are treated as +constructor or function returning them by value (using C++17 guaranteed copy +elision). Acquire-type attributes on other member functions are treated as applying to that set of associated capabilities, while ``RELEASE`` implies that a function releases all associated capabilities in whatever mode they're held. @@ -930,6 +931,27 @@ // Assume mu is not held, implicitly acquire *this and associate it with mu. MutexLocker(Mutex *mu, defer_lock_t) EXCLUDES(mu) : mut(mu), locked(false) {} + // Same as constructors, but without tag types. (Requires C++17 copy elision.) + static MutexLocker Lock(Mutex *mu) ACQUIRE(mu) NO_THREAD_SAFETY_ANALYSIS { + return MutexLocker(mu); + } + + static MutexLocker Adopt(Mutex *mu) REQUIRES(mu) NO_THREAD_SAFETY_ANALYSIS { + return MutexLocker(mu, adopt_lock); + } + + static MutexLocker ReaderLock(Mutex *mu) ACQUIRE_SHARED(mu) NO_THREAD_SAFETY_ANALYSIS { + return MutexLocker(mu, shared_lock); + } + + static MutexLocker AdoptReaderLock(Mutex *mu) REQUIRES_SHARED(mu) NO_THREAD_SAFETY_ANALYSIS { + return MutexLocker(mu, adopt_lock, shared_lock); + } + + static MutexLocker DeferLock(Mutex *mu) EXCLUDES(mu) { + return MutexLocker(mu, defer_lock); + } + // Release *this and all associated mutexes, if they are still held. // There is no warning if the scope was already unlocked before. ~MutexLocker() RELEASE() {
_______________________________________________ cfe-commits mailing list cfe-commits@lists.llvm.org https://lists.llvm.org/cgi-bin/mailman/listinfo/cfe-commits