Charusso created this revision.
Charusso added reviewers: NoQ, xazax.hun.
Charusso added a project: clang.
Herald added subscribers: cfe-commits, dkrupp, donat.nagy, Szelethus, 
mikhail.ramalho, a.sidorin, rnkovacs, szepet, baloghadamsoftware.
Charusso added a comment.
Charusso added a parent revision: D66267: [analyzer] TrackConstraintBRVisitor: 
Do not track unknown values.

@xazax.hun It is somehow performance critical code as we have too many casts in 
the LLVM. I would really appreciate it if you could review it.


This patch extends the `DynamicTypeInfo` to hold information about the
dynamic type what could not be due to failed casts. With that improvement
the checker could use the `DynamicTypeMap` to store information about the
dynamic types. It improves the path-feasibility to prevent false positives.


Repository:
  rC Clang

https://reviews.llvm.org/D66325

Files:
  clang/include/clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h
  clang/include/clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h
  clang/lib/StaticAnalyzer/Checkers/CastValueChecker.cpp
  clang/lib/StaticAnalyzer/Core/DynamicTypeMap.cpp
  clang/test/Analysis/cast-value-logic.cpp
  clang/test/Analysis/cast-value-notes.cpp
  clang/test/Analysis/cast-value.cpp

Index: clang/test/Analysis/cast-value-notes.cpp
===================================================================
--- clang/test/Analysis/cast-value-notes.cpp
+++ clang/test/Analysis/cast-value-notes.cpp
@@ -1,7 +1,4 @@
 // RUN: %clang_analyze_cc1 \
-// RUN:  -analyzer-checker=core,apiModeling.llvm.CastValue,debug.ExprInspection\
-// RUN:  -verify=logic %s
-// RUN: %clang_analyze_cc1 \
 // RUN:  -analyzer-checker=core,apiModeling.llvm.CastValue \
 // RUN:  -analyzer-output=text -verify %s
 
@@ -42,111 +39,12 @@
 using namespace llvm;
 using namespace clang;
 
-namespace test_cast {
-void evalLogic(const Shape *S) {
-  const Circle *C = cast<Circle>(S);
-  clang_analyzer_numTimesReached(); // logic-warning {{1}}
-
-  if (S && C)
-    clang_analyzer_eval(C == S); // logic-warning {{TRUE}}
-
-  if (S && !C)
-    clang_analyzer_warnIfReached(); // no-warning
-
-  if (!S)
-    clang_analyzer_warnIfReached(); // no-warning
-}
-} // namespace test_cast
-
-namespace test_dyn_cast {
-void evalLogic(const Shape *S) {
-  const Circle *C = dyn_cast<Circle>(S);
-  clang_analyzer_numTimesReached(); // logic-warning {{2}}
-
-  if (S && C)
-    clang_analyzer_eval(C == S); // logic-warning {{TRUE}}
-
-  if (S && !C)
-    clang_analyzer_warnIfReached(); // logic-warning {{REACHABLE}}
-
-  if (!S)
-    clang_analyzer_warnIfReached(); // no-warning
-}
-} // namespace test_dyn_cast
-
-namespace test_cast_or_null {
-void evalLogic(const Shape *S) {
-  const Circle *C = cast_or_null<Circle>(S);
-  clang_analyzer_numTimesReached(); // logic-warning {{2}}
-
-  if (S && C)
-    clang_analyzer_eval(C == S); // logic-warning {{TRUE}}
-
-  if (S && !C)
-    clang_analyzer_warnIfReached(); // no-warning
-
-  if (!S)
-    clang_analyzer_eval(!C); // logic-warning {{TRUE}}
-}
-} // namespace test_cast_or_null
-
-namespace test_dyn_cast_or_null {
-void evalLogic(const Shape *S) {
-  const Circle *C = dyn_cast_or_null<Circle>(S);
-  clang_analyzer_numTimesReached(); // logic-warning {{3}}
-
-  if (S && C)
-    clang_analyzer_eval(C == S); // logic-warning {{TRUE}}
-
-  if (S && !C)
-    clang_analyzer_warnIfReached(); // logic-warning {{REACHABLE}}
-
-  if (!S)
-    clang_analyzer_eval(!C); // logic-warning {{TRUE}}
-}
-} // namespace test_dyn_cast_or_null
-
-namespace test_cast_as {
-void evalLogic(const Shape *S) {
-  const Circle *C = S->castAs<Circle>();
-  clang_analyzer_numTimesReached(); // logic-warning {{1}}
-
-  if (S && C)
-    clang_analyzer_eval(C == S);
-  // logic-warning@-1 {{TRUE}}
-
-  if (S && !C)
-    clang_analyzer_warnIfReached(); // no-warning
-
-  if (!S)
-    clang_analyzer_warnIfReached(); // no-warning
-}
-} // namespace test_cast_as
-
-namespace test_get_as {
-void evalLogic(const Shape *S) {
-  const Circle *C = S->getAs<Circle>();
-  clang_analyzer_numTimesReached(); // logic-warning {{2}}
-
-  if (S && C)
-    clang_analyzer_eval(C == S);
-  // logic-warning@-1 {{TRUE}}
-
-  if (S && !C)
-    clang_analyzer_warnIfReached(); // logic-warning {{REACHABLE}}
-
-  if (!S)
-    clang_analyzer_warnIfReached(); // no-warning
-}
-} // namespace test_get_as
-
 namespace test_notes {
 void evalReferences(const Shape &S) {
   const auto &C = dyn_cast<Circle>(S);
   // expected-note@-1 {{Assuming dynamic cast from 'Shape' to 'Circle' fails}}
   // expected-note@-2 {{Dereference of null pointer}}
   // expected-warning@-3 {{Dereference of null pointer}}
-  // logic-warning@-4 {{Dereference of null pointer}}
 }
 
 void evalNonNullParamNonNullReturnReference(const Shape &S) {
@@ -154,11 +52,22 @@
   // expected-note@-1 {{Assuming dynamic cast from 'Shape' to 'Circle' succeeds}}
   // expected-note@-2 {{'C' initialized here}}
 
-  (void)(1 / !(bool)C);
+  if (dyn_cast_or_null<Triangle>(C)) {
+    // expected-note@-1 {{Assuming dynamic cast from 'Circle' to 'Triangle' fails}}
+    // expected-note@-2 {{Taking false branch}}
+    return;
+  }
+
+  if (dyn_cast_or_null<Triangle>(C)) {
+    // expected-note@-1 {{Dynamic cast from 'Circle' to 'Triangle' fails}}
+    // expected-note@-2 {{Taking false branch}}
+    return;
+  }
+
+  (void)(1 / !C);
   // expected-note@-1 {{'C' is non-null}}
   // expected-note@-2 {{Division by zero}}
   // expected-warning@-3 {{Division by zero}}
-  // logic-warning@-4 {{Division by zero}}
 }
 
 void evalNonNullParamNonNullReturn(const Shape *S) {
@@ -166,11 +75,16 @@
   // expected-note@-1 {{Checked cast from 'Shape' to 'Circle' succeeds}}
   // expected-note@-2 {{'C' initialized here}}
 
-  (void)(1 / !(bool)C);
+  if (!cast<Triangle>(C)) {
+    // expected-note@-1 {{Checked cast from 'Circle' to 'Triangle' succeeds}}
+    // expected-note@-2 {{Taking false branch}}
+    return;
+  }
+
+  (void)(1 / !C);
   // expected-note@-1 {{'C' is non-null}}
   // expected-note@-2 {{Division by zero}}
   // expected-warning@-3 {{Division by zero}}
-  // logic-warning@-4 {{Division by zero}}
 }
 
 void evalNonNullParamNullReturn(const Shape *S) {
@@ -187,7 +101,6 @@
     // expected-note@-1 {{'T' is non-null}}
     // expected-note@-2 {{Division by zero}}
     // expected-warning@-3 {{Division by zero}}
-    // logic-warning@-4 {{Division by zero}}
   }
 }
 
@@ -199,41 +112,49 @@
   (void)(1 / (bool)C);
   // expected-note@-1 {{Division by zero}}
   // expected-warning@-2 {{Division by zero}}
-  // logic-warning@-3 {{Division by zero}}
 }
 
 void evalZeroParamNonNullReturnPointer(const Shape *S) {
   const auto *C = S->castAs<Circle>();
-  // expected-note@-1 {{Checked cast to 'Circle' succeeds}}
+  // expected-note@-1 {{Checked cast from 'Shape' to 'Circle' succeeds}}
   // expected-note@-2 {{'C' initialized here}}
 
-  (void)(1 / !(bool)C);
+  (void)(1 / !C);
   // expected-note@-1 {{'C' is non-null}}
   // expected-note@-2 {{Division by zero}}
   // expected-warning@-3 {{Division by zero}}
-  // logic-warning@-4 {{Division by zero}}
 }
 
 void evalZeroParamNonNullReturn(const Shape &S) {
   const auto *C = S.castAs<Circle>();
-  // expected-note@-1 {{Checked cast to 'Circle' succeeds}}
+  // expected-note@-1 {{Checked cast from 'Shape' to 'Circle' succeeds}}
   // expected-note@-2 {{'C' initialized here}}
 
-  (void)(1 / !(bool)C);
+  (void)(1 / !C);
   // expected-note@-1 {{'C' is non-null}}
   // expected-note@-2 {{Division by zero}}
   // expected-warning@-3 {{Division by zero}}
-  // logic-warning@-4 {{Division by zero}}
 }
 
 void evalZeroParamNullReturn(const Shape &S) {
   const auto *C = S.getAs<Circle>();
-  // expected-note@-1 {{Assuming dynamic cast to 'Circle' fails}}
+  // expected-note@-1 {{Assuming dynamic cast from 'Shape' to 'Circle' fails}}
   // expected-note@-2 {{'C' initialized to a null pointer value}}
 
+  if (!dyn_cast_or_null<Circle>(S)) {
+    // expected-note@-1 {{Assuming dynamic cast from 'Shape' to 'Circle' succeeds}}
+    // expected-note@-2 {{Taking false branch}}
+    return;
+  }
+
+  if (!dyn_cast_or_null<Circle>(S)) {
+    // expected-note@-1 {{Dynamic cast from 'Shape' to 'Circle' succeeds}}
+    // expected-note@-2 {{Taking false branch}}
+    return;
+  }
+
   (void)(1 / (bool)C);
   // expected-note@-1 {{Division by zero}}
   // expected-warning@-2 {{Division by zero}}
-  // logic-warning@-3 {{Division by zero}}
 }
 } // namespace test_notes
Index: clang/test/Analysis/cast-value-logic.cpp
===================================================================
--- /dev/null
+++ clang/test/Analysis/cast-value-logic.cpp
@@ -0,0 +1,138 @@
+// RUN: %clang_analyze_cc1 \
+// RUN:  -analyzer-checker=core,apiModeling.llvm.CastValue,debug.ExprInspection\
+// RUN:  -verify=logic %s
+
+void clang_analyzer_numTimesReached();
+void clang_analyzer_warnIfReached();
+void clang_analyzer_eval(bool);
+
+namespace llvm {
+template <class X, class Y>
+const X *cast(Y Value);
+
+template <class X, class Y>
+const X *dyn_cast(Y *Value);
+template <class X, class Y>
+const X &dyn_cast(Y &Value);
+
+template <class X, class Y>
+const X *cast_or_null(Y Value);
+
+template <class X, class Y>
+const X *dyn_cast_or_null(Y *Value);
+template <class X, class Y>
+const X *dyn_cast_or_null(Y &Value);
+} // namespace llvm
+
+namespace clang {
+struct Shape {
+  template <typename T>
+  const T *castAs() const;
+
+  template <typename T>
+  const T *getAs() const;
+};
+class Triangle : public Shape {};
+class Circle : public Shape {};
+} // namespace clang
+
+using namespace llvm;
+using namespace clang;
+
+namespace test_cast {
+void evalLogic(const Shape *S) {
+  const Circle *C = cast<Circle>(S);
+  clang_analyzer_numTimesReached(); // logic-warning {{1}}
+
+  if (S && C)
+    clang_analyzer_eval(C == S); // logic-warning {{TRUE}}
+
+  if (S && !C)
+    clang_analyzer_warnIfReached(); // no-warning
+
+  if (!S)
+    clang_analyzer_warnIfReached(); // no-warning
+}
+} // namespace test_cast
+
+namespace test_dyn_cast {
+void evalLogic(const Shape *S) {
+  const Circle *C = dyn_cast<Circle>(S);
+  clang_analyzer_numTimesReached(); // logic-warning {{2}}
+
+  if (S && C)
+    clang_analyzer_eval(C == S); // logic-warning {{TRUE}}
+
+  if (S && !C)
+    clang_analyzer_warnIfReached(); // logic-warning {{REACHABLE}}
+
+  if (!S)
+    clang_analyzer_warnIfReached(); // no-warning
+}
+} // namespace test_dyn_cast
+
+namespace test_cast_or_null {
+void evalLogic(const Shape *S) {
+  const Circle *C = cast_or_null<Circle>(S);
+  clang_analyzer_numTimesReached(); // logic-warning {{2}}
+
+  if (S && C)
+    clang_analyzer_eval(C == S); // logic-warning {{TRUE}}
+
+  if (S && !C)
+    clang_analyzer_warnIfReached(); // no-warning
+
+  if (!S)
+    clang_analyzer_eval(!C); // logic-warning {{TRUE}}
+}
+} // namespace test_cast_or_null
+
+namespace test_dyn_cast_or_null {
+void evalLogic(const Shape *S) {
+  const Circle *C = dyn_cast_or_null<Circle>(S);
+  clang_analyzer_numTimesReached(); // logic-warning {{3}}
+
+  if (S && C)
+    clang_analyzer_eval(C == S); // logic-warning {{TRUE}}
+
+  if (S && !C)
+    clang_analyzer_warnIfReached(); // logic-warning {{REACHABLE}}
+
+  if (!S)
+    clang_analyzer_eval(!C); // logic-warning {{TRUE}}
+}
+} // namespace test_dyn_cast_or_null
+
+namespace test_cast_as {
+void evalLogic(const Shape *S) {
+  const Circle *C = S->castAs<Circle>();
+  clang_analyzer_numTimesReached(); // logic-warning {{1}}
+
+  if (S && C)
+    clang_analyzer_eval(C == S);
+  // logic-warning@-1 {{TRUE}}
+
+  if (S && !C)
+    clang_analyzer_warnIfReached(); // no-warning
+
+  if (!S)
+    clang_analyzer_warnIfReached(); // no-warning
+}
+} // namespace test_cast_as
+
+namespace test_get_as {
+void evalLogic(const Shape *S) {
+  const Circle *C = S->getAs<Circle>();
+  clang_analyzer_numTimesReached(); // logic-warning {{2}}
+
+  if (S && C)
+    clang_analyzer_eval(C == S);
+  // logic-warning@-1 {{TRUE}}
+
+  if (S && !C)
+    clang_analyzer_warnIfReached(); // logic-warning {{REACHABLE}}
+
+  if (!S)
+    clang_analyzer_warnIfReached(); // no-warning
+}
+} // namespace test_get_as
Index: clang/lib/StaticAnalyzer/Core/DynamicTypeMap.cpp
===================================================================
--- clang/lib/StaticAnalyzer/Core/DynamicTypeMap.cpp
+++ clang/lib/StaticAnalyzer/Core/DynamicTypeMap.cpp
@@ -25,20 +25,18 @@
 namespace clang {
 namespace ento {
 
-DynamicTypeInfo getDynamicTypeInfo(ProgramStateRef State,
-                                   const MemRegion *Reg) {
-  Reg = Reg->StripCasts();
+DynamicTypeInfo getDynamicTypeInfo(ProgramStateRef State, const MemRegion *MR) {
+  MR = MR->StripCasts();
 
   // Look up the dynamic type in the GDM.
-  const DynamicTypeInfo *GDMType = State->get<DynamicTypeMap>(Reg);
-  if (GDMType)
-    return *GDMType;
+  if (const DynamicTypeInfo *DTI = State->get<DynamicTypeMap>(MR))
+    return *DTI;
 
   // Otherwise, fall back to what we know about the region.
-  if (const auto *TR = dyn_cast<TypedRegion>(Reg))
+  if (const auto *TR = dyn_cast<TypedRegion>(MR))
     return DynamicTypeInfo(TR->getLocationType(), /*CanBeSub=*/false);
 
-  if (const auto *SR = dyn_cast<SymbolicRegion>(Reg)) {
+  if (const auto *SR = dyn_cast<SymbolicRegion>(MR)) {
     SymbolRef Sym = SR->getSymbol();
     return DynamicTypeInfo(Sym->getType());
   }
@@ -46,12 +44,52 @@
   return {};
 }
 
-ProgramStateRef setDynamicTypeInfo(ProgramStateRef State, const MemRegion *Reg,
+const DynamicTypeInfo *getRawDynamicTypeInfo(ProgramStateRef State,
+                                             const MemRegion *MR) {
+  return State->get<DynamicTypeMap>(MR);
+}
+
+ProgramStateRef setDynamicTypeInfo(ProgramStateRef State, const MemRegion *MR,
                                    DynamicTypeInfo NewTy) {
-  Reg = Reg->StripCasts();
-  ProgramStateRef NewState = State->set<DynamicTypeMap>(Reg, NewTy);
-  assert(NewState);
-  return NewState;
+  State = State->set<DynamicTypeMap>(MR->StripCasts(), NewTy);
+  assert(State);
+  return State;
+}
+
+ProgramStateRef setDynamicTypeInfo(ProgramStateRef State, const MemRegion *MR,
+                                   QualType NewTy, bool CanBeSubClassed) {
+  return setDynamicTypeInfo(State, MR, DynamicTypeInfo(NewTy, CanBeSubClassed));
+}
+
+ProgramStateRef setDynamicTypeInfo(ProgramStateRef State, const MemRegion *MR,
+                                   const DynamicTypeInfo *DynTy, QualType RawTy,
+                                   bool IsCastSucceeds) {
+  if (IsCastSucceeds) {
+    // If the cast succeeds and the 'DynTy' already made it means we have
+    // failed casts available so we need to store the 'RawTy' successful cast.
+    if (DynTy) {
+      State = State->set<DynamicTypeMap>(
+          MR, {*DynTy, RawTy, DynamicTypeInfo::CastKind::Success});
+    } else {
+      // Otherwise we create the 'DynTy' with the 'RawTy' successful cast.
+      State = State->set<DynamicTypeMap>(
+          MR, {RawTy, DynamicTypeInfo::CastKind::Success});
+    }
+  } else {
+    // If the cast fails and the 'DynTy' already made it means we have the
+    // succeesful cast available so we need to store the 'RawTy' failed cast.
+    if (DynTy) {
+      State = State->set<DynamicTypeMap>(
+          MR, {*DynTy, RawTy, DynamicTypeInfo::CastKind::Fail});
+    } else {
+      // Otherwise we create the 'DynTy' with the 'RawTy' failed cast.
+      State = State->set<DynamicTypeMap>(
+          MR, {RawTy, DynamicTypeInfo::CastKind::Fail});
+    }
+  }
+
+  assert(State);
+  return State;
 }
 
 void printDynamicTypeInfoJson(raw_ostream &Out, ProgramStateRef State,
@@ -75,7 +113,7 @@
           << "\", \"sub_classable\": "
           << (DTI.canBeASubClass() ? "true" : "false");
     } else {
-      Out << "null"; // Invalid type info
+      Out << "null "; // Invalid type info
     }
     Out << "}";
 
Index: clang/lib/StaticAnalyzer/Checkers/CastValueChecker.cpp
===================================================================
--- clang/lib/StaticAnalyzer/Checkers/CastValueChecker.cpp
+++ clang/lib/StaticAnalyzer/Checkers/CastValueChecker.cpp
@@ -15,6 +15,7 @@
 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h"
 #include "llvm/ADT/Optional.h"
 #include <utility>
 
@@ -23,23 +24,23 @@
 
 namespace {
 class CastValueChecker : public Checker<eval::Call> {
-  enum class CastKind { Function, Method };
+  enum class CallKind { Function, Method };
 
   using CastCheck =
       std::function<void(const CastValueChecker *, const CallExpr *,
                          DefinedOrUnknownSVal, CheckerContext &)>;
 
-  using CheckKindPair = std::pair<CastCheck, CastKind>;
+  using CheckKindPair = std::pair<CastCheck, CallKind>;
 
 public:
   // We have five cases to evaluate a cast:
-  // 1) The parameter is non-null, the return value is non-null
-  // 2) The parameter is non-null, the return value is null
-  // 3) The parameter is null, the return value is null
+  // 1) The parameter is non-null, the return value is non-null.
+  // 2) The parameter is non-null, the return value is null.
+  // 3) The parameter is null, the return value is null.
   // cast: 1;  dyn_cast: 1, 2;  cast_or_null: 1, 3;  dyn_cast_or_null: 1, 2, 3.
   //
-  // 4) castAs: has no parameter, the return value is non-null.
-  // 5) getAs:  has no parameter, the return value is null or non-null.
+  // 4) castAs: Has no parameter, the return value is non-null.
+  // 5) getAs:  Has no parameter, the return value is null or non-null.
   bool evalCall(const CallEvent &Call, CheckerContext &C) const;
 
 private:
@@ -47,17 +48,17 @@
   // {{{namespace, call}, argument-count}, {callback, kind}}
   const CallDescriptionMap<CheckKindPair> CDM = {
       {{{"llvm", "cast"}, 1},
-       {&CastValueChecker::evalCast, CastKind::Function}},
+       {&CastValueChecker::evalCast, CallKind::Function}},
       {{{"llvm", "dyn_cast"}, 1},
-       {&CastValueChecker::evalDynCast, CastKind::Function}},
+       {&CastValueChecker::evalDynCast, CallKind::Function}},
       {{{"llvm", "cast_or_null"}, 1},
-       {&CastValueChecker::evalCastOrNull, CastKind::Function}},
+       {&CastValueChecker::evalCastOrNull, CallKind::Function}},
       {{{"llvm", "dyn_cast_or_null"}, 1},
-       {&CastValueChecker::evalDynCastOrNull, CastKind::Function}},
+       {&CastValueChecker::evalDynCastOrNull, CallKind::Function}},
       {{{"clang", "castAs"}, 0},
-       {&CastValueChecker::evalCastAs, CastKind::Method}},
+       {&CastValueChecker::evalCastAs, CallKind::Method}},
       {{{"clang", "getAs"}, 0},
-       {&CastValueChecker::evalGetAs, CastKind::Method}}};
+       {&CastValueChecker::evalGetAs, CallKind::Method}}};
 
   void evalCast(const CallExpr *CE, DefinedOrUnknownSVal DV,
                 CheckerContext &C) const;
@@ -82,39 +83,85 @@
   return Ty->getPointeeCXXRecordDecl()->getNameAsString();
 }
 
-static const NoteTag *getCastTag(bool IsNullReturn, const CallExpr *CE,
-                                 CheckerContext &C,
-                                 bool IsCheckedCast = false) {
-  Optional<std::string> CastFromName = (CE->getNumArgs() > 0)
-                                           ? getCastName(CE->getArg(0))
-                                           : Optional<std::string>();
+//===----------------------------------------------------------------------===//
+// Main logic to evaluate a cast.
+//===----------------------------------------------------------------------===//
+
+static void addCastTransition(const CallExpr *CE, DefinedOrUnknownSVal DV,
+                              CheckerContext &C, bool IsNonNullParam,
+                              bool IsNonNullReturn,
+                              bool IsCheckedCast = false) {
+  ProgramStateRef State = C.getState()->assume(DV, IsNonNullParam);
+  if (!State)
+    return;
+
+  // Handle 'evalNullParamNullReturn()' specially.
+  if (!IsNonNullParam && !IsNonNullReturn) {
+    C.addTransition(State->BindExpr(CE, C.getLocationContext(),
+                                    C.getSValBuilder().makeNull(), false),
+                    C.getNoteTag("Assuming null pointer is passed into cast",
+                                 /*IsPrunable=*/true));
+    return;
+  }
+
+  const MemRegion *MR = DV.getAsRegion();
+  const DynamicTypeInfo *DynTy = getRawDynamicTypeInfo(State, MR);
+
+  QualType RawTy = CE->getType();
+  if (RawTy->isPointerType()) {
+    RawTy = RawTy->getPointeeType();
+  }
+  RawTy = RawTy.getUnqualifiedType();
+
+  // We assume that every checked cast succeeds.
+  bool IsCastSucceeds = IsCheckedCast;
+  if (!IsCastSucceeds) {
+    // If we know the dynamic type, see whether the current cast succeeds.
+    if (DynTy) {
+      IsCastSucceeds = IsNonNullReturn && DynTy->isCastSucceeds(RawTy);
+    } else {
+      // If it is the first dynamic cast it succeeds if the return is non-null.
+      IsCastSucceeds = IsNonNullReturn;
+    }
+  }
+
+  // Check whether we have seen that dynamic type.
+  bool IsDynTypeFound = DynTy && DynTy->isCastFound(RawTy);
+
+  // Store the type information if we have not seen this dynamic type yet.
+  if (!IsDynTypeFound) {
+    State = setDynamicTypeInfo(State, MR, DynTy, RawTy, IsCastSucceeds);
+  }
+
   std::string CastToName = getCastName(CE);
+  std::string CastFromName = "";
+  if (CE->getNumArgs() > 0) {
+    CastFromName = getCastName(CE->getArg(0));
+  } else {
+    QualType CastFromTy = DV.getAsSymbol()->getType();
+    CastFromName = CastFromTy->getPointeeCXXRecordDecl()->getNameAsString();
+  }
 
-  return C.getNoteTag(
-      [CastFromName, CastToName, IsNullReturn,
-       IsCheckedCast](BugReport &) -> std::string {
+  const NoteTag *Tag = C.getNoteTag(
+      [=](BugReport &) -> std::string {
         SmallString<128> Msg;
         llvm::raw_svector_ostream Out(Msg);
 
-        Out << (!IsCheckedCast ? "Assuming dynamic cast " : "Checked cast ");
-        if (CastFromName)
-          Out << "from '" << *CastFromName << "' ";
+        if (!IsCheckedCast) {
+          Out << (IsDynTypeFound ? "Dynamic cast" : "Assuming dynamic cast");
+        } else {
+          Out << "Checked cast";
+        }
 
-        Out << "to '" << CastToName << "' "
-            << (!IsNullReturn ? "succeeds" : "fails");
+        Out << " from '" << CastFromName << "' to '" << CastToName << "' "
+            << (IsCastSucceeds ? "succeeds" : "fails");
 
         return Out.str();
       },
       /*IsPrunable=*/true);
-}
 
-static ProgramStateRef getState(bool IsNullReturn,
-                                DefinedOrUnknownSVal ReturnDV,
-                                const CallExpr *CE, ProgramStateRef State,
-                                CheckerContext &C) {
-  return State->BindExpr(
-      CE, C.getLocationContext(),
-      IsNullReturn ? C.getSValBuilder().makeNull() : ReturnDV, false);
+  SVal V = IsCastSucceeds ? DV : C.getSValBuilder().makeNull();
+  C.addTransition(State->BindExpr(CE, C.getLocationContext(), V, false), Tag);
 }
 
 //===----------------------------------------------------------------------===//
@@ -125,27 +172,21 @@
                                           DefinedOrUnknownSVal DV,
                                           CheckerContext &C,
                                           bool IsCheckedCast = false) {
-  bool IsNullReturn = false;
-  if (ProgramStateRef State = C.getState()->assume(DV, true))
-    C.addTransition(getState(IsNullReturn, DV, CE, State, C),
-                    getCastTag(IsNullReturn, CE, C, IsCheckedCast));
+  addCastTransition(CE, DV, C, /*IsNonNullParam=*/true,
+                    /*IsNonNullReturn=*/true, IsCheckedCast);
 }
 
 static void evalNonNullParamNullReturn(const CallExpr *CE,
                                        DefinedOrUnknownSVal DV,
                                        CheckerContext &C) {
-  bool IsNullReturn = true;
-  if (ProgramStateRef State = C.getState()->assume(DV, true))
-    C.addTransition(getState(IsNullReturn, DV, CE, State, C),
-                    getCastTag(IsNullReturn, CE, C));
+  addCastTransition(CE, DV, C, /*IsNonNullParam=*/true,
+                    /*IsNonNullReturn=*/false);
 }
 
 static void evalNullParamNullReturn(const CallExpr *CE, DefinedOrUnknownSVal DV,
                                     CheckerContext &C) {
-  if (ProgramStateRef State = C.getState()->assume(DV, false))
-    C.addTransition(getState(/*IsNullReturn=*/true, DV, CE, State, C),
-                    C.getNoteTag("Assuming null pointer is passed into cast",
-                                 /*IsPrunable=*/true));
+  addCastTransition(CE, DV, C, /*IsNonNullParam=*/false,
+                    /*IsNonNullReturn=*/false);
 }
 
 void CastValueChecker::evalCast(const CallExpr *CE, DefinedOrUnknownSVal DV,
@@ -182,18 +223,14 @@
                                        DefinedOrUnknownSVal DV,
                                        CheckerContext &C,
                                        bool IsCheckedCast = false) {
-  bool IsNullReturn = false;
-  if (ProgramStateRef State = C.getState()->assume(DV, true))
-    C.addTransition(getState(IsNullReturn, DV, CE, C.getState(), C),
-                    getCastTag(IsNullReturn, CE, C, IsCheckedCast));
+  addCastTransition(CE, DV, C, /*IsNonNullParam=*/true,
+                    /*IsNonNullReturn=*/true, IsCheckedCast);
 }
 
 static void evalZeroParamNullReturn(const CallExpr *CE, DefinedOrUnknownSVal DV,
                                     CheckerContext &C) {
-  bool IsNullReturn = true;
-  if (ProgramStateRef State = C.getState()->assume(DV, true))
-    C.addTransition(getState(IsNullReturn, DV, CE, C.getState(), C),
-                    getCastTag(IsNullReturn, CE, C));
+  addCastTransition(CE, DV, C, /*IsNonNullParam=*/true,
+                    /*IsNonNullReturn=*/false);
 }
 
 void CastValueChecker::evalCastAs(const CallExpr *CE, DefinedOrUnknownSVal DV,
@@ -207,6 +244,10 @@
   evalZeroParamNullReturn(CE, DV, C);
 }
 
+//===----------------------------------------------------------------------===//
+// Main logic to evaluate a call.
+//===----------------------------------------------------------------------===//
+
 bool CastValueChecker::evalCall(const CallEvent &Call,
                                 CheckerContext &C) const {
   const auto *Lookup = CDM.lookup(Call);
@@ -219,13 +260,13 @@
     return false;
 
   const CastCheck &Check = Lookup->first;
-  CastKind Kind = Lookup->second;
+  CallKind Kind = Lookup->second;
 
   const auto *CE = cast<CallExpr>(Call.getOriginExpr());
   Optional<DefinedOrUnknownSVal> DV;
 
   switch (Kind) {
-  case CastKind::Function: {
+  case CallKind::Function: {
     // If we cannot obtain the arg's class we cannot be sure how to model it.
     QualType ArgTy = Call.parameters()[0]->getType();
     if (!ArgTy->getAsCXXRecordDecl() && !ArgTy->getPointeeCXXRecordDecl())
@@ -234,7 +275,7 @@
     DV = Call.getArgSVal(0).getAs<DefinedOrUnknownSVal>();
     break;
   }
-  case CastKind::Method:
+  case CallKind::Method:
     // If we cannot obtain the 'InstanceCall' we cannot be sure how to model it.
     const auto *InstanceCall = dyn_cast<CXXInstanceCall>(&Call);
     if (!InstanceCall)
Index: clang/include/clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h
===================================================================
--- clang/include/clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h
+++ clang/include/clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeMap.h
@@ -13,12 +13,12 @@
 #ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_DYNAMICTYPEMAP_H
 #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_DYNAMICTYPEMAP_H
 
+#include "clang/AST/Type.h"
 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
-#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
+#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
 #include "llvm/ADT/ImmutableMap.h"
-#include "clang/AST/Type.h"
 
 namespace clang {
 namespace ento {
@@ -37,21 +37,25 @@
   static void *GDMIndex();
 };
 
-/// Get dynamic type information for a region.
-DynamicTypeInfo getDynamicTypeInfo(ProgramStateRef State,
-                                   const MemRegion *Reg);
+/// Get dynamic type information for the region \p MR.
+DynamicTypeInfo getDynamicTypeInfo(ProgramStateRef State, const MemRegion *MR);
+
+/// Get the raw dynamic type information for the region \p MR.
+const DynamicTypeInfo *getRawDynamicTypeInfo(ProgramStateRef State,
+                                             const MemRegion *MR);
 
 /// Set dynamic type information of the region; return the new state.
-ProgramStateRef setDynamicTypeInfo(ProgramStateRef State, const MemRegion *Reg,
+ProgramStateRef setDynamicTypeInfo(ProgramStateRef State, const MemRegion *MR,
                                    DynamicTypeInfo NewTy);
 
 /// Set dynamic type information of the region; return the new state.
-inline ProgramStateRef setDynamicTypeInfo(ProgramStateRef State,
-                                          const MemRegion *Reg, QualType NewTy,
-                                          bool CanBeSubClassed = true) {
-  return setDynamicTypeInfo(State, Reg,
-                            DynamicTypeInfo(NewTy, CanBeSubClassed));
-}
+ProgramStateRef setDynamicTypeInfo(ProgramStateRef State, const MemRegion *MR,
+                                   QualType NewTy, bool CanBeSubClassed = true);
+
+/// Set dynamic type information of the region; return the new state.
+ProgramStateRef setDynamicTypeInfo(ProgramStateRef State, const MemRegion *MR,
+                                   const DynamicTypeInfo *DynTy, QualType RawTy,
+                                   bool IsCastSucceeds);
 
 void printDynamicTypeInfoJson(raw_ostream &Out, ProgramStateRef State,
                               const char *NL = "\n", unsigned int Space = 0,
Index: clang/include/clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h
===================================================================
--- clang/include/clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h
+++ clang/include/clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h
@@ -9,43 +9,111 @@
 #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_DYNAMICTYPEINFO_H
 
 #include "clang/AST/Type.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
 
 namespace clang {
 namespace ento {
 
 /// Stores the currently inferred strictest bound on the runtime type
 /// of a region in a given state along the analysis path.
+/// Also stores what runtime types it could not be due to failed casts.
 class DynamicTypeInfo {
-private:
-  QualType T;
-  bool CanBeASubClass;
-
 public:
+  enum class CastKind { Success, Fail };
 
-  DynamicTypeInfo() : T(QualType()) {}
-  DynamicTypeInfo(QualType WithType, bool CanBeSub = true)
-    : T(WithType), CanBeASubClass(CanBeSub) {}
+  DynamicTypeInfo() : DynTy(QualType()) {}
 
-  /// Return false if no dynamic type info is available.
-  bool isValid() const { return !T.isNull(); }
+  DynamicTypeInfo(QualType Ty, bool CanBeSub = true)
+      : DynTy(Ty), CanBeASubClass(CanBeSub) {}
 
-  /// Returns the currently inferred upper bound on the runtime type.
-  QualType getType() const { return T; }
+  DynamicTypeInfo(QualType Ty, CastKind Kind) {
+    switch (Kind) {
+    case CastKind::Success:
+      DynTy = Ty;
+      break;
+    case CastKind::Fail:
+      FailedCastVector.push_back(Ty);
+      break;
+    }
+  }
+
+  DynamicTypeInfo(const DynamicTypeInfo &DTI, QualType Ty, CastKind Kind) {
+    switch (Kind) {
+    case CastKind::Success:
+      assert(!isValid() && "Only one successful dynamic cast is allowed.");
+      DynTy = Ty;
+      FailedCastVector = DTI.FailedCastVector;
+      break;
+    case CastKind::Fail:
+      DynTy = DTI.DynTy;
+      FailedCastVector = DTI.FailedCastVector;
+      FailedCastVector.push_back(Ty);
+      break;
+    }
+  }
 
-  /// Returns false if the type information is precise (the type T is
+  /// Returns false if the type information is precise (the type 'DynTy' is
   /// the only type in the lattice), true otherwise.
   bool canBeASubClass() const { return CanBeASubClass; }
 
-  void Profile(llvm::FoldingSetNodeID &ID) const {
-    ID.Add(T);
-    ID.AddInteger((unsigned)CanBeASubClass);
+  /// Returns true if the dynamic type info is available.
+  bool isValid() const { return !DynTy.isNull(); }
+
+  /// Returns the currently inferred upper bound on the runtime type.
+  QualType getType() const { return DynTy; }
+
+  /// Returns whether the dynamic cast to \p Ty type succeeds.
+  bool isCastSucceeds(QualType Ty) const {
+    if (isValid())
+      return DynTy == Ty;
+
+    return llvm::find(FailedCastVector, Ty) == FailedCastVector.end();
+  }
+
+  /// Returns whether we already have information about the \p Ty type.
+  bool isCastFound(QualType Ty) const {
+    if (isValid())
+      if (DynTy == Ty)
+        return true;
+
+    return llvm::find(FailedCastVector, Ty) != FailedCastVector.end();
   }
+
   bool operator==(const DynamicTypeInfo &X) const {
-    return T == X.T && CanBeASubClass == X.CanBeASubClass;
+    return DynTy == X.DynTy && CanBeASubClass == X.CanBeASubClass &&
+           FailedCastVector == X.FailedCastVector;
   }
+
+  void Profile(llvm::FoldingSetNodeID &ID) const {
+    ID.Add(DynTy);
+    ID.AddBoolean(CanBeASubClass);
+  }
+
+  void dump(raw_ostream &Out) const {
+    Out << "\nThe dynamic type is '" << DynTy.getAsString() << "'.";
+    Out << "\nCan be a sub class?: '" << CanBeASubClass << "'.";
+    Out << "\nThe failed casts:";
+    if (FailedCastVector.empty()) {
+      Out << " empty.\n\n";
+      return;
+    }
+
+    Out << '\n';
+    for (const QualType Ty : FailedCastVector)
+      Out << Ty.getAsString() << '\n';
+    Out << '\n';
+  }
+
+  LLVM_DUMP_METHOD void dump() const { dump(llvm::errs()); }
+
+private:
+  QualType DynTy;
+  bool CanBeASubClass;
+  llvm::SmallVector<QualType, 64> FailedCastVector;
 };
 
-} // end ento
-} // end clang
+} // namespace ento
+} // namespace clang
 
-#endif
+#endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_DYNAMICTYPEINFO_H
_______________________________________________
cfe-commits mailing list
cfe-commits@lists.llvm.org
https://lists.llvm.org/cgi-bin/mailman/listinfo/cfe-commits

Reply via email to